The Topic of Degeneracy Is a Very Important One, Especially in the Later Part of a Star's Life
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evidence for Very Extended Gaseous Layers Around O-Rich Mira Variables and M Giants B
The Astrophysical Journal, 579:446–454, 2002 November 1 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. EVIDENCE FOR VERY EXTENDED GASEOUS LAYERS AROUND O-RICH MIRA VARIABLES AND M GIANTS B. Mennesson,1 G. Perrin,2 G. Chagnon,2 V. Coude du Foresto,2 S. Ridgway,3 A. Merand,2 P. Salome,2 P. Borde,2 W. Cotton,4 S. Morel,5 P. Kervella,5 W. Traub,6 and M. Lacasse6 Received 2002 March 15; accepted 2002 July 3 ABSTRACT Nine bright O-rich Mira stars and five semiregular variable cool M giants have been observed with the Infrared and Optical Telescope Array (IOTA) interferometer in both K0 (2.15 lm) and L0 (3.8 lm) broad- band filters, in most cases at very close variability phases. All of the sample Mira stars and four of the semire- gular M giants show strong increases, from ’20% to ’100%, in measured uniform-disk (UD) diameters between the K0 and L0 bands. (A selection of hotter M stars does not show such a large increase.) There is no evidence that K0 and L0 broadband visibility measurements should be dominated by strong molecular bands, and cool expanding dust shells already detected around some of these objects are also found to be poor candi- dates for producing these large apparent diameter increases. Therefore, we propose that this must be a con- tinuum or pseudocontinuum opacity effect. Such an apparent enlargement can be reproduced using a simple two-component model consisting of a warm (1500–2000 K), extended (up to ’3 stellar radii), optically thin ( ’ 0:5) layer located above the classical photosphere. -
Requirements of Timely Performance in Time and Voyage Charterparties
Graduate School REQUIREMENTS OF TIMELY PERFORMANCE IN TIME AND VOYAGE CHARTERPARTIES - AN EXPLORATION OF THEIR IDENTITY, SCOPE AND LIMITATIONS UNDER ENGLISH LAW Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester by Tamaraudoubra Tom Egbe School of Law University of Leicester 2019 Abstract REQUIREMENTS OF TIMELY PERFORMANCE IN TIME AND VOYAGE CHARTERPARTIES - AN EXPLORATION OF THEIR IDENTITY, SCOPE AND LIMITATIONS UNDER ENGLISH LAW By Tamaraudoubra Tom Egbe The importance of time in the performance of contractual obligations under sea carriage of goods arrangements are until now little explored. For the avoidance of breach, certain obligations and responsibilities of the parties to the contract need to be performed promptly. Ocean transport is an expensive venture and a shipowner could suffer considerable financial losses if an unnecessary but serious delay interrupt the vessel’s earning power in the course of the charterer’s performance of his contractual obligation. On the other hand, a charterer could also incur a substantial loss if arrangements for the shipment and receipt of cargo fail to go according to plan as a result of the shipowner’s failure to perform his charterparty obligation timely and with reasonable diligence. With these considerations in mind, this thesis critically explores the concept of timely performance in the discharge of the contractual obligations of parties to a contract of carriage. While the thesis is not an expository of the occurrence of time in all the obligations of parties to the carriage contract, it focusses particularly on the identity, scope, and limitations of timeliness in the context of timely payment of hire, laytime and reasonable despatch. -
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
Binocular Universe: You're My Hero! December 2010
Binocular Universe: You're My Hero! December 2010 Phil Harrington on't you just love a happy ending? I know I do. Picture this. Princess Andromeda, a helpless damsel in distress, chained to a rock as a ferocious D sea monster loomed nearby. Just when all appeared lost, our hero -- Perseus! -- plunges out of the sky, kills the monster, and sweeps up our maiden in his arms. Together, they fly off into the sunset on his winged horse to live happily ever after. Such is the stuff of myths and legends. That story, the legend of Perseus and Andromeda, was recounted in last month's column when we visited some binocular targets within the constellation Cassiopeia. In mythology, Queen Cassiopeia was Andromeda's mother, and the cause for her peril in the first place. Left: Autumn star map from Star Watch by Phil Harrington Above: Finder chart for this month's Binocular Universe. Chart adapted from Touring the Universe through Binoculars Atlas (TUBA), www.philharrington.net/tuba.htm This month, we return to the scene of the rescue, to our hero, Perseus. He stands in our sky to the east of Cassiopeia and Andromeda, should the Queen's bragging get her daughter into hot water again. The constellation's brightest star, Mirfak (Alpha [α] Persei), lies about two-thirds of the way along a line that stretches from Pegasus to the bright star Capella in Auriga. Shining at magnitude +1.8, Mirfak is classified as a class F5 white supergiant. It radiates some 5,000 times the energy of our Sun and has a diameter 62 times larger. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Wynyard Planetarium & Observatory a Autumn Observing Notes
Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris. -
Arxiv:1904.06897V1 [Astro-Ph.SR] 15 Apr 2019
MNRAS 000,1–16 (2019) Preprint 16 April 2019 Compiled using MNRAS LATEX style file v3.0 The Sejong Open cluster Survey (SOS) VI. A small star-forming region in the high Galactic latitude molecular cloud MBM 110 Hwankyung Sung1?, Michael S. Bessell2, Inseok Song3 1Department of Physics and Astronomy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea 2Research School of Astronomy & Astrophysics, The Australian National University, Canberra, ACT 2611, Australia 3Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA Last updated 2019 March 25 ABSTRACT We present optical photometric, spectroscopic data for the stars in the high Galactic latitude molecular cloud MBM 110. For the complete membership selection of MBM 110, we also analyze WISE mid-infrared data and Gaia astrometric data. Membership of individual stars is critically evaluated using the data mentioned above. The Gaia parallax of stars in MBM 110 is 2.667 ± 0.095 mas (d = 375 ± 13pc), which confirms that MBM 110 is a small star-forming region in the Orion-Eridanus superbubble. The age of MBM 110 is between 1.9 Myr and 3.1 Myr depending on the adopted pre-main sequence evolution model. The total stellar mass of MBM 110 is between 16 M (members only) and 23 M (including probable members). The star formation efficiency is estimated to be about 1.4%. We discuss the importance of such small star formation regions in the context of the global star formation rate and suggest that a galaxy’s star formation rate calculated from the Hα luminosity may underestimate the actual star formation rate. -
Astronomy Magazine Special Issue
γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006. -
JRASC-2007-04-Hr.Pdf
Publications and Products of April / avril 2007 Volume/volume 101 Number/numéro 2 [723] The Royal Astronomical Society of Canada Observer’s Calendar — 2007 The award-winning RASC Observer's Calendar is your annual guide Created by the Royal Astronomical Society of Canada and richly illustrated by photographs from leading amateur astronomers, the calendar pages are packed with detailed information including major lunar and planetary conjunctions, The Journal of the Royal Astronomical Society of Canada Le Journal de la Société royale d’astronomie du Canada meteor showers, eclipses, lunar phases, and daily Moonrise and Moonset times. Canadian and U.S. holidays are highlighted. Perfect for home, office, or observatory. Individual Order Prices: $16.95 Cdn/ $13.95 US RASC members receive a $3.00 discount Shipping and handling not included. The Beginner’s Observing Guide Extensively revised and now in its fifth edition, The Beginner’s Observing Guide is for a variety of observers, from the beginner with no experience to the intermediate who would appreciate the clear, helpful guidance here available on an expanded variety of topics: constellations, bright stars, the motions of the heavens, lunar features, the aurora, and the zodiacal light. New sections include: lunar and planetary data through 2010, variable-star observing, telescope information, beginning astrophotography, a non-technical glossary of astronomical terms, and directions for building a properly scaled model of the solar system. Written by astronomy author and educator, Leo Enright; 200 pages, 6 colour star maps, 16 photographs, otabinding. Price: $19.95 plus shipping & handling. Skyways: Astronomy Handbook for Teachers Teaching Astronomy? Skyways Makes it Easy! Written by a Canadian for Canadian teachers and astronomy educators, Skyways is Canadian curriculum-specific; pre-tested by Canadian teachers; hands-on; interactive; geared for upper elementary, middle school, and junior-high grades; fun and easy to use; cost-effective. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
The Planets for 1955 24 Eclipses, 1955 ------29 the Sky and Astronomical Phenomena Month by Month - - 30 Phenomena of Jupiter’S S a Te Llite S
THE OBSERVER’S HANDBOOK FOR 1955 PUBLISHED BY The Royal Astronomical Society of Canada C. A. C H A N T, E d ito r RUTH J. NORTHCOTT, A s s is t a n t E d ito r DAVID DUNLAP OBSERVATORY FORTY-SEVENTH YEAR OF PUBLICATION P r i c e 50 C e n t s TORONTO 13 Ross S t r e e t Printed for th e Society By the University of Toronto Press THE ROYAL ASTRONOMICAL SOCIETY OF CANADA The Society was incorporated in 1890 as The Astronomical and Physical Society of Toronto, assuming its present name in 1903. For many years the Toronto organization existed alone, but now the Society is national in extent, having active Centres in Montreal and Quebec, P.Q.; Ottawa, Toronto, Hamilton, London, and Windsor, Ontario; Winnipeg, Man.; Saskatoon, Sask.; Edmonton, Alta.; Vancouver and Victoria, B.C. As well as nearly 1000 members of these Canadian Centres, there are nearly 400 members not attached to any Centre, mostly resident in other nations, while some 200 additional institutions or persons are on the regular mailing list of our publications. The Society publishes a bi-monthly J o u r n a l and a yearly O b s e r v e r ’s H a n d b o o k . Single copies of the J o u r n a l are 50 cents, and of the H a n d b o o k , 50 cents. Membership is open to anyone interested in astronomy. Annual dues, $3.00; life membership, $40.00. -
Astrometrically Registered Maps of H2O and Sio Masers Toward VX Sagittarii
ARTICLE DOI: 10.1038/s41467-018-04767-8 OPEN Astrometrically registered maps of H2O and SiO masers toward VX Sagittarii Dong-Hwan Yoon1,2, Se-Hyung Cho2,3, Youngjoo Yun2, Yoon Kyung Choi2, Richard Dodson4, María Rioja4,5, Jaeheon Kim6, Hiroshi Imai7, Dongjin Kim3, Haneul Yang1,2 & Do-Young Byun2 The supergiant VX Sagittarii is a strong emitter of both H2O and SiO masers. However, previous VLBI observations have been performed separately, which makes it difficult to 1234567890():,; spatially trace the outward transfer of the material consecutively. Here we present the astrometrically registered, simultaneous maps of 22.2 GHz H2O and 43.1/42.8/86.2/129.3 GHz SiO masers toward VX Sagittarii. The H2O masers detected above the dust-forming layers have an asymmetric distribution. The multi-transition SiO masers are nearly circular ring, suggesting spherically symmetric wind within a few stellar radii. These results provide the clear evidence that the asymmetry in the outflow is enhanced after the smaller molecular gas clump transform into the inhomogeneous dust layers. The 129.3 GHz maser arises from the outermost region compared to that of 43.1/42.8/86.2 GHz SiO masers. The ring size of the 129.3 GHz maser is maximized around the optical maximum, suggesting that radiative pumping is dominant. 1 Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea. 2 Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Korea. 3 Department of Astronomy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.