Molecular Genetics of Vestibular Organ Development

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Genetics of Vestibular Organ Development HVS2 11/18/2003 3:02 PM Page 11 2 Molecular Genetics of Vestibular Organ Development Weise Chang,Laura Cole,Raquel Cantos, and Doris K. Wu 1. Introduction Normal development of the vertebrate inner ear depends on signals ema- nating from multiple surrounding tissues, including the hindbrain, neural crest, mesenchyme, and notochord (for reviews, see Fritzsch et al. 1998; Torres and Giraldez 1998; Fekete 1999; Kiernan et al. 2002). Primarily through the analyses of mutant mice with spontaneous mutations or tar- geted deletions (knockouts), several genes involved in the patterning of the inner ear have been identified. Analyses of the phenotypes resulting from mutations within some of these genes, as well as analyses of their spatial and temporal expression patterns, indicate that they play specific, and sometimes multiple, roles in the patterning of the vestibular and auditory components of the inner ear (Table 2.1). Here, we summarize our current knowledge of the molecular mechanisms governing the development of the inner ear and the roles played by a variety of genes, focusing on the vestibu- lar apparatuses of the chicken and mouse. 2. Gross Development of the Vestibular Apparatus The membranous portion of the vertebrate inner ear originates from a thickening of the ectoderm adjacent to the hindbrain (Fig. 2.1). This thickened epithelium, known as the otic placode, invaginates to form the otic cup, which closes to form the otic vesicle/otocyst. A subpopulation of epithelial cells in the anteroventral lateral region of the otic cup and otic vesicle delaminate and coalesce to form the eighth (vestibulocochlear) ganglion. The otic vesicle proper undergoes a series of elaborate morpho- genetic changes to give rise to an intricate, mature inner ear. Figure 2.2 illustrates the gross development of the mouse inner ear from a late stage of otic vesicle formation through maturity, a period covering the complete development of the vestibular apparatus (Morsli et al. 1998). The vestibular component of the inner ear develops largely from the dorsal 11 HVS2 11/18/20033:02PMPage12 12 W. Changetal. Table 2.1. Genes affecting vestibular patterning. Type of Distribution in the inner Ear Gene Human disease protein and surrounding structures Mutant or knockout phenotype Ref. Bmp4 — secreted factor three presumptive cristae, Bmp4 +/-: absence of lateral canal Morsli et al. 1998; Hensen’s and Claudius’ Teng et al. 2000 regions of the cochlea Brn4/ DFN3 POU domain periotic mesenchyme Brn4 -/-, Slf: defects in fibroblasts de Kok et al. 1995; Pou3f4 transcription of spiral ligament; shortened Phippard et al. 1998, factor cochlea; constricted superior canal 1999; Minowa et al. 1999 Dlx 5 — homeobox dorsal posterior region of otic no anterior or posterior canal; Acampora et al. 1999b; transcription vesicle; semicircular canals reduced lateral canal; poorly Depew et al. 1999; factor and endolymphatic duct; formed cristae; reduced maculae; Merlo et al. 2002 sensory epithelium abnormal endolymphatic duct and cochlea Eya 1 Branchial- transcription ventrolateral otic vesicle; no eighth ganglion; amorphic inner Abdelhak et al. 1997; oto-renal coactivator eighth ganglion; neurogenic ear Xu et al. 1997, 1999; syndrome and sensory regions Kalatzis et al. 1998; Fgf3 — growth factor r5 and r6; prospective otic no endolymphatic duct or sac; Mansour et al. 1993; placode region; neurogenic reduced spiral ganglion; enlarged Mansour 1994; and sensory regions membranous labyrinth McKay et al. 1996 Fgf10 growth factor neurogenic area; all lacks all three canals and the Pauley et al. 2003 prospective sensory patches; posterior crista; malformed anterior vestibular and spiral ganglia crista Fgfr2 — growth factor otic placode; dorsal and rudimentary inner ear with no Pirvola et al. 2000 (IIIb) receptor medial wall of otic vesicle; sensory organs; loss of eighth nonsensory regions of the ganglion; 50% of mutants lack inner ear endolymphatic duct HVS2 11/18/20033:02PMPage13 Fidgetin — AAA protein epithelial cells in canal fidget: missing lateral canal; Cox et al. 2000 outpocket; cochlear duct malformed anterior and posterior canals GATA3 HDR syndrome zinc-finger regions of periotic rudimentary inner ear with a poorly Karis et al. 2001 transcription mesenchmye around developed endolymphatic duct; factor prospective canal region; misrouted efferent projections hindbrain; vestibular sensory 2. OrganDevelopmentVestibular MolecularGeneticsof 13 components except the saccule; cochlear duct Gli3 — zinc-finger periotic mesenchyme Extratoes: truncated anterior canal; Schimmang et al. 1992; transcription no lateral canal, but lateral crista is Hui et al. 1994 factor present Hmx2 — homeobox anterodorsal region of otic absence of three canals and cristae, Wang et al. 2001 (Nkx5.2) transcription vesicle; canals and ampullae; fusion of the utricle and saccule factor utricle, saccule, and endolymphatic duct; stria vascularis of the cochlea Hmx3 — homeobox otic placode; canal outpocket; reduced anterior canal, missing Hadrys et al. 1998; (Nkx5.1) — transcription semicircular canals posterior and lateral canals, loss of Wang et al. 1998 factor lateral crista (Bober’s group); missing lateral crista and ampulla, fusion of utricle and saccule (Lufkin’s group) Hoxa1 — homeobox 8 dpc: r3/4 boundary to spinal no endolymphatic duct or sac; Gavalas et al. 1998 transcription cord amorphic inner ear; no organ of factor Corti; reduced eighth ganglion Hoxa1/ — homeobox Hoxb1: 8 dpc: r3/4 boundary amorphic inner ear—more severe Rijli et al. 1993; Hoxb1 transcription to spinal cord; 9 dpc: than Hoxa1 alone Maconochie et al. 1996 factors expression up-regulated in r4 HVS2 11/18/20033:02PMPage14 14 W. Changetal. Table 2.1. Continued Type of Distribution in the inner Ear Gene Human disease protein and surrounding structures Mutant or knockout phenotype Ref. Hoxa2 — homeobox r1/2 boundary to spinal cord; enlarged membranous labyrinth; Deol 1964; Cordes and transcription expression up-regulated in r3 scala vestibuli lacking or collapsed Barsh 1994; McKay et factor and r5 al. 1996 Jagged1/ Allagille syndrome Transmembrane all prospective sensory Htu, Slm: small or missing one or Adam et al. 1998; Serrate 1 protein, Notch organs; later restricts to both anterior and posterior Kiernan et al. 2001; ligand supporting cells; ampullae and canals; decreased Tsai et al. 2001 subpopulation of outer hair cell number and endolymphatic duct cells increased inner hair cell number Kreisler — bZIP r5 and r6 misplaced otocyst; inner ear usually Deol 1964; Cordes and transcription cyst-like Barsh 1994; McKay et factor al. 1996; Ma et al. 1998, 2000 Lmx1a — LIM dorsal and lateral regions of Dreher: distended endolymphatic Giraldez 1998; homeodomain otic vesicle duct and sac; constricted canals; Millonig et al. 2000 protein poorly coiled cochlea Netrin 1 — secreted central region of canal defect in fusion plate formation; Salminen et al. 2000 protein, related outpocket; semicircular reduced anterior canal; no posterior to laminin canals; nonsensory region of or lateral canal utricle, saccule, and cochlea NeuroD — HLH neurogenic area and eighth severe reduction in eighth ganglion; Liu et al. 2000; transcription ganglion; all sensory regions shortened cochlear duct Kim et al. 2001 factor HVS2 11/18/20033:02PMPage15 Ngn1 — bHLH anteroventrolateral otic no eighth ganglion; fusion of utricle Ma et al. 2000 transcription vesicle and saccule; reduced utricle and factor saccule; shortened cochlea Nor-1 — nuclear receptor central region of canal thin semicircular canals and Ponnio et al. 2002 transcription outpocket; semicircular flattened ampullae 2. OrganDevelopmentVestibular MolecularGeneticsof 15 factor canals Otx1 — transcription lateral wall of otic vesicle; no lateral canal or ampulla; no Acampora et al. 1996; factor lateral canal and ampulla; lateral crista; incomplete separation Morsli et al. 1999 lateral wall of saccule and of utricle and saccule; misshapen cochlea saccule and cochlea Otx2 — transcription ventral tip of otic vesicle; Otx1-/-, Otx2+/-: incomplete Morsli et al. 1999; factor lateral wall of saccule and separation of utricle and saccule; Cantos et al. 2000 cochlea misshapen saccule and cochlea Pax3 Waardenberg paired box dorsal half of neural tube Splotch: aberrant endolymphatic Deol 1966; Epstein et syndrome type I transcription duct; misshapen cochlear and al. 1991; Goulding et factor vestibular components al. 1991, 1993 Prx1/Prx2 — paired-related Prx1—periotic mesenchyme Prx1-/-, Prx2-/-: no lateral canal; ten Berge et al. 1998 homeobox Prx2—otic epithelum; reduced anterior and posterior transcription periotic mesenchyme canals; smaller otic capsule factor Shh Holoprosencephaly secreted factor notochord and floor plate of absence of the lateral canal and Liu et al. 2002; neural tube, otic epithelium crista; no discernible ampulla, Riccomagno et al. 2002 and ganglion utricle, saccule, cochlea, and endolymphatic duct; reduced cochleovestibular ganglion HVS2 11/18/2003 3:02 PM Page 16 16 W. Chang et al. Figure 2.1. A schematic diagram summarizing the stages of inner ear development from an otic placode to an otic vesicle. These stages span approximately 8.5–9.5dpc (days postcoitium) in mice, and embryonic days 1.5–2.5 (Hamburger and Hamilton stages 9–17) in chickens. Orientations: D, dorsal; M, medial. (Adapted from Wu and Choo 2003.) Figure 2.2. Lateral views of paint-filled membranous labyrinths of mice from 11.5dpc to postnatal day 1. Specimens were fixed in paraformaldehyde, dehydrated in ethanol, and cleared in
Recommended publications
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights Into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle
    animals Article Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle Masoumeh Naserkheil 1 , Abolfazl Bahrami 1 , Deukhwan Lee 2,* and Hossein Mehrban 3 1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; [email protected] (M.N.); [email protected] (A.B.) 2 Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea 3 Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran; [email protected] * Correspondence: [email protected]; Tel.: +82-31-670-5091 Received: 25 August 2020; Accepted: 6 October 2020; Published: 9 October 2020 Simple Summary: Hanwoo is an indigenous cattle breed in Korea and popular for meat production owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score) are economically important for the selection of young and proven bulls. In recent decades, the advent of high throughput genotyping technologies has made it possible to perform genome-wide association studies (GWAS) for the detection of genomic regions associated with traits of economic interest in different species. In this study, we conducted a weighted single-step genome-wide association study which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results revealed 33 relevant genomic regions related to the traits of interest.
    [Show full text]
  • Molecular Codes for Cell Type Specification in Brn3 Retinal
    Molecular codes for cell type specification in PNAS PLUS Brn3 retinal ganglion cells Szilard Sajgoa,1, Miruna Georgiana Ghiniaa,2, Matthew Brooksb, Friedrich Kretschmera,3, Katherine Chuanga,4, Suja Hiriyannac, Zhijian Wuc, Octavian Popescud,e, and Tudor Constantin Badeaa,5 aRetinal Circuits Development and Genetics Unit, Neurobiology–Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, MD 20892; bGenomics Core, Neurobiology–Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, MD 20892; cOcular Gene Therapy Core, National Eye Institute, Bethesda, MD 20892; dInstitute of Biology, Romanian Academy, Bucharest 060031, Romania; and eMolecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Science, Babes-Bolyai University, Cluj-Napoca 400084, Romania Edited by Jeremy Nathans, Johns Hopkins University, Baltimore, MD, and approved April 12, 2017 (received for review November 8, 2016) Visual information is conveyed from the eye to the brain by Onecut2 (6, 13, 26–33). Together with Isl1 and Brn3b, these distinct types of retinal ganglion cells (RGCs). It is largely unknown downstream factors are expressed in partially overlapping patterns how RGCs acquire their defining morphological and physiological in RGC types, and some were shown to be required for survival features and connect to upstream and downstream synaptic and/or dendrite and axon formation in various RGC types. partners. The three Brn3/Pou4f transcription factors (TFs) participate However, many other TFs may be involved
    [Show full text]
  • FARE2021WINNERS Sorted by Institute
    FARE2021WINNERS Sorted By Institute Swati Shah Postdoctoral Fellow CC Radiology/Imaging/PET and Neuroimaging Characterization of CNS involvement in Ebola-Infected Macaques using Magnetic Resonance Imaging, 18F-FDG PET and Immunohistology The Ebola (EBOV) virus outbreak in Western Africa resulted in residual neurologic abnormalities in survivors. Many case studies detected EBOV in the CSF, suggesting that the neurologic sequelae in survivors is related to viral presence. In the periphery, EBOV infects endothelial cells and triggers a “cytokine stormâ€. However, it is unclear whether a similar process occurs in the brain, with secondary neuroinflammation, neuronal loss and blood-brain barrier (BBB) compromise, eventually leading to lasting neurological damage. We have used in vivo imaging and post-necropsy immunostaining to elucidate the CNS pathophysiology in Rhesus macaques infected with EBOV (Makona). Whole brain MRI with T1 relaxometry (pre- and post-contrast) and FDG-PET were performed to monitor the progression of disease in two cohorts of EBOV infected macaques from baseline to terminal endpoint (day 5-6). Post-necropsy, multiplex fluorescence immunohistochemical (MF-IHC) staining for various cellular markers in the thalamus and brainstem was performed. Serial blood and CSF samples were collected to assess disease progression. The linear mixed effect model was used for statistical analysis. Post-infection, we first detected EBOV in the serum (day 3) and CSF (day 4) with dramatic increases until euthanasia. The standard uptake values of FDG-PET relative to whole brain uptake (SUVr) in the midbrain, pons, and thalamus increased significantly over time (p<0.01) and positively correlated with blood viremia (p≤0.01).
    [Show full text]
  • Mapping of Bionic Array Electric Field Focusing in Plasmid DNA
    OPEN Gene Therapy (2016) 23, 369–379 © 2016 Macmillan Publishers Limited All rights reserved 0969-7128/16 www.nature.com/gt ORIGINAL ARTICLE - ENABLING TECHNOLOGIES Mapping of bionic array electric field focusing in plasmid DNA-based gene electrotransfer CJ Browne1,2,4, JL Pinyon1,4, DM Housley1, EN Crawford1, NH Lovell3, M Klugmann1 and GD Housley1 Molecular medicine through gene therapy is challenged to achieve targeted action. This is now possible utilizing bionic electrode arrays for focal delivery of naked (plasmid) DNA via gene electrotransfer. Here, we establish the properties of array-based electroporation affecting targeted gene delivery. An array with eight 300 μm platinum ring electrodes configured as a cochlear implant bionic interface was used to transduce HEK293 cell monolayers with a plasmid-DNA green fluorescent protein (GFP) reporter gene construct. Electroporation parameters were pulse intensity, number, duration, separation and electrode configuration. The latter determined the shape of the electric fields, which were mapped using a voltage probe. Electrode array-based electroporation was found to require ~ 100 × lower applied voltages for cell transduction than conventional electroporation. This was found to be due to compression of the field lines orthogonal to the array. A circular area of GFP-positive cells was created when the electrodes were ganged together as four adjacent anodes and four cathodes, whereas alternating electrode polarity created a linear area of GFP-positive cells. The refinement of gene delivery parameters was validated in vivo in the guinea pig cochlea. These findings have significant clinical ramifications, where spatiotemporal control of gene expression can be predicted by manipulation of the electric field via current steering at a cellular level.
    [Show full text]
  • Engineered Type 1 Regulatory T Cells Designed for Clinical Use Kill Primary
    ARTICLE Acute Myeloid Leukemia Engineered type 1 regulatory T cells designed Ferrata Storti Foundation for clinical use kill primary pediatric acute myeloid leukemia cells Brandon Cieniewicz,1* Molly Javier Uyeda,1,2* Ping (Pauline) Chen,1 Ece Canan Sayitoglu,1 Jeffrey Mao-Hwa Liu,1 Grazia Andolfi,3 Katharine Greenthal,1 Alice Bertaina,1,4 Silvia Gregori,3 Rosa Bacchetta,1,4 Norman James Lacayo,1 Alma-Martina Cepika1,4# and Maria Grazia Roncarolo1,2,4# Haematologica 2021 Volume 106(10):2588-2597 1Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 2Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 3San Raffaele Telethon Institute for Gene Therapy, Milan, Italy and 4Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, CA, USA *BC and MJU contributed equally as co-first authors #AMC and MGR contributed equally as co-senior authors ABSTRACT ype 1 regulatory (Tr1) T cells induced by enforced expression of interleukin-10 (LV-10) are being developed as a novel treatment for Tchemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft-versus-host disease while mediating graft-versus-leukemia effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature.
    [Show full text]
  • BMC Biology Biomed Central
    BMC Biology BioMed Central Research article Open Access Classification and nomenclature of all human homeobox genes PeterWHHolland*†1, H Anne F Booth†1 and Elspeth A Bruford2 Address: 1Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK and 2HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK Email: Peter WH Holland* - [email protected]; H Anne F Booth - [email protected]; Elspeth A Bruford - [email protected] * Corresponding author †Equal contributors Published: 26 October 2007 Received: 30 March 2007 Accepted: 26 October 2007 BMC Biology 2007, 5:47 doi:10.1186/1741-7007-5-47 This article is available from: http://www.biomedcentral.com/1741-7007/5/47 © 2007 Holland et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described. Results: We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes.
    [Show full text]
  • Anticancer Effect of Natural Product Sulforaphane by Targeting MAPK Signal Through Mirna-1247-3P in Human Cervical Cancer Cells
    Article Volume 11, Issue 1, 2021, 7943 - 7972 https://doi.org/10.33263/BRIAC111.79437972 Anticancer Effect of Natural Product Sulforaphane by Targeting MAPK Signal through miRNA-1247-3p in Human Cervical Cancer Cells Meng Luo 1 , Dian Fan 2 , Yinan Xiao 2 , Hao Zeng 2 , Dingyue Zhang 2 , Yunuo Zhao 2 , Xuelei Ma 1,* 1 Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China; [email protected] (L.M.); 2 West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China; [email protected] (F.D.); [email protected] (X.Y.N.); [email protected] (Z.H.); [email protected] (Z.D.Y.); [email protected] (Z.Y.N.); * Correspondence: [email protected]; Scopus Author ID 55523405000 Received: 11.06.2020; Revised: 3.07.2020; Accepted: 5.07.2020; Published: 9.07.2020 Abstract: The prognosis of cervical cancer remains poor. Sulforaphane, an active ingredient from cruciferous plants, has been identified as a potential anticancer agent in various cancers. However, there is little information about its effect on cervical cancer. Here, we conducted a present study to uncover the effect and the potential mechanisms of sulforaphane on cervical cancer. HeLa cells were treated with sulforaphane, and cell proliferation and apoptosis were assessed by Cell Counting Kit-8, Western blot, flow cytometry, and immunofluorescence. Then, next-generation sequencing (NGS) and bioinformatics tools were used to analyze mRNA-seq, miRNA-seq, and potential pathways. Finally, qRT-PCR, Cell Counting Kit-8, flow cytometry, small RNAs analysis, and Western blot were performed to evaluate the biological function of miR1247-3p and MAPK pathway in HeLa cell lines.
    [Show full text]
  • RFX Transcription Factors Are Essential for Hearing in Mice
    ARTICLE Received 2 Mar 2015 | Accepted 4 Sep 2015 | Published 15 Oct 2015 DOI: 10.1038/ncomms9549 OPEN RFX transcription factors are essential for hearing in mice Ran Elkon1,*, Beatrice Milon2,*, Laura Morrison2, Manan Shah2, Sarath Vijayakumar3, Manoj Racherla2, Carmen C. Leitch4, Lorna Silipino2, Shadan Hadi5, Miche`le Weiss-Gayet6, Emmanue`le Barras7, Christoph D. Schmid8, Aouatef Ait-Lounis7,w, Ashley Barnes2, Yang Song9, David J. Eisenman2, Efrat Eliyahu10, Gregory I. Frolenkov5, Scott E. Strome2,Be´ne´dicte Durand6, Norann A. Zaghloul4, Sherri M. Jones3, Walter Reith7 & Ronna Hertzano2,9,11 Sensorineural hearing loss is a common and currently irreversible disorder, because mammalian hair cells (HCs) do not regenerate and current stem cell and gene delivery protocols result only in immature HC-like cells. Importantly, although the transcriptional regulators of embryonic HC development have been described, little is known about the postnatal regulators of maturating HCs. Here we apply a cell type-specific functional genomic analysis to the transcriptomes of auditory and vestibular sensory epithelia from early post- natal mice. We identify RFX transcription factors as essential and evolutionarily conserved regulators of the HC-specific transcriptomes, and detect Rfx1,2,3,5 and 7 in the developing HCs. To understand the role of RFX in hearing, we generate Rfx1/3 conditional knockout mice. We show that these mice are deaf secondary to rapid loss of initially well-formed outer HCs. These data identify an essential role for RFX in hearing and survival of the terminally differentiating outer HCs. 1 Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
    [Show full text]
  • Molecular Control of Retinal Ganglion Cell Specification and Differentiation
    4 Molecular Control of Retinal Ganglion Cell Specification and Differentiation Mengqing Xiang1, Haisong Jiang1,2, Kangxin Jin1 and Feng Qiu1 1Center for Advanced Biotechnology and Medicine and Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, New Jersey; 2Institute for Cell Engineering, Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Maryland; USA 1. Introduction The mammalian retina is a laminated sensorineural epithelium composed of six classes of neurons that include the rod, cone, bipolar, horizontal, amacrine, and ganglion cells (RGCs), and one type of glia, the Müller cells. RGCs are the sole output neurons in the retina whose projecting axons form the optic nerve essential for conveying light signals to the higher visual system in the brain. Glaucoma causes degeneration of the optic nerve and RGCs that leads to impaired vision and blindness. Recent advances in stem cell-based therapy to restore functional retinal circuits in the damaged retina have made it promising to develop an effective treatment of glaucoma in the future. It is conceivable that, in the future, RGCs derived through controlled differentiation of stem cells by various retinogenic factors may provide renewable sources of replacement RGCs for glaucoma patients. Because differentiation of stem cells normally recapitulates the events that occur during embryogenesis, it will be important to understand the molecular basis of RGC development and identify intrinsic and extrinsic factors involved in RGC fate determination and differentiation. In this chapter, we will summarize and discuss recent molecular genetic studies on intrinsic and extrinsic factors required for RGC development, and how they act to establish RGC competence, determine RGC fate and facilitate RGC differentiation (Fig.
    [Show full text]
  • Downloadedfrommultiple from Poplar, and We Could Identify TF Clusters That Can Resources
    Nie et al. BMC Systems Biology 2011, 5:53 http://www.biomedcentral.com/1752-0509/5/53 METHODOLOGYARTICLE Open Access TF-Cluster: A pipeline for identifying functionally coordinated transcription factors via network decomposition of the shared coexpression connectivity matrix (SCCM) Jeff Nie1†, Ron Stewart1†, Hang Zhang6, James A Thomson1,2,3,9, Fang Ruan7, Xiaoqi Cui5 and Hairong Wei4,8* Abstract Background: Identifying the key transcription factors (TFs) controlling a biological process is the first step toward a better understanding of underpinning regulatory mechanisms. However, due to the involvement of a large number of genes and complex interactions in gene regulatory networks, identifying TFs involved in a biological process remains particularly difficult. The challenges include: (1) Most eukaryotic genomes encode thousands of TFs, which are organized in gene families of various sizes and in many cases with poor sequence conservation, making it difficult to recognize TFs for a biological process; (2) Transcription usually involves several hundred genes that generate a combination of intrinsic noise from upstream signaling networks and lead to fluctuations in transcription; (3) A TF can function in different cell types or developmental stages. Currently, the methods available for identifying TFs involved in biological processes are still very scarce, and the development of novel, more powerful methods is desperately needed. Results: We developed a computational pipeline called TF-Cluster for identifying functionally coordinated TFs
    [Show full text]