Self-Study Programme 212 Variable Intake Manifold in VR Engines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Engine Control Unit
Engine Control Unit João Filipe Ferreira Vicente Dissertation submitted for obtaining the degree in Master of Electronic Engineering, Instituto Superior Técnico Abstract The car used (Figure 1) has a fibreglass body and uses a Honda F4i engine taken from the Honda This paper describes the design of a fully CBR 600. programmable, low cost ECU based on a standard electronic circuit based on a dsPIC30f6012A for the Honda CBR600 F4i engine used in the Formula Student IST car. The ECU must make use of all the temperature, pressure, position and speed sensors as well as the original injectors and ignition coils that are already available on the F4i engine. The ECU must provide the user access to all the maps and allow their full customization simply by connecting it to a PC. This will provide the user with Figure 1 - FST03. the capability to adjust the engine’s performance to its needs quickly and easily. II. Electronic Fuel Injection Keywords The growing concern of fuel economy and lower emissions means that Electronic Fuel Injection Electronic Fuel Injection, Engine Control Unit, (EFI) systems can be seen on most of the cars Formula Student being sold today. I. Introduction EFI systems provide comfort and reliability to the driver by ensuring a perfect engine start under This project is part of the Formula Student project most conditions while lessening the impact on the being developed at Instituto Superior Técnico that environment by lowering exhaust gas emissions for the European series of the Formula Student and providing a perfect combustion of the air-fuel competition. -
05 NG Engine Technology.Pdf
Table of Contents NG Engine Technology Subject Page New Generation Engine Technology . .5 Turbocharging . .6 Turbocharging Terminology . .6 Basic Principles of Turbocharging . .7 Bi-turbocharging . .10 Air Ducting Overview . .12 Boost-pressure Control (Wastegate) . .14 Blow-off Control (Diverter Valves) . .15 Charge-air Cooling . .18 Direct Charge-air Cooling . .18 Indirect Charge Air Cooling . .18 Twin Scroll Turbocharger . .20 Function of the Twin Scroll Turbocharger . .22 Diverter valve . .22 Tuned Pulsed Exhaust Manifold . .23 Load Control . .24 Controlled Variables . .25 Service Information . .26 Limp-home Mode . .26 Direct Injection . .28 Direct Injection Principles . .29 Mixture Formation . .30 High Precision Injection . .32 HPI Function . .33 High Pressure Pump Function and Design . .35 Pressure Generation in High-pressure Pump . .36 Limp-home Mode . .37 Fuel System Safety . .38 Piezo Fuel Injectors . .39 Injector Design and Function . .40 Injection Strategy . .42 Initial Print Date: 09/06 Revision Date: 03/11 Subject Page Piezo Element . .43 Injector Adjustment . .43 Injector Control and Adaptation . .44 Injector Adaptation . .44 Optimization . .45 HDE Fuel Injection . .46 VALVETRONIC III . .47 Phasing . .47 Masking . .47 Combustion Chamber Geometry . .48 VALVETRONIC Servomotor . .50 Function . .50 Subject Page BLANK PAGE NG Engine Technology Model: All from 2007 Production: All After completion of this module you will be able to: • Understand the technology used on BMW turbo engines • Understand basic turbocharging principles • Describe the benefits of twin Scroll Turbochargers • Understand the basics of second generation of direct injection (HPI) • Describe the benefits of HDE solenoid type direct injection • Understand the main differences between VALVETRONIC II and VALVETRONIC II I 4 NG Engine Technology New Generation Engine Technology In 2005, the first of the new generation 6-cylinder engines was introduced as the N52. -
Design of the Electronic Engine Control Unit Performance Test System of Aircraft
aerospace Article Design of the Electronic Engine Control Unit Performance Test System of Aircraft Seonghee Kho 1 and Hyunbum Park 2,* 1 Department of Defense Science & Technology-Aeronautics, Howon University, 64 Howondae 3gil, Impi, Gunsan 54058, Korea; [email protected] 2 School of Mechanical Convergence System Engineering, Kunsan National University, 558 Daehak-ro, Miryong-dong, Gunsan 54150, Korea * Correspondence: [email protected]; Tel.: +82-(0)63-469-4729 Abstract: In this study, a real-time engine model and a test bench were developed to verify the performance of the EECU (electronic engine control unit) of a turbofan engine. The target engine is a DGEN 380 developed by the Price Induction company. The functional verification of the test bench was carried out using the developed test bench. An interface and interworking test between the test bench and the developed EECU was carried out. After establishing the verification test environments, the startup phase control logic of the developed EECU was verified using the real- time engine model which modeled the startup phase test data with SIMULINK. Finally, it was confirmed that the developed EECU can be used as a real-time engine model for the starting section of performance verification. Keywords: test bench; EECU (electronic engine control unit); turbofan engine Citation: Kho, S.; Park, H. Design of 1. Introduction the Electronic Engine Control Unit The EECU is a very important component in aircraft engines, and the verification Performance Test System of Aircraft. test for numerous items should be carried out in its development process. Since it takes Aerospace 2021, 8, 158. https:// a lot of time and cost to carry out such verification test using an actual engine, and an doi.org/10.3390/aerospace8060158 expensive engine may be damaged or a safety hazard may occur, the simulator which virtually generates the same signals with the actual engine is essential [1]. -
SURVEY on MULTI POINT FUEL INJECTION (MPFI) ENGINE Deepali Baban Allolkar*1, Arun Tigadi 2 & Vijay Rayar3 *1 Department of Electronics and Communication, KLE Dr
ISSN: 2277-9655 [Allolkar* et al., 7(5): May, 2018] Impact Factor: 5.164 IC™ Value: 3.00 CODEN: IJESS7 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY SURVEY ON MULTI POINT FUEL INJECTION (MPFI) ENGINE Deepali Baban Allolkar*1, Arun Tigadi 2 & Vijay Rayar3 *1 Department of Electronics and Communication, KLE Dr. M S Sheshgiri College of Engineering and Technology, India. 2,3Assistant Professor, Department of Electronics and Communication, KLE Dr. M S Sheshgiri College of Engineering and Technology, India. DOI: 10.5281/zenodo.1241426 ABSTRACT The Multi Point Fuel Injection (MPFI) is a system or method of injecting fuel into internal combustion engine through multi ports situated on intake valve of each cylinder. It delivers an exact quantity of fuel in each cylinder at the right time. The amount of air intake is decided by the car driver by pressing the gas pedal, depending on the speed requirement. The air mass flow sensor near throttle valve and the oxygen sensor in the exhaust sends signal to Electronic control unit (ECU). ECU determines the air fuel ratio required, hence the pulse width. Depending on the signal from ECU the injectors inject fuel right into the intake valve. Thus the multi-point fuel injection technology uses individual fuel injector for each cylinder, there is no gas wastage over time. It reduces the fuel consumption and makes the vehicle more efficient and economical. KEYWORDS: Multi point fuel injection (MPFI), Cylinder, Gas pedal, Throttle valve, Electronic control Unit (ECU). I. INTRODUCTION Petrol engines used carburetor for supplying the air fuel mixture in correct ratio but fuel injection replaced carburetors from the 1980s onward. -
VW MKIII VR6 Secondary Air Injection
Fourtitude Forums: Secondary Air Injection Incorrect Flow (P0411) fix! Page 1 of 16 My Profile | Active Users | Help | Search | Google Search You are not logged in, Log in | Register Fourtitude Forums 2.8l 12v VR6 Engine Forum Secondary Air Injection Incorrect Flow (P0411) fix! [Archived] benny_mech Secondary Air Injection Incorrect Flow (P0411) fix! « » 4:06 PM 5/17/2005 Member Offline Member Since 3-4-2003 2279 posts Land of Confusion Since I see this question posted all the time, here's my fix. Please note that you may not have the same exact problem, but I'd start here. Your car spits the ever popular P0411 error code, here's (probably) why. Pull the front bumper/rad support. Peek under the intake manifold. (Sorry for the dark picture). http://forums.fourtitude.com/zerothread?id=1995162 8/9/2008 Fourtitude Forums: Secondary Air Injection Incorrect Flow (P0411) fix! Page 2 of 16 The 4mm inside diameter vaccuum hose gets pinched between the lower intake manifold and the secondary air pump housing, flattening it over time. Remove the combi valve from the cylinder head. It's the hose running from the solenoid valve to the combi valve. http://forums.fourtitude.com/zerothread?id=1995162 8/9/2008 Fourtitude Forums: Secondary Air Injection Incorrect Flow (P0411) fix! Page 3 of 16 Replace that hose with some plastic emissions tube from your friendly Autozone. Has a smaller outside diameter, and won't get pinched. Drink beers. Note that if you have this style valve with the vac port out the top, your vac hose routing is probably much better, and won't get pinched. -
How to Identify MKIV 1
How to Identify MKIV 1 What 1.8T engine codes were used, and when? Early MKIV 1.8T engines use an AWD engine code. This engine does not have Variable Valve Timing (VVT). VW added VVT for the 2000 and 2001 model years (AWW), and modified the engine again in 2002 (engine code AWP). What 2.0L engine codes were used in MKIV cars? The MKIV 2.0L base engine came in several flavors. Engine codes used with the 2.0L include: AEG, AVH, AZG, BBW, and BEV. How do I identify my 1.8T or 2.0L engine? 1) Look at the engine number, stamped in the block. The number should be located on the block at the seam between the engine and transaxle bell housing, in the area near the oil filter flange. 2) Remove the engine cover. Then check the three letters stamped in the boss for the front engine lift point. Caution: Some re-manufactured or new heads may have no marking whatsoever. powertrain 3) Look for the factory sticker on the upper timing belt cover. options 4) Check for the presence of a VVT (Variable Valve Timing) mechanism. AWW and AWP engines both have a VVT camshaft timing mechanism located on the outside of the cylinder head on the transmission side of the engine. AWD engines do not have VVT. 5) Trunk Sticker Look inside the spare tire well for a sticker with critical vehicle data, including the engine code. MKIV trunk sticker with AWP code displayed. How to Identify MKIV 2 What VR6 engine codes were used, and when? Both 12V and 24V VR6 2.8L engines were used in MKIVs. -
Closed Loop Engine Management System
Information Sheet #105 CLOSED-LOOP CONTROL SYSTEMS ON GASEOUS GENERATORS Frequently the engine used to drive the generator in a standby or prime power generator system is a 4-stroke spark ignition (SI) engine. While many smaller portable generators use SI engines fueled by gasoline, the majority of SI engine driven generators above 10kW are fitted with SI engines fueled by gaseous fuel, either natural gas (NG), or liquid petroleum gas (LPG). The majority of gaseous powered SI engines within a generator system are frequently referred to as having a Closed-Loop Engine Control System. In understanding Buckeye Power Sales necessary maintenance required to maintain optimum operation and performance of an SI engine using a closed-loop system, it is Reliable Power Professionals Since 1947 important to be aware of all the components within the system, their functions, and the advantages a closed-loop system. 1.0 WHAT IS A CLOSED-LOOP SYSTEM: The term “loop” in a control system refers to the path taken through various components to obtain a desired output. Used in conjunction with the word “closed” it refers to sensors measuring actual output along the path against required output. The various outputs measured along the path, or loop, are referred to as feedback signals. In a closed- loop system, the feedback along the path constantly enables the engine control system to adjust and ensure the right output is maintained as variations in ambient temperature, load, altitude, and humidity influence combustion and required output. So, in brief, closed-loop systems employ sensors in the loop to constantly provide feedback so the ECU can adjust inputs to obtain the required output. -
Design of Electronically Controlled Fuel Injection System for Carburetor Based Engine
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 DESIGN OF ELECTRONICALLY CONTROLLED FUEL INJECTION SYSTEM FOR CARBURETOR BASED ENGINE 1 2 3 4 Abhishek Kumar , Abhijeet Kumar , Ujjwal Ashish , Ashok B 1B.Tech (EEE), 3rd year, VIT University, Vellore, India 2B.Tech (ECE), 3rd year, VIT University, Vellore, India 3B.Tech (EEE), 3rd year, VIT University, Vellore, India 4Assistant Professor, SMBS, VIT University, Vellore, India Abstract In the Modern world, automotive electronics play an important role in the manufacturing of any passenger car. Automotive electronics consists of advanced sensors, control units, and “mechatronic“actuator making it increasingly complex, networked vehicle systems. Electronic fuel injection (EFI) is the most common example of automotive electronics application in Powertrain. An EFI system is basically developed for the control of injection timing and fuel quantity for better fuel efficiency and power output. In this paper, we will explain various types of fuel injection system that are used most commonly nowadays and will also explain the various parameters considered during calculating,(using speed density method), base fuel quantity during runtime. We will explain the major difference between speed density method and alpha-n method and in the end, we will also show the MATLAB/Simulink model of fuel injection system for Single cylinder four stroke engine. Keywords: Air Fuel Ratio, Fuel Injection System, Speed Density Method, Engine Management System --------------------------------------------------------------------***---------------------------------------------------------------------- 1. INTRODUCTION The primary difference between carburetors and fuel Engine management system (EMS) is an essential part of injection system is that fuel injection atomizes through a any vehicle, which controls and monitors the engine. -
Engine Control Unit MS 12 Engine Control Unit MS 12
Bosch Motorsport | Engine Control Unit MS 12 Engine Control Unit MS 12 www.bosch-motorsport.com u 12 injection output stages u For piezo injectors u 78 data inputs The MS 12 is the high-end ECU for Diesel engines. This Optional function packages available ECU offers 12 Piezo injection power stages for use in up to a 12 cylinder engine. Various engine and chassis Interface to Bosch Data Logging System parameters can be measured with a high number of in- Max. vibration Vibration profile 1 (see Appendix put channels. All measured data can be transferred via or www.bosch-motorsport.com) FireWire interface to an optional flash card data log- ger. Gear box control strategies are optional. Technical Specifications Application Mechanical Data Engine layout Max. 12 cyl. Aluminum housing Injector type Piezo injectors 5 connectors in motorsport technology with high pin density, 242 pins Control strategy Quantity based Each connector individually filtered. Injection timing 2 pilot injections Vibration damped circuit boards 1 main injection 1 post injection 8 housing fixation points Turbo boost control (incl. VTG) Single or Twin-Turbo Size 240 x 200 x 57 mm Lambda measurement Protection Classification IP67 to DIN 40050, Section 9, Is- sue 2008 Traction control Weight 2,500 g Launch control Temperature range -20 to 85°C Gear cut for sequential gearbox Gearbox control Speed limiter 2 | Engine Control Unit MS 12 Electrical Data AS 6-18-35 SB Power consumption w/o inj. Approx. 5 W at 14 V Mating Connector III F 02U 000 475-01 AS 6-18-35 SC Power consumption at 6,500 rpm Max. -
Baum Tools Unlimited Inc. 50Th Anniversary Edition
Baum Tools Unlimited Inc. 50th Anniversary Edition Volkswagen-Audi Tool Catalog 2009 Our Next Generation European Hand Scan Tool Has Arrived Now get high end German and Swedish proprietary coverage also get proprietary Asian and Domestic ALL IN ONE TOOL Proprietary Coverage ~EUROPEAN CARS Makes Complicated CAN MERCEDES BENZ systems Easy to Diagnose BMW VOLKSWAGEN VAG Software Version 2.25 just released. AUDI #DS2020 complete Scan Tool with 4 channel lab scope Covering all VW/+AG VOLVO systems ~ASIAN CARS TOYOTA/ LEXUS HONDA/ACURA #DS2021 NISSAN/ INFINITI Complete Scan Tool MITSUBUSHI MAZDA SUBARU HYUNDAI KIA SUZUKI ISUZU DAIHATSU DAEWOO ~AMERICAN CARS GM, FORD, CHRYSLER OBDII AND EOBDII/III COMPLIANT A POWERFUL DIAGNOSTIC TOOL THAT’S SIMPLE TO USE & EASY TO UNDERSTAND Comes with complete International coverage Technical Support • Free hardware Start-up Support available by phone 8:00am-6:00pm EST • Advanced Technical Help of German and Swedish auto repair. Pay as you go by phone • European car specific professional support group. Almost exclusively European specialists • Help is just a phone call away. APPLY FOR THE BAUM TOOLS CREDIT CARD TODAY 800-519-6049 941-927-1414 Itnl’ 941-927-1612 Fax www.baumtools.com / [email protected] I vw insert 09 djb Available Exclusively from Baum Tools with EDR-TECH support. Go the Right Route A VAG Specific Software for Diagnosis, Coding and Programming An Affordable Diagnostic System Providing On-Screen Freeze-Frame Data, Live Data Graphing, Printing & Archiving, & C.A.N. Systems Accessibility. Current Support for BMW, J2534 Pass-Thru Programming other makes coming soon. The VAG software allows the professional technician to perform most of the functions of the OEM diagnostc and programming tool. -
Media Information 2200 Ferdinand Porsche Drive, Herndon, VA 20171 Media.Vw.Com @Vwnews for IMMEDIATE RELEASE
motion VOLKSWAGEN OF AMERICA, INC. Media Information 2200 Ferdinand Porsche Drive, Herndon, VA 20171 media.vw.com @VWNews FOR IMMEDIATE RELEASE 2018 VOLKSWAGEN ATLAS: THE FAMILY-SIZED SUV BUILT IN AMERICA Five distinct trim levels, all priced to make waves in the midsize SUV market Excellent passenger and cargo volume, as well as flexible seating for up to seven adults High-tech interior features include available Volkswagen Digital Cockpit and Fender® Premium Audio System Two engine options: four-cylinder TSI® turbo or powerful VR6®, both with eight-speed automatic transmission Available 4Motion® with Active Control all-wheel-drive system on V6 models Only vehicle in its class to offer Automatic Post-Collision Braking System HERNDON, VA (August 23, 2017) — The 2018 Volkswagen Atlas represents a new chapter in Volkswagen’s U.S. story. Built in Chattanooga, Tennessee, the seven-passenger Atlas offers competitive levels of technology and spaciousness combined with hallmark Volkswagen driving dynamics and attention to detail, all at a price designed to draw attention in the crowded family SUV segment. “This is the biggest and boldest Volkswagen we have ever built in the United States, delivering the distinctive design and craftsmanship we’re known for, now with room for seven,” said Hinrich J. Woebcken, CEO of the North American Region, Volkswagen. “The Atlas marks a brand new journey for Volkswagen to enter into the heart of the American market.” As the newest and biggest member of the Volkswagen lineup, the midsize Atlas SUV offers family-ready passenger and cargo volume, as well as everyday usability and utility. Atlas is available in five trim levels—S, SE, SE w/ Technology, SEL and SEL Premium. -
Modeling and Control of Actuators and Co-Surge in Turbocharged Engines
Linköping Studies in Science and Technology Dissertations, No. 1590 Modeling and control of actuators and co-surge in turbocharged engines Andreas Thomasson Department of Electrical Engineering Linköping University SE–581 83 Linköping, Sweden Linköping 2014 Linköping studies in science and technology. Dissertations, No. 1590 Modeling and control of actuators and co-surge in turbocharged engines Andreas Thomasson ISBN 978-91-7519-355-7 ISSN 0345-7524 © 2014 Andreas Thomasson, unless otherwise noted. All rights reserved. Andreas Thomasson [email protected] www.vehicular.isy.liu.se Division of Vehicular Systems Department of Electrical Engineering Linköping University SE–581 83 Linköping Sweden Paper 1 is reproduced here with permission from IFP Energies nouvelles Paper 2 is reproduced here with permission from IFAC Paper 3 is reproduced here with permission from Elsevier Paper 4 is reproduced here with permission from IFAC The cover: Photo of an electronic throttle, a pneumatic actuator, and a measurement of mass flows during co-surge, illustrating the main topics of the thesis. Typeset with LATEX 2ε Printed by LiU-Tryck, Linköping, Sweden 2014 i Abstract The torque response of the engine is important for the driving experience of a vehicle. In spark ignited engines, torque is proportional to the air flow into the cylinders. Controlling torque therefore implies controlling air flow. In modern turbocharged engines, the driver commands are interpreted by an electronic control unit that controls the engine through electromechanical and pneumatic actuators. Air flow to the intake manifold is controlled by an electronic throttle, and a wastegate controls the energy to the turbine, affecting boost pressure and air flow.