(12) Patent Application Publication (10) Pub. No.: US 2015/0196.543 A1 Surber (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2015/0196.543 A1 Surber (43) Pub US 2015O1965.43A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0196.543 A1 Surber (43) Pub. Date: Jul. 16, 2015 (54) AEROSOL PIRFENIDONE AND PYRIDONE A647/22 (2006.01) ANALOG COMPOUNDS AND USES A647/12 (2006.01) THEREOF A647/02 (2006.01) (52) U.S. Cl. (71) Applicant: GENOA PHARMACEUTICALS, CPC ............. A6 IK3I/4418 (2013.01); A61K 47/12 INC., San Diego, CA (US) (2013.01); A61 K47/02 (2013.01); A61K47/22 O O (2013.01); A61 K9/0073 (2013.01); A61 K (72) Inventor: Mark William Surber, San Diego, CA 9/0078 (2013.01) (US) (21) Appl. No.: 14/593,935 (57) ABSTRACT (22) Filed: Jan. 9, 2015 Disclosed herein are formulations of pirfenidone or pyridone analog compounds for aerosolization and use of Such formu Related U.S. Application Data lations for aerosol administration of pirfenidone or pyridone (60) Provisional application No. 62/000,473, filed on May analog compounds for the prevention or treatment of various 19, 2014, provisional application No. 61/977,529, fibrotic and inflammatory diseases, including disease associ filed on Apr. 9, 2014, provisional application No. ated with the lung, heart, kidney, liver, eye and central C 61/951,686, filed on Mar. 12, 2014, provisional appli- Vous system. In some embodiments, pir?enidone O pyridone cation No. 61/925,791 filed on Jan. 10, 2014. analog compound formulations and delivery options s - us s described herein allow for efficacious local delivery of pir Publication Classification fenidone or pyridone analog compound. Compositions include all formulations, kits, and device combinations (51) Int. Cl. described herein. Methods include inhalation procedures, A6 IK3I/448 (2006.01) indications and manufacturing processes for production and A6 IK9/00 (2006.01) use of the compositions described. Patent Application Publication Jul. 16, 2015 Sheet 1 of 5 US 201S/O196543 A1 www.www.www.www.www.www.www.vassy.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.www.w Modeled Hurtain Lung Pharmacokinetics: Aerosows. Crai 90 sc W Aesosol. 2 in haiation, 185 g RR 80 cc - - Aesoso; G 3i, iihaiation, 154 g RD - - - Aesosol 138 in it haiation, 1.3 mg RC - - Ojai: 81 mg PC, Fasted State. Rubio et al., 2009 is - - - - - Osai: 81; g PO, Fed State, Rubia et al., 2839 3:.5 FIG. 1. Modeled Nebulized Aerosol Administration to a Human. Patent Application Publication Jul. 16, 2015 Sheet 2 of 5 US 201S/O196543 A1 5 ------------------------------------------------------------------------------------------------------------------------------- Aerosci: 5 min inhalation, 47 mg RDD {t1:2 = 3.5 : ni : A. c a a Crai: 88 nig PC, Fasted State (Rubino et al., 2009 - aOrai: 80 ring PO, Fed State (Rubino et al., 2009 3 . 2 ------------------------------------------------------------------------------------------------------------------------------------------------------------- -- 4. S---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- FIG. 2. Modeled Nebulized Aerosol Administration to a Human - 50mcg/gram target lung tissue Cmax and correlated lung tissue and plasma pharmacokinetics. Patent Application Publication Jul. 16, 2015 Sheet 3 of 5 US 201S/O196543 A1 s - ?o 2. g E 9 E s Cmax (gpg) a SO 11.6 33.5 71.5 11.8 AUCo-ahs (ughrig) c 2.6 2.5 7.3 15.5 18.2 <26 26 109 23.3 103 21.7 AUC-2s (ughrimL) FIG. 3. Hydroxyproline results from bleomycin model of pulmonary fibrosis. Patent Application Publication Jul. 16, 2015 Sheet 4 of 5 US 201S/O196543 A1 9 -0. 5 Cmax ago) 116 335 715 11.8 33.6 2 AUC (gho) 26 73 15.5 182 344 Cmax gm) 26 109 23.3 103 21.7 AUC (ghtml) 30 77 165 166. 296 FIG. 4. Histopathology results from bleomycin model of pulmonary fibrosis. Patent Application Publication Jul. 16, 2015 Sheet 5 of 5 US 201S/O196543 A1 : so an aeroso: 2 fing R, 5 is initaiatio: SO . k . Aaroso: Sig Ri, 5 in ihaiation isi N-M N-MN - W - Y - NY N-N-N-N-N-N-M.----- N-N-N-N-N-N-N e s is Aeroso: 2.5 g. Rii, i is irraiatic ---oral: 80 mg Po, Fasted State 3rai: 88 nig O, Fed State E C. *Airesit....sirc, Ras Na C & 8. 3. Time hrs) Inhaled (mg RDD) Oral (801 mg) FIG. 5. Modeled human inhaled aerosol pirfenidone pharmacokinetics. US 2015/O 196543 A1 Jul. 16, 2015 AEROSOL PRFENDONE AND PYRIDONE includes administering one, two, three, or more than three ANALOG COMPOUNDS AND USES doses of pirfenidone or a pyridone analog compound on the THEREOF days of dosing. In some embodiments, each inhaled dose of pirfenidone or a pyridone analog compound is administered PRIORITY CLAIM with a nebulizer, a metered dose inhaler, or a dry powder 0001. This application claims benefit of U.S. Provisional inhaler. In some embodiments, each inhaled dose comprises Application No. 61/925,791, entitled “AEROSOL PIRFENI an aqueous solution of pirfenidone or a pyridone analog.com DONE AND PYRIDONE ANALOG COMPOUNDS AND pound. In some embodiments, each inhaled dose comprises USES THEREOF filed on Jan. 10, 2014: U.S. Provisional from about 0.1 mL to about 6 mL of an aqueous solution of Application No. 61/951,686, entitled “AEROSOL PIRFENI pirfenidone or a pyridone analog compound, wherein the DONE AND PYRIDONE ANALOG COMPOUNDS AND concentration of pirfenidone or pyridone analog compound in USES THEREOF filed on Mar. 12, 2014: U.S. Provisional the aqueous solution is from about 0.1 mg/mL and about 60 Application No. 61/977,529, entitled “AEROSOL PIRFENI mg/mL and the osmolality of the of the aqueous solution is DONE AND PYRIDONE ANALOG COMPOUNDS AND from about 50 mOsmol/kg to about 6000 mOsmol/kg. In USES THEREOF filed on Apr. 9, 2014; U.S. Provisional Some embodiments, the aqueous solution of each inhaled Application No. 62/000,473, entitled “AEROSOL PIRFENI dose further comprises one or more additional ingredients DONE AND PYRIDONE ANALOG COMPOUNDS AND selected from co-solvents, tonicity agents, Sweeteners, Sur USES THEREOF filed on May 19, 2014; all of which are factants, wetting agents, chelating agents, anti-oxidants, herein incorporated by reference in their entirety. salts, and buffers. In some embodiments, the aqueous solu tion of each inhaled dose further comprises a citrate buffer or FIELD OF THE INVENTION phosphate buffer, and one or more salts selected from the 0002 The present invention relates in its several embodi group consisting of Sodium chloride, magnesium chloride, ments to liquid, dry powder and metered-dose formulations Sodium bromide, magnesium bromide, calcium chloride and for therapeutic inhaled delivery of pyridone compositions calcium bromide. In some embodiments, the aqueous solu Such as pirfenidone to desired anatomical sites, for treatment tion of each inhaled dose comprises: water, pirfenidone or and/or prophylaxis of a variety of pulmonary, neurologic, pyridone analog compoundata concentration from about 0.1 cardiovascular and Solid organ disease conditions. mg/mL to about 20 mg/mL, one or more salts, wherein the total amount of the one or more salts is from about 0.01% to BACKGROUND OF THE INVENTION about 2.0% by weight of the weight of aqueous solution; and optionally a phosphate buffer that maintains the pH of the 0003) A number of undesirable pulmonary diseases such solution from about pH 5.0 to about pH 8.0, or citrate buffer as interstitial lung disease (ILD; and Sub-class diseases than maintains the pH of the solution from about 4.0 to about therein), chronic obstructive pulmonary disease (COPD; and 7.0; and the osmolality of the of the aqueous solution is from Sub-class diseases therein), asthma, and fibrotic indications of about 50 mOsmol/kg to about 2000 mOsmol/kg. In some the kidney, heart and eye, the diseases are initiated from an embodiments, each inhaled dose is administered with a liquid external challenge. By non-limiting example, these effectors nebulizer. In some embodiments, the liquid nebulizer: (i) after can include infection, cigarette Smoking, environmental administration of the inhaled dose, achieves lung deposition exposure, radiation exposure, Surgical procedures and trans of at least 7% of the pirfenidone or pyridone analog com plant rejection. However, other causes related to genetic dis pound administered to the mammal; (ii) provides a Geometric position and the effects of aging may also be attributed. Standard Deviation (GSD) of emitted droplet size distribution Described herein are compositions of pirfenidone or a pyri of the aqueous solution of about 1.0 um to about 2.5um; (iii) done analog compound that are suitable for inhalation deliv provides: a) a mass median aerodynamic diameter (MMAD) ery to the lungs and/or systemic compartment and methods of of droplet size of the aqueous solution emitted with the high using Such compositions. efficiency liquid nebulizer of about 1 um to about 5um; b) a volumetric mean diameter (VMD) of about 1 um to about 5 SUMMARY um; and/or c) a mass median diameter (MMD) of about 1 um 0004. According to a certain embodiment of the present to about 5um; (iv) provides a fine particle fraction (FPF=%s5 invention, there is provided a pirfenidone or pyridone analog um) of droplets emitted from the liquid nebulizer of at least compound formulation composition for oral pulmonary or about 30%; (v) provides an output rate of at least 0.1 mL/min: intranasal inhalation delivery, comprising formulations for and/or (vi) provides at least about 25% of the aqueous solu aerosol administration of pirfenidone or pyridone analog tion to the mammal. In some embodiments, a) the lung tissue compounds for the prevention or treatment of various fibrotic Cmax of pirfenidone or pyridone analog compound from and inflammatory diseases, including disease associated with each inhaled dose is at least equivalent to or greater than a the lung, heart, kidney, liver, eye and central nervous system.
Recommended publications
  • Study Protocol: Amendment 3
    (!') GILEAU CLINICAL STUDY PROTOCOL Study Title: A Phase 3, Randomized, Double-blind, Placebo-controlled Study of Gemcitabine and Nab-paclitaxel combined with Momelotinib in Subjects with Previously Unu·eated Metastatic Pancreatic Ductal Adenocarcinoma Preceded by a Dose-fmding, Lead-in Phase Sponsor: Gilead Sciences, Inc. 333 Lakeside Drive Foster City, CA 94404 USA IND Number: 120605 EudraCT Number: 2014-004480-20 ClinicalTrials.gov Identifier: NCT021 01021 Indication: Previously unu·eated metastatic pancreatic ductal adenocarcinoma Protocol ID: GS-US-370-1296 Clinical Trials Manager: Name: PPD Telephone: PPD Gilead Medical Monitor: Name: Peter Lee, MD, PhD Telephone: PPD Clinical Program Manager: Name: PPD Telephone: PPD Protocol Version/Date: Original: 11 Febmary 2014 Amendment 1: 14 March 2014 Amendment 2: 25 August 2014 Amendment 3: 16 July 2015 CONFIDENTIALITY STATEMENT The inf01mation contained in this document, pruiicularly unpublished data, is the prope1iy or under conu·ol of Gilead Sciences, Inc., and is provided to you in confidence as an investigator, potential investigator, or consultant, for review by you, your staff, and an applicable Institutional Review Board or Independent Ethics Committee. The infonnation is only to be used by you in connection with authorized clinical studies of the investigational dmg described in the protocol. You will not disclose any of the infonnation to others without written authorization from Gilead Sciences, Inc., except to the extent necessa1y to obtain infonned consent from those persons
    [Show full text]
  • Abstract Supplement
    2018 ABSTRACT SUPPLEMENT SAN FRANCISCO June 20-23 • Marriott Marquis Federation of Clinical Immunology Societies June 20-23, 2018 San Francisco, California FOCIS 2018 Abstract Supplement TABLE OF CONTENTS Abstracts by Subject Area …………………………………………………………...……………………………….2 Allergy/asthma ……………………………………………………………………………………………………...2 Autoimmune neurologic diseases .............................................................................................................. 7 Autoimmune rheumatologic diseases ...................................................................................................... 19 Bone marrow or stem cell transplantation ............................................................................................... 37 Cytokines/chemokines ............................................................................................................................ 42 Diabetes and other autoimmune endocrine diseases .............................................................................. 47 General Autoimmunity…………………………………………………………………………………………….58 Genetics .................................................................................................................................................. 70 Immune monitoring .................................................................................................................................. 74 Immunity & infection ................................................................................................................................ 82 Immunodeficiency:
    [Show full text]
  • Granulocyte Colony-Stimulating Factor (G-CSF)
    British Journal of Cancer (1999) 80(1/2), 229–235 © 1999 Cancer Research Campaign Article no. bjoc.1998.0344 Granulocyte colony-stimulating factor (G-CSF) transiently suppresses mitogen-stimulated T-cell proliferative response E Reyes1, I García-Castro2, F Esquivel1, J Hornedo2, H Cortes-Funes2, J Solovera3 and M Alvarez-Mon1 1Medicine/Immune System Diseases Oncology Service, Department of Medicine ‘Principe de Asturias’ University Hospital, Alcalá University, Carretera Madrid- Barcelona, Km 33.600, 28871 Alcalá de Henares, Madrid, Spain; 2Medical Oncology Department, ‘12 de Octubre’ University Hospital, Madrid, Spain; 3Amgen, S.A. Barcelona, Spain Summary Granulocyte colony-stimulation factor (G-CSF) is a cytokine that selectively promotes growth and maturation of neutrophils and may modulate the cytokine response to inflammatory stimuli. The purpose of this study was to examine the effect of G-CSF on ex vivo peripheral blood mononuclear cell (PBMC) functions. Ten patients with breast cancer were included in a clinical trial in which r-metHuG-CSF was administrered daily for 5 days to mobilize peripheral blood stem cells. Ten healthy women were also included as controls. Our data show that G-CSF treatment induces an increase in peripheral blood leucocyte, neutrophil, lymphocyte and monocyte counts. We have found a modulation in the percentages of CD19+, CD45+CD14+, CD4+CD45RA+ and CD4+CD45RO+ cells in PBMC fractions during G-CSF treatment. We have also found a significant reduction in the proliferative response of PBMC to mitogenic stimulation that reverted 14 days after the fifth and the last dose of G-CSF. Furthermore, it was not associated with significant changes in the pattern of cytokine production.
    [Show full text]
  • Cytokines As Cellular Pathophysiology of Many Diseases
    Review Mediators of Inflammation, 5, 417-423 (1996) CYTOKINES and their receptors are involved in the Cytokines as cellular pathophysiology of many diseases. Here we pre- sent a detailed review on cytokines, receptors and communicators signalling routes, and show that one important lesson from cytokine biology is the complex and diverse regulation of cytokine activity. The activ- cA ity of cytokines is controlled at the level of trans- R. Debets and H. F. J. Savelkoul cription, translation, storage, processing, post- translational modification, trapping, binding by soluble proteins, and receptor number and/or Department of Immunology, Erasmus University, function. Translation of this diverse regulation in P.O. Box 1738, 3000 DR Rotterdam, The Netherlands strategies aimed at the control of cytokine activity will result in the development of more specific and selective drugs to treat diseases. CACorresponding Author Key words: Control of activity, Cytokine, Interference in cytokine activity, Receptor, Signalling routes Introduction lation and act locally to restore homeostasis. Cytokines bind with high affinity to specific For over two decades, it has been recognized receptors on the surface of target cells. When that immune-competent cells produce peptide cytokine receptors are expressed on the cyto- mediators, now termed cytokines. Cytokines act kine-producing cell, autocrine cellular activation as chemical communicators between cells, but may be the result. If the receptor is expressed mostly not as effector molecules in their own on a neighbouring cell, binding may result in right. The biological function of many cytokines paracrine cytokine activation. These features is mediated through their ability to regulate could explain the sometimes high local concen- gene expression in target cells.
    [Show full text]
  • Following High-Dose Chemotherapy and Autologous Bone Marrow Transplantation
    Bone Marrow Transplantation, (1997) 19, 315–322 1997 Stockton Press All rights reserved 0268–3369/97 $12.00 A phase I trial of recombinant human interleukin-1b (OCT-43) following high-dose chemotherapy and autologous bone marrow transplantation M Elkordy, M Crump, JJ Vredenburgh, WP Petros, A Hussein, P Rubin, M Ross, C Gilbert, C Modlin, B Meisenberg, D Coniglio, J Rabinowitz, M Laughlin, J Kurtzberg and WP Peters Duke University, Bone Marrow Transplant Program, Durham, NC, USA Summary: The use of lineage-specific hematopoietic growth factors such as GM-CSF and G-CSF shortens the duration of neu- We studied the effects of escalating doses of recombi- tropenia following high-dose chemotherapy and ABMT.1–3 nant human IL-1b in patients receiving high-dose Recently with molecular cloning much interest has emerged chemotherapy and ABMT for metastatic breast cancer in the use of growth factors, which have multilineage pro- or malignant melanoma. Sixteen patients received IL- liferative effects, to shorten the duration of neutropenia and 1b, 4 to 32 ng/kg/day administered subcutaneously for platelet transfusion-dependence and to decrease the number 7 days beginning 3 h after bone marrow infusion. Three of red blood cell transfusions.4 patients at the highest dose level also received G-CSF IL-1b is a polypeptide which exerts effects on hemato- following completion of IL-1b. All patients completed poiesis through several mechanisms, and produces a broad the 7 days of therapy. The majority of patients experi- spectrum of metabolic, immunologic and inflammatory enced chills and fever following one or more injections, effects.5,6 In addition to having a direct stimulatory effect and seven had severe pain at the injection site.
    [Show full text]
  • The Immunomodulatory Impact of Multipotential Stromal Cells on Monocytes in Healthy People and Patients with Rheumatoid Arthritis
    The immunomodulatory impact of multipotential stromal cells on monocytes in healthy people and patients with rheumatoid arthritis Priyanka Dutta Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Faculty of Medicine and Health School of Medicine September 2020 Primary Supervisor: Professor Michael McDermott Secondary Supervisor: Dr Elena Jones Secondary Supervisor: Professor Graham Cook The candidate confirms that the work submitted is her own work and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and no quotation from the thesis may be published without proper acknowledgement. The right of Priyanka Dutta to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. i Acknowledgements I would like to express my deep gratitude to my supervisors Professor Michael McDermott, Dr Elena Jones and Professor Graham Cook for providing me with this opportunity. Thank you for all your understanding, guidance and immense support inside and outside of the lab. Thanks for sharing your knowledge and ideas to support this PhD work, most of all thank you for your patience. Also, thanks to Chi Wong, Rekha Parmar, Adam Davidson and Elizabeth Straszynski for their great support in the lab, as well as the staff and patients at Chapel Allerton Hospital for providing patient samples. Thank you to Professor Paul Genever for providing the Y201 and Y202 MSC immortalised cell lines and to Dr Andreia Riberio and Professor Rhodri for their expert advice on optimisation of the whole blood assay.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0237439 A1 Stolen Et Al
    US 2013 02374.39A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0237439 A1 Stolen et al. (43) Pub. Date: Sep. 12, 2013 (54) SYSTEMIS AND METHODS USING Publication Classification BOMARKERPANEL, DATA (71) Applicants: Craig M. Stolen, New Brighton, MN (51) Int. Cl. (US); Timothy E. Meyer, North Oaks, GOIN33/68 (2006.01) MN (US); Milan Seth, Minneapolis, MN (52) U.S. Cl. (US); Francis G. Spinale, Blythewood, CPC .................................. G0IN33/6893 (2013.01) SC (US); Nicholas David Wold, Arden USPC .............................................. 506/9; 435/7.92 Hills, MN (US) (72) Inventors: Craig M. Stolen, New Brighton, MN (US); Timothy E. Meyer, North Oaks, (57) ABSTRACT MN (US); Milan Seth, Minneapolis, MN (US); Francis G. Spinale, Blythewood, SC (US); Nicholas David Wold, Arden Embodiments of the disclosure are related to systems and Hills, MN (US) methods for utilizing biomarker panel data with respect to (73) Assignees: MEDICAL UNIVERSITY OF medical devices and methods, amongst other things. In an SOUTH CAROLINA, CHARLESTON, embodiment, the disclosure can include a method of predict SC (US); CARDIAC PACEMAKERS, ing the likelihood of response to CRT therapy. The method INC., ST. PAUL, MN (US) can include quantifying levels of one or more biomarkers in a (21) Appl. No.: 13/756,129 biological sample of a patient, analyzing the quantified levels to determine response to CRT therapy, wherein a panel of (22) Filed: Jan. 31, 2013 biomarkers includes at least two selected from the group Related U.S. Application Data consisting of CRP, SGP-130, SIL-2R, STNFR-II, IFNg, BNP (60) Provisional application No.
    [Show full text]
  • Cytokine Signaling in Multiple Sclerosis and Its Therapeutic Applications
    Review Cytokine Signaling in Multiple Sclerosis and Its Therapeutic Applications Pushpalatha Palle 1,2,†, Kelly L. Monaghan 1,2,†, Sarah M. Milne 1,2 and Edwin C.K. Wan 1,2,* 1 Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; [email protected] (P.P.); [email protected] (K.L.M.); [email protected] (S.M.M.) 2 Center for Basic and Translational Stroke Research and the Center for Neurodegenerative Diseases, Blanchette Rockefeller Neurosciences Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA * Correspondence: [email protected]; Tel.: +1‐304‐263‐6293; Fax: +1‐304‐293‐7823 † These authors contributed equally to this work. Received: 22 August 2017; Accepted: 11 October 2017; Published: 13 October 2017 Abstract: Multiple sclerosis (MS) is one of the most common neurological disorders in young adults. The etiology of MS is not known but it is widely accepted that it is autoimmune in nature. Disease onset is believed to be initiated by the activation of CD4+ T cells that target autoantigens of the central nervous system (CNS) and their infiltration into the CNS, followed by the expansion of local and infiltrated peripheral effector myeloid cells that create an inflammatory milieu within the CNS, which ultimately lead to tissue damage and demyelination. Clinical studies have shown that progression of MS correlates with the abnormal expression of certain cytokines. The use of experimental autoimmune encephalomyelitis (EAE) model further delineates the role of these cytokines in neuroinflammation and the therapeutic potential of manipulating their biological activity in vivo.
    [Show full text]
  • An Emerging Role for the Anti-Inflammatory Cytokine
    Tsai et al. Journal of Biomedical Science 2013, 20:40 http://www.jbiomedsci.com/content/20/1/40 REVIEW Open Access An emerging role for the anti-inflammatory cytokine interleukin-10 in dengue virus infection Tsung-Ting Tsai1,2, Yi-Jui Chuang2,3, Yee-Shin Lin1,3,4, Shu-Wen Wan3,4, Chia-Ling Chen3,4 and Chiou-Feng Lin1,2,3,4* Abstract Infection with dengue virus (DENV) causes both mild dengue fever and severe dengue diseases, such as dengue hemorrhagic fever and dengue shock syndrome. The pathogenic mechanisms for DENV are complicated, involving viral cytotoxicity, immunopathogenesis, autoimmunity, and underlying host diseases. Viral load correlates with disease severity, while the antibody-dependent enhancement of infection largely determines the secondary effects of DENV infection. Epidemiological and experimental studies have revealed an association between the plasma levels of interleukin (IL)-10, which is the master anti-inflammatory cytokine, and disease severity in patients with DENV infection. Based on current knowledge of IL-10-mediated immune regulation during infection, researchers speculate an emerging role for IL-10 in clinical disease prognosis and dengue pathogenesis. However, the regulation of dengue pathogenesis has not been fully elucidated. This review article discusses the regulation and implications of IL-10 in DENV infection. For future strategies against DENV infection, manipulating IL-10 may be an effective antiviral treatment in addition to the development of a safe dengue vaccine. Keywords: DENV, Antibody-dependent
    [Show full text]
  • Hematologie 2021 POST-ASH
    ONLINE 21. PRAŽSKÉ HEMATOLOGICKÉ DNY Hematologie 2021 POST-ASH KAM NÁS POSOUVÁ TO NEJLEPŠÍ Z LOŇSKÉ SVĚTOVÉ HEMATOLOGIE 28. – 29. 1. 2021 Clarion Congress Hotel Prague (Freyova 33, Praha 9 – Vysočany) PROGRAM KONFERENCE A SBORNÍK ABSTRAKTŮ 21. PRAŽSKÉ HEMATOLOGICKÉ DNY ONLINE Hematologie 2021 28. – 29. 1. 2021 OBSAH 2 POST-ASH OBSAH 2 ÚVODNÍ SLOVO 3 DŮLEŽITÉ INFORMACE 4 SCHÉMA ODBORNÉHO PROGRAMU 6 PODROBNÝ PROGRAM KONFERENCE 7 POSTEROVÁ SEKCE 11 OŠETŘOVATELSKÝ PROGRAM 16 SATELITNÍ SYMPOZIA 18 SBORNÍK ABSTRAKTŮ 25 ABECEDNÍ REJSTŘÍK AUTORŮ 119 PŘEHLED PARTNERŮ A VYSTAVOVATELŮ 122 21. PRAŽSKÉ HEMATOLOGICKÉ DNY ONLINE Hematologie 2021 28. – 29. 1. 2021 ÚVODNÍ SLOVO 3 POST-ASH Vážené kolegyně, vážení kolegové, milí hosté 21 pražských hematologických dnů-HEMATOLOGIE 2021, loni jsme na 20 pražských hematologických dnech zahájili novou tradici, kterou účastníci velmi přivítali: uspořádat konferenci na začátku roku a reflektovat při nich to nejlepší, co se v našem oboru odehrálo na loňských světových kongresech Jsou to především ASH a EHA, ale i více specializované konference I když celý loňský rok poznamenala pandemie, bylo nám celou dobu jasné, že úspěšnou tradici nesmíme přerušit Optimisté v našich řadách doufali, že se podaří uspořádat konferenci v klasickém formátu, nicméně připravovali jsme paralelně všechny varianty Nakonec zvítězila varianta výhradně online Podobně jako našim dětem chybí interakce se spolužáky, i my budeme postrádat milá setkání s kolegy, hovory ve frontě na kávu, diskusi v přednáškových sálech i chutný štrůdl v hotelu
    [Show full text]
  • Effects of Biological Therapies on Molecular Features of Rheumatoid
    International Journal of Molecular Sciences Review Effects of Biological Therapies on Molecular Features of Rheumatoid Arthritis , Chary Lopez-Pedrera * y , Nuria Barbarroja y, Alejandra M. Patiño-Trives, Maria Luque-Tévar, Eduardo Collantes-Estevez , Alejandro Escudero-Contreras z and Carlos Pérez-Sánchez z Rheumatology Service, Reina Sofia Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, E-14004 Córdoba, Spain; [email protected] (N.B.); [email protected] (A.M.P.-T.); [email protected] (M.L.-T.); [email protected] (E.C.-E.); [email protected] (A.E.-C.); [email protected] (C.P.-S.) * Correspondence: [email protected] or [email protected]; Tel.: +34-957-213-795 These authors shared first authorship. y These authors shared last authorship. z Received: 31 October 2020; Accepted: 27 November 2020; Published: 28 November 2020 Abstract: Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disease primarily affecting the joints, and closely related to specific autoantibodies that mostly target modified self-epitopes. Relevant findings in the field of RA pathogenesis have been described. In particular, new insights come from studies on synovial fibroblasts and cells belonging to the innate and adaptive immune system, which documented the aberrant production of inflammatory mediators, oxidative stress and NETosis, along with relevant alterations of the genome and on the regulatory epigenetic mechanisms. In recent years, the advances in the understanding of RA pathogenesis by identifying key cells and cytokines allowed the development of new targeted disease-modifying antirheumatic drugs (DMARDs). These drugs considerably improved treatment outcomes for the majority of patients.
    [Show full text]
  • WO 2013/179143 A2 5 December 2013 (05.12.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/179143 A2 5 December 2013 (05.12.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61M 1/36 (2006.01) A61K 38/19 (2006.01) kind of national protection available): AE, AG, AL, AM, C07K 16/28 (2006.01) A61M 1/34 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61P 35/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, PCT/IB2013/001583 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 3 1 May 2013 (3 1.05.2013) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, PCT/EP20 12/002340 1 June 2012 (01 .06.2012) EP GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 12196527.
    [Show full text]