Introduction to Regge and Wheeler “Stability of a Schwarzschild Singularity”
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Faceting Space(Time): Regge's View of Geometry
Faceting space(time): Regge’s view of geometry Annalisa Marzuoli, Dipartimento di Matematica, Pavia University Curved surfaces as ‘simple’ models of curved spacetimes in Einstein’s General Relativity (Gauss geometries) The curvature of a generic smooth surface is perceived through its embedding into the 3D Euclidean space Looking at different regions three types of Gauss model geometries can be recognized The saddle surface (negative Gauss curvature) The surface of a sphere The Euclidean plane (positive Gauss is flat, i.e. its curvature) curvature is zero Principal curvatures are defined through ‘extrinsic properties’ of the surface, which is bent as seen in the ambient 3D space Glimpse definition In every point consider the tangent plane and the normal vector to the surface. (Any pair of) normal planes intersect the surface in curved lines. By resorting to the notion of osculating circle, the curvature of these embedded curves is evaluated (in the point). CASES: • > 0 and equal to 1/r • < 0 and equal to -1/r • = 0 r: radius of the osculating circle (Th.) There are only two distinct and mutually ortogonal principal directions in each point of an embedded surface, or: every direction is principal Principal Saddle surface: the principal curvatures curvatures have opposite sign (modulus) K1 = + 1/r1 K2 = - 1/r2 K1 = 1/r1 Sphere of radius r: K2 = 1/r2 K1 = K2 = 1/r > 0 (r1, r2 :radii of the All principal osculating circles) curvatures are equal in each Plane: limiting case point of the sphere r → ∞ (K1 = K2 = 0) Gauss curvature & the theorema -
Regge Finite Elements with Applications in Solid Mechanics and Relativity
Regge Finite Elements with Applications in Solid Mechanics and Relativity A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Lizao Li IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy Advisor: Prof. Douglas N. Arnold May 2018 © Lizao Li 2018 ALL RIGHTS RESERVED Acknowledgements I would like to express my sincere gratitude to my advisor Prof. Douglas Arnold, who taught me how to be a mathematician: diligence in thought and clarity in communication (I am still struggling with both). I am also grateful for his continuous guidance, help, support, and encouragement throughout my graduate study and the writing of this thesis. i Abstract This thesis proposes a new family of finite elements, called generalized Regge finite el- ements, for discretizing symmetric matrix-valued functions and symmetric 2-tensor fields. We demonstrate its effectiveness for applications in computational geometry, mathemati- cal physics, and solid mechanics. Generalized Regge finite elements are inspired by Tullio Regge’s pioneering work on discretizing Einstein’s theory of general relativity. We analyze why current discretization schemes based on Regge’s original ideas fail and point out new directions which combine Regge’s geometric insight with the successful framework of finite element analysis. In particular, we derive well-posed linear model problems from general relativity and propose discretizations based on generalized Regge finite elements. While the first part of the thesis generalizes Regge’s initial proposal and enlarges its scope to many other applications outside relativity, the second part of this thesis represents the initial steps towards a stable structure-preserving discretization of the Einstein’s field equation. -
*Impaginazione OK
Ministero per i Beni e le Attività Culturali Direzione Generale per i Beni Librari e gli Istituti Culturali Comitato Nazionale per le celebrazioni del centenario della nascita di Enrico Fermi Proceedings of the International Conference “Enrico Fermi and the Universe of Physics” Rome, September 29 – October 2, 2001 Accademia Nazionale dei Lincei Istituto Nazionale di Fisica Nucleare SIPS Proceedings of the International Conference “Enrico Fermi and the Universe of Physics” Rome, September 29 – October 2, 2001 2003 ENEA Ente per le Nuove tecnologie, l’Energia e l’Ambiente Lungotevere Thaon di Revel, 76 00196 - Roma ISBN 88-8286-032-9 Honour Committee Rettore dell’Università di Roma “La Sapienza” Rettore dell’Università degli Studi di Roma “Tor Vergata” Rettore della Terza Università degli Studi di Roma Presidente del Consiglio Nazionale delle Ricerche (CNR) Presidente dell’Ente per le Nuove tecnologie, l’Energia e l’Ambiente (ENEA) Presidente dell’Istituto Nazionale di Fisica Nucleare (INFN) Direttore Generale del Consiglio Europeo di Ricerche Nucleari (CERN) Presidente dell’Istituto Nazionale di Fisica della Materia (INFM) Presidente dell’Agenzia Italiana Nucleare (AIN) Presidente della European Physical Society (EPS) Presidente dell’Accademia Nazionale dei Lincei Presidente dell’Accademia Nazionale delle Scienze detta dei XL Presidente della Società Italiana di Fisica (SIF) Presidente della Società Italiana per il Progresso delle Scienze (SIPS) Direttore del Dipartimento di Fisica dell’Università di Roma “La Sapienza” Index 009 A Short -
Study of Quantum Spin Correlations of Relativistic Electron Pairs
Study of quantum spin correlations of relativistic electron pairs Project status Nov. 2015 Jacek Ciborowski Marta Włodarczyk, Michał Drągowski, Artem Poliszczuk (UW) Joachim Enders, Yuliya Fritsche (TU Darmstadt) Warszawa 20.XI.2015 Quantum spin correlations In this exp: e1,e2 – electrons under study a, b - directions of spin projections (+- ½) 4 combinations for e1 and e2: ++, --, +-, -+ Probabilities: P++ , P+- , P-+ , P- - (ΣP=1) Correlation function : C = P++ + P-- - P-+ - P-+ Historical perspective • Einstein Podolsky Rosen (EPR) paradox (1935): QM is not a complete local realistic theory • Bohm & Aharonov formulation involving spin correlations (1957) • Bell inequalities (1964) a local realistic theory must obey a class of inequalities • practical approach to Bell’s inequalities: counting aacoincidences to measure correlations The EPR paradox Boris Podolsky Nathan Rosen Albert Einstein (1896-1966) (1909-1995) (1979-1955) A. Afriat and F. Selleri, The Einstein, Podolsky and Rosen Paradox (Plenum Press, New York and London, 1999) Bohm’s version with the spin Two spin-1/2 fermions in a singlet state: E.g. if spin projection of 1 on Z axis is measured 1/2 spin projection of 2 must be -1/2 All projections should be elements of reality (QM predicts that only S2 and David Bohm (1917-1992) Sz can be determined) Hidden variables? ”Quantum Theory” (1951) Phys. Rev. 85(1952)166,180 The Bell inequalities J.S.Bell: Impossible to reconcile the concept of hidden variables with statistical predictions of QM If local realism quantum correlations -
Quantum Eraser
Quantum Eraser March 18, 2015 It was in 1935 that Albert Einstein, with his collaborators Boris Podolsky and Nathan Rosen, exploiting the bizarre property of quantum entanglement (not yet known under that name which was coined in Schrödinger (1935)), noted that QM demands that systems maintain a variety of ‘correlational properties’ amongst their parts no matter how far the parts might be sepa- rated from each other (see 1935, the source of what has become known as the EPR paradox). In itself there appears to be nothing strange in this; such cor- relational properties are common in classical physics no less than in ordinary experience. Consider two qualitatively identical billiard balls approaching each other with equal but opposite velocities. The total momentum is zero. After they collide and rebound, measurement of the velocity of one ball will naturally reveal the velocity of the other. But the EPR argument coupled this observation with the orthodox Copen- hagen interpretation of QM, which states that until a measurement of a par- ticular property is made on a system, that system cannot, in general, be said to possess any definite value of that property. It is easy to see that if dis- tant correlations are preserved through measurement processes that ‘bring into being’ the measured values there is a prima facie conflict between the Copenhagen interpretation and the relativistic stricture that no information can be transmitted faster than the speed of light. Suppose, for example, we have a system with some property which is anti-correlated (in real cases, this property could be spin). -
Required Readings
HPS/PHIL 93872 Spring 2006 Historical Foundations of the Quantum Theory Don Howard, Instructor Required Readings: Topic: Readings: Planck and black-body radiation. Martin Klein. “Planck, Entropy, and Quanta, 19011906.” The Natural Philosopher 1 (1963), 83-108. Martin Klein. “Einstein’s First Paper on Quanta.” The Natural Einstein and the photo-electric effect. Philosopher 2 (1963), 59-86. Max Jammer. “Regularities in Line Spectra”; “Bohr’s Theory The Bohr model of the atom and spectral of the Hydrogen Atom.” In The Conceptual Development of series. Quantum Mechanics. New York: McGraw-Hill, 1966, pp. 62- 88. The Bohr-Sommerfeld “old” quantum Max Jammer. “The Older Quantum Theory.” In The Conceptual theory; Einstein on transition Development of Quantum Mechanics. New York: McGraw-Hill, probabilities. 1966, pp. 89-156. The Bohr-Kramers-Slater theory. Max Jammer. “The Transition to Quantum Mechanics.” In The Conceptual Development of Quantum Mechanics. New York: McGraw-Hill, 1966, pp. 157-195. Bose-Einstein statistics. Don Howard. “‘Nicht sein kann was nicht sein darf,’ or the Prehistory of EPR, 1909-1935: Einstein’s Early Worries about the Quantum Mechanics of Composite Systems.” In Sixty-Two Years of Uncertainty: Historical, Philosophical, and Physical Inquiries into the Foundations of Quantum Mechanics. Arthur Miller, ed. New York: Plenum, 1990, pp. 61-111. Max Jammer. “The Formation of Quantum Mechanics.” In The Schrödinger and wave mechanics; Conceptual Development of Quantum Mechanics. New York: Heisenberg and matrix mechanics. McGraw-Hill, 1966, pp. 196-280. James T. Cushing. “Early Attempts at Causal Theories: A De Broglie and the origins of pilot-wave Stillborn Program.” In Quantum Mechanics: Historical theory. -
Regge Calculus As a Numerical Approach to General Relativity By
Regge Calculus as a Numerical Approach to General Relativity by Parandis Khavari A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Astronomy and Astrophysics University of Toronto Copyright c 2009 by Parandis Khavari Abstract Regge Calculus as a Numerical Approach to General Relativity Parandis Khavari Doctor of Philosophy Department of Astronomy and Astrophysics University of Toronto 2009 A (3+1)-evolutionary method in the framework of Regge Calculus, known as “Paral- lelisable Implicit Evolutionary Scheme”, is analysed and revised so that it accounts for causality. Furthermore, the ambiguities associated with the notion of time in this evolu- tionary scheme are addressed and a solution to resolving such ambiguities is presented. The revised algorithm is then numerically tested and shown to produce the desirable results and indeed to resolve a problem previously faced upon implementing this scheme. An important issue that has been overlooked in “Parallelisable Implicit Evolutionary Scheme” was the restrictions on the choice of edge lengths used to build the space-time lattice as it evolves in time. It is essential to know what inequalities must hold between the edges of a 4-dimensional simplex, used to construct a space-time, so that the geom- etry inside the simplex is Minkowskian. The only known inequality on the Minkowski plane is the “Reverse Triangle Inequality” which holds between the edges of a triangle constructed only from space-like edges. However, a triangle, on the Minkowski plane, can be built from a combination of time-like, space-like or null edges. Part of this thesis is concerned with deriving a number of inequalities that must hold between the edges of mixed triangles. -
The Sums Over Histories Which Specify the Guantum State of the Differ:Ent
Proceedings of the Fourth MARCEL GBOSSTWANN lviEETtNG ON GENERAL RELATIVITY, R. Ruffini (ed') 85 O Elsevier Science Publishers 8.V., l9Bo t : SI}IPLICIAL QUANTUM GRAVITY AND UNRTILY TOPOLOGY JATTTCS B. HARTLE Department of Physics, University of California' Santa Barbara, CA 93106 USA The sums over histories which specify the guantum state of the universe may be given concrete meaning with the methods of the Regge calculus. Sums over geometries may include sums over differ:ent topologies as u'ell as sums cver different metrics oil a given topology. In a simplicial approximation to such a sum, a sum over topologies is a sum over different ways of putting simplices together to make a simplicial geometry while a sum otrer rretrics becOmes an integral over the geome*,ry's ec{gt: lengths. The role whlch decision problems play in several appioaches to summing over topologies 1s discussed and the possibifity that geomeLries less regular than manifolds - unruly topologies - may csntribute significantly to the sum is raised. In two dimensions pseudcrnanifolds are a reasonable candidaLe for unrulY toPologies. I. INTRODUCTION The proposal that the quantum state of the universe is the analog of the ground state for closed cosmologies is a compelling candidate for a l-aw of initial conditions in cosmology.l fan Moss and Jonathan HalliwelI and Stephen Hawking have reviewed elsewhere j-n these proceedings how the correlations and fluctuations in this state can explain the large scale approximate homogeneity, isotropl' and spatial flatness of the universe as well as being consistent with the observed spectrum of density fluctuations. -
The Strong and Weak Senses of Theory-Ladenness of Experimentation: Theory-Driven Versus Exploratory Experiments in the History of High-Energy Particle Physics
[Accepted for Publication in Science in Context] The Strong and Weak Senses of Theory-Ladenness of Experimentation: Theory-Driven versus Exploratory Experiments in the History of High-Energy Particle Physics Koray Karaca University of Wuppertal Interdisciplinary Centre for Science and Technology Studies (IZWT) University of Wuppertal Gaußstr. 20 42119 Wuppertal, Germany [email protected] Argument In the theory-dominated view of scientific experimentation, all relations of theory and experiment are taken on a par; namely, that experiments are performed solely to ascertain the conclusions of scientific theories. As a result, different aspects of experimentation and of the relation of theory to experiment remain undifferentiated. This in turn fosters a notion of theory- ladenness of experimentation (TLE) that is too coarse-grained to accurately describe the relations of theory and experiment in scientific practice. By contrast, in this article, I suggest that TLE should be understood as an umbrella concept that has different senses. To this end, I introduce a three-fold distinction among the theories of high-energy particle physics (HEP) as background theories, model theories and phenomenological models. Drawing on this categorization, I contrast two types of experimentation, namely, “theory-driven” and “exploratory” experiments, and I distinguish between the “weak” and “strong” senses of TLE in the context of scattering experiments from the history of HEP. This distinction enables to identify the exploratory character of the deep-inelastic electron-proton scattering experiments— performed at the Stanford Linear Accelerator Center (SLAC) between the years 1967 and 1973—thereby shedding light on a crucial phase of the history of HEP, namely, the discovery of “scaling”, which was the decisive step towards the construction of quantum chromo-dynamics (QCD) as a gauge theory of strong interactions. -
Style Plain.Bst
Style plain.bst [1] Albert Einstein. Die Grundlage der allgemeinen Relativitätstheorie. An- nalen der Physik, 354(7) :769–822, 1916. [2] Albert Einstein. The Meaning of Relativity – Including the Relativistic Theory of the Non–Symmetric Field. Princeton University Press, 5 rev e. edition, 2004. [3] Albert Einstein, B. Podolsky, and N. Rosen. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete ? Physical Review, 47(10) :777–780, 1935. [4] Albert Einstein and Nathan Rosen. The particle problem in the general theory of relativity. Physical Review, 48(1) :73, 1935. [5] Albert Einstein and Nathan Rosen. Two-body problem in general relativity theory. Physical Review, 49(5) :404, 1936. [6] Philip M. Morse, Herman Feshbach, and E. L. Hill. Methods of Theoretical Physics. American journal of physics, 22(6) :410–413, September 1954. Style abbrv.bst [1] A. Einstein. Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 354(7) :769–822, 1916. [2] A. Einstein. The Meaning of Relativity – Including the Relativistic Theory of the Non–Symmetric Field. Princeton University Press, 5 rev e. edition, 2004. [3] A. Einstein, B. Podolsky, and N. Rosen. Can Quantum-Mechanical Des- cription of Physical Reality Be Considered Complete ? Physical Review, 47(10) :777–780, 1935. [4] A. Einstein and N. Rosen. The particle problem in the general theory of relativity. Physical Review, 48(1) :73, 1935. [5] A. Einstein and N. Rosen. Two-body problem in general relativity theory. Physical Review, 49(5) :404, 1936. [6] P. M. Morse, H. Feshbach, and E. L. Hill. Methods of Theoretical Physics. American journal of physics, 22(6) :410–413, Sept. -
Letters to the Editor
Letters to the Editor Nathan Rosen and Black Judaism. Merzbacher has informed There is another advantage of tablet Mountain me that Professor Rosen used to apps which, being unfamiliar with Thank you for your excellent article return to Chapel Hill during the sum- them, the author doesn’t anticipate: in the February 2013 Notices on von mers where he collaborated with Merz- no matter how many blackboards Neumann and the book review of bacher on various research projects. are available, total space is limited, Transcending Tradition. Having been but the apps can store an unlimited educated in North Carolina, I was —Paul F. Zweifel number of handwritten screens. If an especially interested in the discus- Virginia Tech (emeritus) audience member wants a copy of the sion of Black Mountain College in [email protected] notes after a talk, I can either print a the latter. One prominent faculty copy or email the stored document. member there not mentioned in the (Received January 22, 2013) The apps can even record audio from review was the Jewish physicist (and In Defense of Technology for the presentation. disciple of Einstein) Nathan Rosen. Mathematical Talks I think what the author observes about use of computer-based slides Although I earned my Ph.D. in phys- In response to V. V. Peller’s com- today represents not a failure of the ics at Duke University, I was allowed mentary, “Utilization of technology computer as a platform for the pre- to take courses at the University of for mathematical talks: An alarming sentation, but rather inadequately North Carolina in Chapel Hill. -
Can Quantum-Mechanical Description of Physical Reality Be Considered
Can quantum-mechanical description of physical reality be considered incomplete? Gilles Brassard Andr´eAllan M´ethot D´epartement d’informatique et de recherche op´erationnelle Universit´ede Montr´eal, C.P. 6128, Succ. Centre-Ville Montr´eal (QC), H3C 3J7 Canada {brassard, methotan}@iro.umontreal.ca 13 June 2005 Abstract In loving memory of Asher Peres, we discuss a most important and influential paper written in 1935 by his thesis supervisor and men- tor Nathan Rosen, together with Albert Einstein and Boris Podolsky. In that paper, the trio known as EPR questioned the completeness of quantum mechanics. The authors argued that the then-new theory should not be considered final because they believed it incapable of describing physical reality. The epic battle between Einstein and Bohr arXiv:quant-ph/0701001v1 30 Dec 2006 intensified following the latter’s response later the same year. Three decades elapsed before John S. Bell gave a devastating proof that the EPR argument was fatally flawed. The modest purpose of our paper is to give a critical analysis of the original EPR paper and point out its logical shortcomings in a way that could have been done 70 years ago, with no need to wait for Bell’s theorem. We also present an overview of Bohr’s response in the interest of showing how it failed to address the gist of the EPR argument. Dedicated to the memory of Asher Peres 1 Introduction In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen published a paper that sent shock waves in the physics community [5], especially in Copenhagen.