Molecular Codes for Cell Type Specification in Brn3 Retinal

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Codes for Cell Type Specification in Brn3 Retinal Molecular codes for cell type specification in PNAS PLUS Brn3 retinal ganglion cells Szilard Sajgoa,1, Miruna Georgiana Ghiniaa,2, Matthew Brooksb, Friedrich Kretschmera,3, Katherine Chuanga,4, Suja Hiriyannac, Zhijian Wuc, Octavian Popescud,e, and Tudor Constantin Badeaa,5 aRetinal Circuits Development and Genetics Unit, Neurobiology–Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, MD 20892; bGenomics Core, Neurobiology–Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, MD 20892; cOcular Gene Therapy Core, National Eye Institute, Bethesda, MD 20892; dInstitute of Biology, Romanian Academy, Bucharest 060031, Romania; and eMolecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Science, Babes-Bolyai University, Cluj-Napoca 400084, Romania Edited by Jeremy Nathans, Johns Hopkins University, Baltimore, MD, and approved April 12, 2017 (received for review November 8, 2016) Visual information is conveyed from the eye to the brain by Onecut2 (6, 13, 26–33). Together with Isl1 and Brn3b, these distinct types of retinal ganglion cells (RGCs). It is largely unknown downstream factors are expressed in partially overlapping patterns how RGCs acquire their defining morphological and physiological in RGC types, and some were shown to be required for survival features and connect to upstream and downstream synaptic and/or dendrite and axon formation in various RGC types. partners. The three Brn3/Pou4f transcription factors (TFs) participate However, many other TFs may be involved in generating the in a combinatorial code for RGC type specification, but their exact diversity of RGC types (34–38). We have previously used re- molecular roles are still unclear. We use deep sequencing to define porter knock-in alleles expressing alkaline phosphatase (AP; a i ii ( )transcriptomesofBrn3a-and/orBrn3b-positiveRGCs,( )Brn3a- glycosylphosphatidylinositol (GPI)-linked, extracellular molecule) iii and/or Brn3b-dependent RGC transcripts, and ( ) transcriptomes of at the loci of Brn3a, Brn3b, and Brn3c (Brn3CKOAP) to describe retinorecipient areas of the brain at developmental stages relevant their cell type distribution among RGCs and other sensory pro- for axon guidance, dendrite formation, and synaptogenesis. We re- jection neurons. We also identified axonal and dendrite arbor veal a combinatorial code of TFs, cell surface molecules, and deter- defects in RGCs missing Brn3a, Brn3b, or Brn3c either alone or in minants of neuronal morphology that is differentially expressed in BIOLOGY specific RGC populations and selectively regulated by Brn3a and/or combination (6, 13, 31, 39, 40). We now describe an immu- noaffinity purification strategy using anti-AP antibodies to isolate DEVELOPMENTAL Brn3b. This comprehensive molecular code provides a basis for un- AP derstanding neuronal cell type specification in RGCs. RGCs from Brn3 RGCs that are either WT or KO for Brn3a or Brn3b. Using our knowledge of partially overlapping RGC pop- retinal ganglion cells | transcription factors | neuronal cell types | Pou4f1 | ulations expressing Brn3s, we can identify molecules selectively Pou4f2 enriched in RGCs, selectively expressed in distinct Brn3 RGC subpopulations, and/or regulated by Brn3a or Brn3b in these RGC he molecular analysis of neuronal circuits benefits signifi- Tcantly from modern approaches to gene expression profiling Significance and genetic manipulation. The mechanisms of cell type specification are still poorly understood, but experiments in model organisms We report here transcriptome analysis by RNA sequencing suggest a combination of transcriptional regulation, extracellular (RNASeq) of genetically labeled and affinity-purified mouse signals, and cell–cell interactions (1–4). Retinal ganglion cells retinal ganglion cell (RGC) populations. Using a previously (RGCs) are a particularly powerful system for illustrating the established conditional knock-in reporter strategy, we label molecular and activity-dependent mechanisms of cell type speci- RGCs from which specific transcription factors have been re- fication. Based on molecular markers, dendritic arbor morphol- moved and determine the consequences on transcriptional ogies, axonal projections to retinorecipient areas of the brain, programs at different stages critical to RGC development. We – synaptic partners, physiological properties, and roles within the find that Brn3b and Brn3a control only small subsets of Brn3 – visual circuit, mouse RGCs can be cataloged in 20–30 different RGC specific transcripts. We identify extensive combinatorial types (5–10). Some of the developmental mechanisms by which sets of RGC transcription factors and cell surface molecules and RGC features are combined to determine RGC types are begin- show that several RGC-specific genes can induce neurite-like ning to be uncovered. Mouse RGCs become postmitotic and start processes cell autonomously in a heterologous system. exhibiting specific molecular markers and morphological features Author contributions: S.S., M.G.G., F.K., K.C., O.P., and T.C.B. designed research; S.S., M.G.G., around embryonic day 11 (E11). As soon as E12, RGC axons cross M.B., F.K., K.C., and T.C.B. performed research; S.H. and Z.W. contributed new reagents/ the midline at the optic chiasm, and by E15, the first axons have analytic tools; S.S., M.G.G., M.B., and T.C.B. analyzed data; and S.S., M.G.G., O.P., and T.C.B. reached the superior colliculus (SC), the most remote retinor- wrote the paper. ecipient area of the brain (11, 12). RGC axons invade their target The authors declare no conflict of interest. nuclei only around birth, and the first 10 postnatal days are the This article is a PNAS Direct Submission. most active period for synapse formation. RGC dendritic arbors Data deposition: The next generation sequencing data reported in this paper have been develop mostly postnatally, with lamination within the inner deposited in the Gene Expression Omnibus (GEO) database, https://www.ncbi.nlm.nih. gov/geo (accession no. GSE87647). plexyform layer clearly visible at postnatal days 3–4(P3–P4) and – 1Present address: Yonehara Laboratory, Danish Research Institute of Translational Neu- reaching a nearly mature distribution by P7 (13 16). Combinato- roscience, Aarhus University, 8000 Aarhus, Denmark. rial transcriptional regulation may play a major role in RGC type 2Present address: Emerson Laboratory, Biology Department, The City College of New specification. Previous work suggests the following transcriptional York, New York, NY 10031. – – cascade: the basic helix loop helix (bHLH) transcription factor 3Present address: Scientific Computing Core, Max Planck Institute for Brain Research, (TF) Atoh7 is expressed in RGC precursors and controls the ex- Frankfurt am Main 60438, Germany. pression of the POU4 family TF Brn3b and the Lim domain TF 4Present address: School of Medicine, Yale University, New Haven, CT 06510. Isl1, which are both required for the initiation of the RGC tran- 5To whom correspondence should be addressed. Email: [email protected]. – scriptional program (17 25). Further downstream TFs include This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. Brn3a, Brn3c, Eomesodesmin (Tbr2), Ebf1, Ebf3, Onecut1, and 1073/pnas.1618551114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1618551114 PNAS Early Edition | 1of10 Downloaded by guest on October 1, 2021 KO). When paired with a WT allele, recombination results in AP- A C i) Genes enriched in RGCs: tagged heterozygote cells that are phenotypically WT (Brn3aAP/WT or Brn3bAP/WT RGCs; WT). Although recombination happens E15 Brn3AP/WT RGCs vs. Other (supernatant) throughout the retina, other retinal cell types do not express Axon Guidance either Brn3a or Brn3b and therefore, appear AP-negative (6, 13, ii) Brn3-dependent RGC Genes: 18, 21, 25, 31, 41). Using this genetic labeling strategy, we can B compare several cell populations (Fig. 1C). (i) Comparing the Brn3AP/WT RGCs vs. Brn3AP/KO RGCs expression profiles of Brn3AP/WT RGCs and retinal supernatants, we can identify genes specific for or enriched in RGCs. (ii) RGC P3 iii) Genes Specific for distinct RGC populations genes regulated by a Brn3 TF should be differentially expressed Dendrite Formation in Brn3AP/WT vs. Brn3AP/KO RGCs. (iii) Genes specific for Axon - target interaction + − − + + + Synapse formation Brn3aAP/WT RGCsvs. Brn3bAP/WT RGCs Brn3a Brn3b , Brn3a Brn3b , or Brn3a Brn3b RGC pop- ulations can be identified by comparing expression profiles of D F iii AP/WT AP/WT Supernat Brn3a with Brn3b RGCs. We dissociated retinas + from Pax6α:Cre;Brn3aCKOAP/WT,Pax6α:Cre;Brn3aCKOAP/KO, RGC Pax6α:Cre;Brn3bCKOAP/WT, and Pax6α:Cre;Brn3bCKOAP/KO mice Brn3AP αAP AP Other cells and isolated the AP-expressing Brn3 RGCs using magnetic RGCs Beads iii iv beads coupled to anti-AP mouse mAbs (Materials and Methods E ChTB P 3.5 and Fig. 1 D and F). We also have labeled the lateral geniculate P 0.5 nucleus (LGN), SC, and pretectal area (PTA) of P3 WT mice by anterograde tracing and dissected and processed them for deep sequencing (Materials and Methods and Fig. 1E). In the following, we will present gene expression data that are Fig. 1. Experimental goal and design. (A) E15 retina containing heteroge- restricted to the RefSeq (https://www.ncbi.nlm.nih.gov/refseq/) neous undifferentiated cells (gray) and RGCs (purple), which are mostly post- subset of mouse transcripts given its highest level of quality and mitotic and extend axons. (B) P3 retina
Recommended publications
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights Into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle
    animals Article Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle Masoumeh Naserkheil 1 , Abolfazl Bahrami 1 , Deukhwan Lee 2,* and Hossein Mehrban 3 1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; [email protected] (M.N.); [email protected] (A.B.) 2 Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea 3 Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran; [email protected] * Correspondence: [email protected]; Tel.: +82-31-670-5091 Received: 25 August 2020; Accepted: 6 October 2020; Published: 9 October 2020 Simple Summary: Hanwoo is an indigenous cattle breed in Korea and popular for meat production owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score) are economically important for the selection of young and proven bulls. In recent decades, the advent of high throughput genotyping technologies has made it possible to perform genome-wide association studies (GWAS) for the detection of genomic regions associated with traits of economic interest in different species. In this study, we conducted a weighted single-step genome-wide association study which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results revealed 33 relevant genomic regions related to the traits of interest.
    [Show full text]
  • Mutation of L7rn3 Shows That Odz4 Is Required for Mouse Gastrulation
    Copyright 2005 by the Genetics Society of America DOI: 10.1534/genetics.104.034967 Mutation of l7Rn3 Shows That Odz4 Is Required for Mouse Gastrulation Amy C. Lossie,1 Hisashi Nakamura,1 Sharon E. Thomas2 and Monica J. Justice3 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Manuscript received August 12, 2004 Accepted for publication October 8, 2004 ABSTRACT A mouse homolog of the Drosophila pair-rule gene Odd Oz (Odz4) maps to the critical region of the l7Rn3 locus on mouse chromosome 7. Here we show that Odz4 is an excellent candidate for this allelic series because (1) it spans the entire critical region, (2) the phenotypes correlate with embryonic expression, (3) the complex genetic inheritance of the alleles is consistent with complex transcriptional regulation, and (4) one allele has a mutation in a conserved amino acid. Odz4 uses five alternate promoters that encode both secreted and membrane-bound proteins. Intragenic complementation of the l7Rn3 alleles is consistent with these multiple-protein isoforms. Further, the allelic series shows that Odz4 is required to establish the anterior-posterior axis of the gastrulating mouse embryo and is necessary later for meso- derm-derived tissues such as somites, heart, and skeleton. Sequencing of RT-PCR products from five of the six alleles reveals a nonconservative amino acid change in the l7Rn3 m4 allele. This amino acid is important evolutionarily, as it is conserved to Drosophila. Together, our data indicate that Odz4 is mutated in the l7Rn3 allele series and performs roles in the mouse brain, heart, and embryonic patterning similar to those of its Drosophila counterpart.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • FARE2021WINNERS Sorted by Institute
    FARE2021WINNERS Sorted By Institute Swati Shah Postdoctoral Fellow CC Radiology/Imaging/PET and Neuroimaging Characterization of CNS involvement in Ebola-Infected Macaques using Magnetic Resonance Imaging, 18F-FDG PET and Immunohistology The Ebola (EBOV) virus outbreak in Western Africa resulted in residual neurologic abnormalities in survivors. Many case studies detected EBOV in the CSF, suggesting that the neurologic sequelae in survivors is related to viral presence. In the periphery, EBOV infects endothelial cells and triggers a “cytokine stormâ€. However, it is unclear whether a similar process occurs in the brain, with secondary neuroinflammation, neuronal loss and blood-brain barrier (BBB) compromise, eventually leading to lasting neurological damage. We have used in vivo imaging and post-necropsy immunostaining to elucidate the CNS pathophysiology in Rhesus macaques infected with EBOV (Makona). Whole brain MRI with T1 relaxometry (pre- and post-contrast) and FDG-PET were performed to monitor the progression of disease in two cohorts of EBOV infected macaques from baseline to terminal endpoint (day 5-6). Post-necropsy, multiplex fluorescence immunohistochemical (MF-IHC) staining for various cellular markers in the thalamus and brainstem was performed. Serial blood and CSF samples were collected to assess disease progression. The linear mixed effect model was used for statistical analysis. Post-infection, we first detected EBOV in the serum (day 3) and CSF (day 4) with dramatic increases until euthanasia. The standard uptake values of FDG-PET relative to whole brain uptake (SUVr) in the midbrain, pons, and thalamus increased significantly over time (p<0.01) and positively correlated with blood viremia (p≤0.01).
    [Show full text]
  • Mapping of Bionic Array Electric Field Focusing in Plasmid DNA
    OPEN Gene Therapy (2016) 23, 369–379 © 2016 Macmillan Publishers Limited All rights reserved 0969-7128/16 www.nature.com/gt ORIGINAL ARTICLE - ENABLING TECHNOLOGIES Mapping of bionic array electric field focusing in plasmid DNA-based gene electrotransfer CJ Browne1,2,4, JL Pinyon1,4, DM Housley1, EN Crawford1, NH Lovell3, M Klugmann1 and GD Housley1 Molecular medicine through gene therapy is challenged to achieve targeted action. This is now possible utilizing bionic electrode arrays for focal delivery of naked (plasmid) DNA via gene electrotransfer. Here, we establish the properties of array-based electroporation affecting targeted gene delivery. An array with eight 300 μm platinum ring electrodes configured as a cochlear implant bionic interface was used to transduce HEK293 cell monolayers with a plasmid-DNA green fluorescent protein (GFP) reporter gene construct. Electroporation parameters were pulse intensity, number, duration, separation and electrode configuration. The latter determined the shape of the electric fields, which were mapped using a voltage probe. Electrode array-based electroporation was found to require ~ 100 × lower applied voltages for cell transduction than conventional electroporation. This was found to be due to compression of the field lines orthogonal to the array. A circular area of GFP-positive cells was created when the electrodes were ganged together as four adjacent anodes and four cathodes, whereas alternating electrode polarity created a linear area of GFP-positive cells. The refinement of gene delivery parameters was validated in vivo in the guinea pig cochlea. These findings have significant clinical ramifications, where spatiotemporal control of gene expression can be predicted by manipulation of the electric field via current steering at a cellular level.
    [Show full text]
  • Expression and Roles of Teneurins in Zebrafish
    fnins-13-00158 March 11, 2019 Time: 17:18 # 1 ORIGINAL RESEARCH published: 12 March 2019 doi: 10.3389/fnins.2019.00158 Expression and Roles of Teneurins in Zebrafish Angela Cheung1,2†, Katherine E. Trevers1,2†‡, Marta Reyes-Corral1, Paride Antinucci1‡ and Robert Hindges1,2* 1 Centre for Developmental Neurobiology, King’s College London, London, United Kingdom, 2 MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom The teneurins, also known as Ten-m/Odz, are highly conserved type II transmembrane glycoproteins widely expressed throughout the nervous system. Functioning as dimers, these large cell-surface adhesion proteins play a key role in regulating Edited by: neurodevelopmental processes such as axon targeting, synaptogenesis and neuronal Antony Jr. Boucard, wiring. Synaptic specificity is driven by molecular interactions, which can occur either in Centro de Investigación y de Estudios a trans-homophilic manner between teneurins or through a trans-heterophilic interaction Avanzados (CINVESTAV), Mexico across the synaptic cleft between teneurins and other cell-adhesion molecules, such as Reviewed by: Timothy Mosca, latrophilins. The significance of teneurins interactions during development is reflected in Thomas Jefferson University, the widespread expression pattern of the four existing paralogs across interconnected United States Elena Seiradake, regions of the nervous system, which we demonstrate here via in situ hybridization and University of Oxford, United Kingdom the generation of transgenic BAC reporter lines in zebrafish. Focusing on the visual *Correspondence: system, we will also highlight the recent developments that have been made in furthering Robert Hindges our understanding of teneurin interactions and their functionality, including the instructive [email protected] †These authors have contributed role of teneurin-3 in specifying the functional wiring of distinct amacrine and retinal equally to this work ganglion cells in the vertebrate visual system underlying a particular functionality.
    [Show full text]
  • Engineered Type 1 Regulatory T Cells Designed for Clinical Use Kill Primary
    ARTICLE Acute Myeloid Leukemia Engineered type 1 regulatory T cells designed Ferrata Storti Foundation for clinical use kill primary pediatric acute myeloid leukemia cells Brandon Cieniewicz,1* Molly Javier Uyeda,1,2* Ping (Pauline) Chen,1 Ece Canan Sayitoglu,1 Jeffrey Mao-Hwa Liu,1 Grazia Andolfi,3 Katharine Greenthal,1 Alice Bertaina,1,4 Silvia Gregori,3 Rosa Bacchetta,1,4 Norman James Lacayo,1 Alma-Martina Cepika1,4# and Maria Grazia Roncarolo1,2,4# Haematologica 2021 Volume 106(10):2588-2597 1Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 2Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 3San Raffaele Telethon Institute for Gene Therapy, Milan, Italy and 4Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, CA, USA *BC and MJU contributed equally as co-first authors #AMC and MGR contributed equally as co-senior authors ABSTRACT ype 1 regulatory (Tr1) T cells induced by enforced expression of interleukin-10 (LV-10) are being developed as a novel treatment for Tchemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft-versus-host disease while mediating graft-versus-leukemia effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature.
    [Show full text]
  • Transcriptome Analysis of Adipose Tissues from Two Fat-Tailed Sheep
    Li et al. BMC Genomics (2018) 19:338 https://doi.org/10.1186/s12864-018-4747-1 RESEARCHARTICLE Open Access Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition Baojun Li1, Liying Qiao1, Lixia An2, Weiwei Wang1, Jianhua Liu1, Youshe Ren1, Yangyang Pan1, Jiongjie Jing1 and Wenzhong Liu1* Abstract Background: The level of fat deposition in carcass is a crucial factor influencing meat quality. Guangling Large-Tailed (GLT) and Small-Tailed Han (STH) sheep are important local Chinese fat-tailed breeds that show distinct patterns of fat depots. To gain a better understanding of fat deposition, transcriptome profiles were determined by RNA-sequencing of perirenal, subcutaneous, and tail fat tissues from both the sheep breeds. The common highly expressed genes (co-genes) in all the six tissues, and the genes that were differentially expressed (DE genes) between these two breeds in the corresponding tissues were analyzed. Results: Approximately 47 million clean reads were obtained for each sample, and a total of 17,267 genes were annotated. Of the 47 highly expressed co-genes, FABP4, ADIPOQ, FABP5,andCD36 were the four most highly transcribed genes among all the known genes related to adipose deposition. FHC, FHC-pseudogene,and ZC3H10 were also highly expressed genes and could, thus, have roles in fat deposition. A total of 2091, 4233, and 4131 DE genes were identified in the perirenal, subcutaneous, and tail fat tissues between the GLT and STH breeds, respectively. Gene Ontology (GO) analysis showed that some DE genes were associated with adipose metabolism.
    [Show full text]
  • Supplementary Table 4
    Supplementary Materials High-throughput screening of mouse gene knockouts identifies established and novel high body fat phenotypes David R. Powell1, Jean-Pierre Revelli1, Deon Doree1, Christopher M. DaCosta1, Urvi Desai1, Melanie K. Shadoan1, Lawrence Rodriguez1, Michael Mullens1, Qi M. Yang1, Zhi-Ming Ding1, Laura L. Kirkpatrick1, Peter Vogel1, Brian Zambrowicz1, Arthur T. Sands1, Kenneth A. Platt1, Gwenn M. Hansen1 and Robert Brommage1 1Lexicon Pharmaceuticals, Inc., 8800 Technology Forest Place, The Woodlands, TX, 77381, USA 1 A B C D E F Supplementary Figure 1. Gpr45 KO mice are obese due to decreased energy expenditure. Starting at weaning, 3-week old Gpr45 KO and WT mice were individually housed for 44 days on chow diet. WT mice were fed ad libitum (ad lib) while KO mice were either fed ad lib (KO ad lib) or pair-fed to the WT mice (KO PF). Body composition was measured by QMR on the first and last study days, with changes in body fat analyzed by one-way ANOVA. Food consumption was measured daily. QMR data are shown for male A) %body fat and B) body fat (g), and for female C) %body fat and D) body fat (g). Also shown are mean daily food consumption of E) male and F) female mice. KO mice different from WT mice, *P < 0.05, **P < 0.01; WT and KO PF mice different from KO ad lib mice, †P < 0.01. 2 A B C D Supplementary Figure 2. The obesity of Ksr2 KO mice results from increased energy intake and decreased energy expenditure. Male mice: 13 KO mice and 12 WT littermates were weaned onto chow diet.
    [Show full text]