The Tectonics and Geomorphology of the Moma Range, Ne Russia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Northern Sea Route Cargo Flows and Infrastructure- Present State And
Northern Sea Route Cargo Flows and Infrastructure – Present State and Future Potential By Claes Lykke Ragner FNI Report 13/2000 FRIDTJOF NANSENS INSTITUTT THE FRIDTJOF NANSEN INSTITUTE Tittel/Title Sider/Pages Northern Sea Route Cargo Flows and Infrastructure – Present 124 State and Future Potential Publikasjonstype/Publication Type Nummer/Number FNI Report 13/2000 Forfatter(e)/Author(s) ISBN Claes Lykke Ragner 82-7613-400-9 Program/Programme ISSN 0801-2431 Prosjekt/Project Sammendrag/Abstract The report assesses the Northern Sea Route’s commercial potential and economic importance, both as a transit route between Europe and Asia, and as an export route for oil, gas and other natural resources in the Russian Arctic. First, it conducts a survey of past and present Northern Sea Route (NSR) cargo flows. Then follow discussions of the route’s commercial potential as a transit route, as well as of its economic importance and relevance for each of the Russian Arctic regions. These discussions are summarized by estimates of what types and volumes of NSR cargoes that can realistically be expected in the period 2000-2015. This is then followed by a survey of the status quo of the NSR infrastructure (above all the ice-breakers, ice-class cargo vessels and ports), with estimates of its future capacity. Based on the estimated future NSR cargo potential, future NSR infrastructure requirements are calculated and compared with the estimated capacity in order to identify the main, future infrastructure bottlenecks for NSR operations. The information presented in the report is mainly compiled from data and research results that were published through the International Northern Sea Route Programme (INSROP) 1993-99, but considerable updates have been made using recent information, statistics and analyses from various sources. -
Glacial Rebound and Plate Spreading: Results from the First Countrywide GPS Observations in Iceland
Geophys. J. Int. (2009) 177, 691–716 doi: 10.1111/j.1365-246X.2008.04059.x Glacial rebound and plate spreading: results from the first countrywide GPS observations in Iceland ∗ T. Arnad´ ottir,´ 1 B. Lund,2 W. Jiang,1 H. Geirsson,3 H. Bjornsson,¨ 4 P. Einarsson4 and T. Sigurdsson5 1Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, IS-101 Reykjav´ık, Iceland. E-mail: [email protected] 2Department of Earth Sciences, Uppsala University, Villavagen¨ 16, 752 36 Uppsala, Sweden 3Physics Department, Icelandic Meteorological Office, Reykjav´ık, Iceland 4Institute of Earth Sciences, University of Iceland, IS-101 Reykjav´ık, Iceland 5National Land Survey of Iceland, Akranes, Iceland Downloaded from https://academic.oup.com/gji/article/177/2/691/2023257 by guest on 30 September 2021 Accepted 2008 December 10. Received 2008 December 5; in original form 2008 June 12 SUMMARY Iceland is one of the few places on Earth where a divergent plate boundary can be observed on land. Direct observations of crustal deformation for the whole country are available for the first time from nationwide Global Positioning System (GPS) campaigns in 1993 and 2004. The plate spreading across the island is imaged by the horizontal velocity field and high uplift rates (≥10 mm yr−1) are observed over a large part of central and southeastern Iceland. Several earthquakes, volcanic intrusions and eruptions occurred during the time spanned by the measurements, causing local disturbances of the deformation field. After correcting for the largest earthquakes during the observation period, we calculate the strain rate field and find that the main feature of the field is the extension across the rift zones, subparallel to the direction of plate motion. -
Iceland Is Cool: an Origin for the Iceland Volcanic Province in the Remelting of Subducted Iapetus Slabs at Normal Mantle Temperatures
Iceland is cool: An origin for the Iceland volcanic province in the remelting of subducted Iapetus slabs at normal mantle temperatures G. R. Foulger§1 & Don L. Anderson¶ §Department of Geological Sciences, University of Durham, Science Laboratories, South Rd., Durham, DH1 3LE, U.K. ¶California Institute of Technology, Seismological Laboratory, MC 252-21, Pasadena, CA 91125, U. S. A. Abstract The time-progressive volcanic track, high temperatures, and lower-mantle seismic anomaly predicted by the plume hypothesis are not observed in the Iceland region. A model that fits the observations better attributes the enhanced magmatism there to the extraction of melt from a region of upper mantle that is at relatively normal temperature but more fertile than average. The source of this fertility is subducted Iapetus oceanic crust trapped in the Caledonian suture where it is crossed by the mid-Atlantic ridge. The extraction of enhanced volumes of melt at this locality on the spreading ridge has built a zone of unusually thick crust that traverses the whole north Atlantic. Trace amounts of partial melt throughout the upper mantle are a consequence of the more fusible petrology and can explain the seismic anomaly beneath Iceland and the north Atlantic without the need to appeal to very high temperatures. The Iceland region has persistently been characterised by complex jigsaw tectonics involving migrating spreading ridges, microplates, oblique spreading and local variations in the spreading direction. This may result from residual structural complexities in the region, inherited from the Caledonian suture, coupled with the influence of the very thick crust that must rift in order to accommodate spreading-ridge extension. -
Plate Tectonics Review from Valerie Nulisch Some Questions (C) 2017 by TEKS Resource System
Plate Tectonics Review from Valerie Nulisch Some questions (c) 2017 by TEKS Resource System. Some questions (c) 2017 by Region 10 Educational Service Center. Some questions (c) 2017 by Progress Testing. Page 2 GO ON A student wanted to make a model of the Earth. The student decided to cut a giant Styrofoam ball in half and paint the layers on it to show their thickness. 1 Which model below best represents the layers of the Earth? A B C D Page 3 GO ON 2 A student is building a model of the layers of the Earth. Which material would best represent the crust? F Grouping of magnetic balls G Styrofoam packing pellets H Bag of shredded paper J Thin layer of graham crackers 3 Your teacher has asked you to make a model of the interior of the Earth. In your model, how do the thicknesses of the lithosphere and crust compare? A The lithosphere is thinner than the crust. B The lithosphere is exactly the same thickness as the crust. C The lithosphere is thicker than the crust. D The lithosphere is thicker than the oceanic crust, but thinner than the continental crust. 4 Sequence the layers of the Earth in order from the exterior surface to the interior center. F Lithosphere, mantle, inner core, outer core, crust, asthenosphere G Inner core, outer core, mantle, asthenosphere, lithosphere, crust H Crust, mantle, outer core, inner core, asthenosphere, lithosphere J Crust, lithosphere, asthenosphere, mantle, outer core, inner core Page 4 GO ON 5 The tectonic plate labeled A in the diagram is the A Eurasian Plate B Indo-Australian Plate C Pacific Plate D African Plate Page 5 GO ON 6 The tectonic plate labeled B in the diagram is the — F Eurasian Plate G Indo-Australian Plate H Pacific Plate J North American Plate Page 6 GO ON Directions: The map below shows Earth's tectonic plates; six of them are numbered. -
Supplementary Information
Supplementary Information Table S1. List of samples that yielded DNA in this study (EE2-EE26), followed by successfully amplified samples of cave lion from the study by Barnett et al. 2009. ALA=Alaska, EUR=Europe, SIB=Siberia, NC=not calibrated as out of range. The asterisk (*) denotes the approximate age as reported in Barnett et al. 2009. Sample CR haplotype/ Uncalibrated Calendar years Site and geographic region ID Genbank nr. 14C date before present EE2 D/ DQ899903 Schusterlucke cave (EUR) 15400 ± 130 18521 ± 1844 EE4 - Tyung, C Siberia (SIB) 46700±1300 48181 ± 6747 EE3 Y3 Tain cave, Urals (EUR) >49600 NC EE6 Y1 Elovka, Baikal (SIB) 18350 ± 75 21634 ± 1504 EE7 Y1 Volchika, C Siberia (SIB) 20085 ± 80 23266 ± 576 EE13 J/ DQ899909 New Siberian Islands (SIB) 47700 ± 800 48970 ± 6009 EE14 Y4 Yakutia, NE Siberia (SIB) >55400 NC EE15 B/ DQ899901 Yakutia, NE Siberia (SIB) 27720 ± 140 30880 ± 1543 EE16 Y2 Irkutsk, Baikal (SIB) 17910 ± 75 21024 ± 1041 EE17 B/ DQ899901 Khroma river, Yakutia (SIB) 19755 ± 80 20006 ± 404 EE19 - New Siberian Islands (SIB) 52000±1500 54373 ± 6396 EE20 J/ DQ899909 Yakutia, NE Siberia (SIB) >62400 NC EE21 G/ DQ899906 Nizhnyaya, C Siberia (SIB) 50500 ± 290 52785 ± 10541 EE26 Y5 (partial) Kyttyk Peninsula (SIB) 36550 ± 290 41025 ± 970 IB133 A/ DQ899900 Gold Run Creek, Yukon (ALA) 12640 ± 75 15016 ± 1463 RB112 A Caribou Creek, Yukon (ALA) n/a - RB74 A Fairbanks Creek, Alaska (ALA) n/a - RB75 A Ester Creek, Alaska (ALA) 12090 ± 80 13822 ± 341 IB134 B/ DQ899901 Gold Hill, Alaska (ALA) 18240 ± 90 21533 ± 1335 IB136 B Hunker -
Description of Map Units Northeast Asia Geodynamics Map
DESCRIPTION OF MAP UNITS NORTHEAST ASIA GEODYNAMICS MAP OVERLAP ASSEMBLAGES (Arranged alphabetically by map symbol) ad Adycha intermountain sedimentary basin (Miocene and Pliocene) (Yakutia) Basin forms a discontinuous chain along the foot of southwestern slope of Chersky Range in the Yana and Adycha Rivers basins. Contain Miocene and Pliocene sandstone, pebble gravel conglomerate, claystone, and minor boulder gravel conglomerate that range up to 400 m thick. REFERENCES: Grinenko and others, 1998. ag Agul (Rybinsk) molasse basin (Middle Devonian to Early Carboniferous) (Eastern Sayan) Consists of Middle Devonian through Early Carboniferous aerial and lacustrine sand-silt-mudstone, conglomerate, marl, and limestone with fauna and flora. Tuff, tuffite, and tuffaceous rock occur in Early Carboniferous sedimentary rocks. Ranges up to 2,000 m thick in southwestern margin of basin. Unconformably overlaps Early Devonian rocks of South Siberian volcanic-plutonic belt and Precambrian and early Paleozoic rocks of the Siberian Platform and surrounding fold belts. REFERENCES: Yanov, 1956; Graizer, Borovskaya, 1964. ags Argun sedimentary basin (Early Paleozoic) (Northeastern China) Occurs east of the Argun River in a discontinuously exposed, northeast-trending belt and consists of Cambrian and Ordovician marine, terrigenous detrital, and carbonate rocks. Cambrian units are composed of of feldspar- quartz sandstone, siltstone, shale and limestone and contain abundant Afaciacyathus sp., Bensocyathus sp., Robustocyathus yavorskii, Archaeocyathus yavorskii(Vologalin), Ethomophyllum hinganense Gu,o and other fossils. Ordovicain units consist of feldspar-quartz sandstone, siltstone, fine-grained sandstone and phylitic siltstone, and interlayered metamorphosed muddy siltstone and fine-grained sandstone with brachiopods, corals, and trilobites. Total thickness ranges up to 4,370 m. Basin unconformably overlies the Argunsky metamorphic terrane. -
Geotectonic Setting of the Tertiary Uyandina and Indigirka-Zyryanka Basins, Republic Sakha (Yakutia), Northeast Russia, Using Coal Rank Data
Stephan Mueller Spec. Publ. Ser., 4, 85–96, 2009 www.stephan-mueller-spec-publ-ser.net/4/85/2009/ Special © Author(s) 2009. This work is distributed under Publication the Creative Commons Attribution 3.0 License. Series Geotectonic setting of the Tertiary Uyandina and Indigirka-Zyryanka basins, Republic Sakha (Yakutia), Northeast Russia, using coal rank data H.-J. Paech Federal Institute for Geosciences and Natural Resources, Hannover, Germany now retired Abstract. Outcrops along the Inach River in the Uyandina of these studies was to determine whether Tertiary struc- basin and those along the Myatis’ River in the Indigirka- tures previously described by such authors as Imaev and Gri- Zyryanka basin were studied in detail and sampled for coal nenko (1989), Imaev et al. (1990, 1994, 1998) and Smetan- rank determinations. The Uyandina basin is an intramon- nikova et al. (1989) within the Circum-Arctic region of the tane pull-apart basin characterized by extensional structures Asian Continent are compressional or extensional in origin. within the Moma rift system. The coal rank is below 0.3% Preliminary results of the CASE-3 expedition are given in vitrinite reflectance (Rr ), which indicates shallow, imma- Paech et al. (1998). This contribution provides more detailed ture conditions of basin formation and very low subsidence. field observations and improved coal rank determinations. The Myatis’ River coal-bearing outcrops in the Indigirka- Zyryanka basin reveal compression induced by continent col- lision. The compressive deformation includes also lower- most Pliocene strata. Due to the position in the Verkhoyansk- 2 Study methods Chersky fold belt adjacent to the Kolyma-Omolon microcon- tinent the Indigirka-Zyryanka basin has much in common Logistic restrictions limited our investigations to a few areas: with a foredeep, i.e. -
Azores and Iceland
13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2369 A COMPARATIVE STUDY ON STRONG GROUND MOTION IN TWO VOLCANIC ENVIRONMENTS: AZORES AND ICELAND Carlos S. OLIVEIRA1, Ragnar SIGBJÖRNSSON2, Simon ÓLAFSSON3 SUMMARY The objective of this paper is to present the main results of a comparative study of strong ground motion on the Azores and Iceland. These islands are a super-structural part of the Mid Atlantic Ridge, which marks the boundary between the North-American Plate and the Eurasian Plate and creates a north-south oriented belt of seismic and volcanic activity. The tectonic environments are described and compared emphasising the similarities in the geological structure, including surface geology and its effects on strong ground motion. Furthermore, the seismicity of the Azores and Iceland is compared based on earthquake catalogues using statistical analysis. The strong-motion networks on the islands are described along with the strong-motion data used in the subsequent analysis. The strong-motion data are compared using statistical analysis. The main emphasis is put on attenuation of strong-motion data, characterised by root mean square acceleration and peak ground acceleration. The attenuation is also compared to some of the common attenuation relationships, used by the engineering community in Europe and America. The main findings are that there are significant similarities between the tectonic environments of the Azores and Iceland. Furthermore, the similarities found in seismicity are statistically significant. The attenuation is characterised by rapid decay with increasing distance and high acceleration in the near source area. It is found that the same ground motion estimation models can be applied on the Azores and in Iceland. -
Download Article (PDF)
Advances in Social Science, Education and Humanities Research, volume 321 II International Scientific-Practical Conference "Psychology of Extreme Professions" (ISPCPEP 2019) Subjective Assessment of the Quality of Life of Specialists working in the Arctic Economic Zone in Yakutia Aida Egorova Valentina Davydova Department of Psychology Department of Psychology North-Eastern Federal University North-Eastern Federal University Yakutsk, Russia Yakutsk, Russia [email protected] [email protected] Abstract The article describes the main aspects of the Purpose of the study: is to study the subjective subjective assessment of the quality of life by highly assessment of the quality of life of highly qualified qualified specialists living in the Arctic economic zone of specialists working in the Arctic zone. Yakutia, some differences were revealed in the assessments of the quality of life and factors affecting the II. METHODOLOGY AND RESEARCH METHODS subjective satisfaction and psychological well-being of Quality of life is understood as an individual's people in the Western and Eastern economic zones. In assessment of the totality of the conditions of his physical, general, among representatives of the AEZ, the overall mental, social well-being and as the category, which is assessment of the quality of life corresponds to the characterizing the parameters of life potential and living average level. The subjective assessment of the quality of conditions, which includes objective (living standard of a life of specialists working in the Arctic depends on the particular person) and subjective parameters (degree of relationship with people and colleagues around them, on satisfaction of his needs and value structures). There are the nature and content of the work performed, and on demographic, social, psychological, physical, and spiritual- the degree of readiness to work in the Arctic. -
Inventory and Distribution of Rock Glaciers in Northeastern Yakutia
land Article Inventory and Distribution of Rock Glaciers in Northeastern Yakutia Vasylii Lytkin Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of Sciences, Yakutsk 677010, Russia; [email protected] Received: 2 September 2020; Accepted: 8 October 2020; Published: 10 October 2020 Abstract: Rock glaciers are common forms of relief of the periglacial belt of many mountain structures in the world. They are potential sources of water in arid and semi-arid regions, and therefore their analysis is important in assessing water reserves. Mountain structures in the north-east of Yakutia have optimal conditions for the formation of rock glaciers, but they have not yet been studied in this regard. In this article, for the first time, we present a detailed list of rock glaciers in this region. Based on geoinformation mapping using remote sensing data and field studies within the Chersky, Verkhoyansk, Momsky and Suntar-Khayata ranges, 4503 rock glaciers with a total area of 224.6 km2 were discovered. They are located within absolute altitudes, from 503 to 2496 m. Their average minimum altitude was at 1456 m above sea level, and the maximum at 1527 m. Most of these formations are located on the sides of the trough valleys, and form extended sloping types of rock glaciers. An assessment of the exposure of the slopes where the rock glaciers are located showed that most of the rock glaciers are facing north and south. Keywords: rock glacier; permafrost; inventory; northeastern Yakutia; remote sensing 1. Introduction The geography of distribution of rock glaciers is quite extensive. They are found in many mountainous regions of Europe, North and South America and Asia, including some circumpolar regions [1–18]. -
Flowchart2016bluewhite42
Air Traffic Flow Chart 2016 More Info: http://gis.icao.int Sierra Leone !e Qaanaaq Longyearbyen !e !e Grise Fiord !e Pituffik !e Svay Rieng Barrow Resolute !e !e e Pevek !e Atqasuk ! !e Point Lay e !e ! Chokurdakh Wainwright Nuiqsut Sachs Harbour Kullorsuaq Tiksi e Point!e Hope !e !e !e !e ! e !e Barter Island Nuussuaq Dikson Sashylakh Chersky ! !e Arctic Bay !e !e !e !e Keperveyem Kivalina !e Prudhoe Bay/Deadhorse !e Khatanga Ust-Kuyga !e !e e Noatak!e Ulukhaktok e Pond Inlet Innarsuit e !e !e Deputatsky ! Anaktuvuk Pass Tuktoyaktuk !e ! !e! !e Kiana !e eUpernavik !e e Arctic Village !e Kangersuatsiaq!e! Ksar Es Souk Wales !e Selawik!e ! !e Kobuk !e Paulatuk !e Aappilattoq !e Anadyr e Deering !eAmbler !e!e Bettlese Aklavik Inuvik !e Upernavik Kujalleq Heliport!e !e Teller!e !e Noorvike e ! Old Crow !e e e!e ! Hughese ! e ! Nuugaatsiaq Batagay ! Huslia ! Coldfoot !e ! Fort Mcpherson !e Samchok Nome Buckland!e !e!e Beavere Chalkyitsik e Cambridge Bay Taloyoak Clyde River !e !e !e Gambell e e Elime e !e e ! !e ! !e e e Uummannaq Qaarsut!e Olenek Indianapolis !e e ! !e !e ! Tanana ! ! ! ! !e !ee Mehamn Norilsk !e !e ! Savoonga e e!e Ruby !e Central Circle Colville Lake Kugluktuk Coppermine Igloolik !e Neerlerit Inaat !e !e e e ! eKoyuk! !e !e !e Minto e !e e !e Gjoa Haven !e Saqqaq! Ittoqqortoormiit!e Hasvike ! e Amderma ! Golovine ! !e !e ! Fort Good Hope! !e Pelly Bay Hall Beach Niaqornat!ee e e ! ! e !e Zhigansk e ! Kaltag Galena e ! ! ! Alta Berlevag Vadso! !e Emmonak Kotlik! !e ! !e Qeqertaq Heliport e !e !e e!e !e eFAI Eagle e e ! -
New Results of the Moma Rift System and Coeval Structures in Yakutia, Russian Federation
Polarforschung 68, 59 - 63, 1998 (erschienen 2000) New Results of the Moma Rift System and Coeval Structures in Yakutia, Russian Federation By Hans-Jürgen Paech', Andrej V. Prokopiev', Werner v. Gosen', Oleg V. Grinenko-, Lyudmila 1. Smetannikova' and Innokentij N. Belolyubskij' THEME 3: Plate Boundary Problems in the Laptev Sea Area Selennyakh rift trough flanked by uplifted blocks. The Moma ritt system belongs to a major graben assemblage which runs Summary: Preliminary results obtained during CASE-3 expedition (1998) to southeast from the Gakkel Ridge in the Arctic Ocean through the Alpine history of the central part of Yakutia (Russian Federation) are the Laptev Sea and inland for a distance of more than 1000 km discussed. The Moma rift system is the southeastern part of an Arctic graben assemblage, which often comprises half grabens, and can be traced to the Moma rift system and possibly further. The Moma ritt southeastwards from the Laptev Sea into the central Siberia. The grabens of the system is situated south of the Cenozoic Yana-Indigirka basin Moma rift system are mostly filled with Tertiary elastic rocks with lignite seams (Fig.l). The rift system is not always weil defined of very low coal rank; basalts of unknown age oceur locally at the base. The geographically and with respect to the geologie history, and graben fill does not show compressive structures of tectonic origin. Extension prevails what is corroborated by local Holocene bimodal volcanism (alkaline important problems remain unsolved mostly owing to lack of basalt and rhyolite) along the Moma graben boundary. In contrast, the SW data.