Download Article As 7.38 MB PDF File
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pollen-Based Temperature and Precipitation Records of the Past
University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers Faculty of Science, Medicine and Health 2017 Pollen-based temperature and precipitation records of the past 14,600 years in northern New Zealand (37°S) and their linkages with the Southern Hemisphere atmospheric circulation Ignacio Jara Victoria University of Wellington Rewi Newnham Victoria University of Wellington Brent V. Alloway University of Wollongong Janet M. Wilmshurst Landcare Research NZ Andrew Rees Victoria University of Wellington Publication Details Jara, I. A., Newnham, R. M., Alloway, B. V., Wilmshurst, J. M. & Rees, A. B.H. (2017). Pollen-based temperature and precipitation records of the past 14,600 years in northern New Zealand (37°S) and their linkages with the Southern Hemisphere atmospheric circulation. The oH locene: a major interdisciplinary journal focusing on recent environmental change, 27 (11), 1756-1768. Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Pollen-based temperature and precipitation records of the past 14,600 years in northern New Zealand (37°S) and their linkages with the Southern Hemisphere atmospheric circulation Abstract Regional vegetation, climate history, and local water table fluctuations for the past 14,600 years are reconstructed from pollen and charcoal records of an ombrogenous peatbog in northern New Zealand (38°S). A long-term warming trend between 14,600 and 10,000 cal. yr BP is punctuated by two brief plateaux between 14,200-13,800 and 13,500-12,000 cal. yr BP. Periods of relatively drier conditions are inferred between 14,000-13,400 and 12,000-10,000 cal. -
Species-Specific Basic Stem-Wood Densities for Twelve Indigenous Forest and Shrubland Species of Known Age, New Zealand
Marden et al. New Zealand Journal of Forestry Science (2021) 51:1 https://doi.org/10.33494/nzjfs512021x121x E-ISSN: 1179-5395 published on-line: 15/02/2021 Research Article Open Access New Zealand Journal of Forestry Science Species-specific basic stem-wood densities for twelve indigenous forest and shrubland species of known age, New Zealand Michael Marden1,*, Suzanne Lambie2 and Larry Burrows3 1 31 Haronga Road, Gisborne 4010, New Zealand 2 Manaaki Whenua – Landcare Research, Private Bag 3127, Hamilton 3240, New Zealand 3 Manaaki Whenua – Landcare Research, PO Box 69041, Lincoln 7640, New Zealand *Corresponding author: [email protected] (Received for publication 19 July 2019; accepted in revised form 26 January 2021) Abstract Background: Tree carbon estimates for New Zealand indigenous tree and shrub species are largely based on mean of sites throughout New Zealand. Yet stem-wood density values feed directly into New Zealand’s international and nationalbasic stem-wood greenhouse densities gas accounting. derived from We a limitedaugment number existing of publishedtrees, often basic of unspecified stem-wood age density and from data a limited with new number age- old, across 21 widely-distributed sites between latitudes 35° tospecific estimate values carbon for 12stocks. indigenous forest and shrubland species, including rarely obtained values for trees <6-years and 46° S, and explore relationships commonly used Methods: The volume of 478 whole stem-wood discs collected at breast height (BH) was determined by water displacement, oven dried, and weighed. Regression analyses were used to determine possible relationships between basic stem-wood density, and tree height, root collar diameter (RCD), and diameter at breast height (DBH). -
The Correspondence of Julius Haast and Joseph Dalton Hooker, 1861-1886
The Correspondence of Julius Haast and Joseph Dalton Hooker, 1861-1886 Sascha Nolden, Simon Nathan & Esme Mildenhall Geoscience Society of New Zealand miscellaneous publication 133H November 2013 Published by the Geoscience Society of New Zealand Inc, 2013 Information on the Society and its publications is given at www.gsnz.org.nz © Copyright Simon Nathan & Sascha Nolden, 2013 Geoscience Society of New Zealand miscellaneous publication 133H ISBN 978-1-877480-29-4 ISSN 2230-4495 (Online) ISSN 2230-4487 (Print) We gratefully acknowledge financial assistance from the Brian Mason Scientific and Technical Trust which has provided financial support for this project. This document is available as a PDF file that can be downloaded from the Geoscience Society website at: http://www.gsnz.org.nz/information/misc-series-i-49.html Bibliographic Reference Nolden, S.; Nathan, S.; Mildenhall, E. 2013: The Correspondence of Julius Haast and Joseph Dalton Hooker, 1861-1886. Geoscience Society of New Zealand miscellaneous publication 133H. 219 pages. The Correspondence of Julius Haast and Joseph Dalton Hooker, 1861-1886 CONTENTS Introduction 3 The Sumner Cave controversy Sources of the Haast-Hooker correspondence Transcription and presentation of the letters Acknowledgements References Calendar of Letters 8 Transcriptions of the Haast-Hooker letters 12 Appendix 1: Undated letter (fragment), ca 1867 208 Appendix 2: Obituary for Sir Julius von Haast 209 Appendix 3: Biographical register of names mentioned in the correspondence 213 Figures Figure 1: Photographs -
An Unusual Plant Community on Some Westland Piedmont Moraines, by G. Rennison and J. L. Brock, P
223 AN UNUSUAL PLANT COMMUNITY ON SOME SOUTH WESTLAND PIEDMONT MORAINES by G. Rennison* and J.L. Brockf In South Westland there is an extensive area of piedmont moraines lying between the sea and the western scarp of the Southern Alps, and bounded by the Waiho River to the north and the Cook River to the south (Fig. 1). In the main the existing vegetation is podocarp-broadleaf forest, but with small pockets of a plant community which has definite alpine affinities. From the air these show up as light-coloured areas against the dark forest, and occupy areas of infertile terrace. For an explanation of their occurrence an outline of the recent geological history is pertinent. Late Pleistocene History of the Moraines Approximately two thirds of the moraines are mapped as Okarito Formation and the rest as Moana Formation (Warren, 1967; Fig. 2). Both were formed during the advance of the Otira Glaciation, the Okarito Formation being correlated with the Kumara-2 and early Kumara-3 advance, and the Moana Formation with the later Kumara-3 advance (Suggate, 1965). The Okarito Formation may also include remnants of moraines formed by the earlier Waimea Glaciation. From radio-carbon dating, Suggate suggests that the early Kumara-3 advance commenced approximately 16,000 years before present (BP). The late Kumara-3 advance commenced approximately 1,500 years later (14,500 BP) and resulted in the Fox and Franz Josef Glaciers being extended beyond the present coastline, with an extensive lateral moraine complex being formed along the periphery of the Okarito Formation. Vegetation Development on the Moraines The following is an outline of the possible mode of vegetation development on these piedmont moraines: 1. -
1992 New Zealand Botanical Society President: Dr Eric Godley Secretary/Treasurer: Anthony Wright
NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 28 JUNE 1992 New Zealand Botanical Society President: Dr Eric Godley Secretary/Treasurer: Anthony Wright Committee: Sarah Beadel, Ewen Cameron, Colin Webb, Carol West Address: New Zealand Botanical Society C/- Auckland Institute & Museum Private Bag 92018 AUCKLAND Subscriptions The 1992 ordinary and institutional subs are $14 (reduced to $10 if paid by the due date on the subscription invoice). The 1992 student sub, available to full-time students, is $7 (reduced to $5 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $2.50 each - from Number 1 (August 1985) to Number 28 (June 1992). Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28 February of each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next year's subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the September 1992 issue (Number 29) is 28 August 1992. Please forward contributions to: Ewen Cameron, Editor NZ Botanical Society Newsletter C/- Auckland Institute & Museum Private Bag 92018 AUCKLAND Cover illustration Mawhai (Sicyos australis) in the Cucurbitaceae. Drawn by Joanna Liddiard from a fresh vegetative specimen from Mangere, Auckland; flowering material from Cuvier Island herbarium specimen (AK 153760) and the close-up of the spine from West Island, Three Kings Islands herbarium specimen (AK 162592). -
Descriptions of Some Mature Kauri Forests of New Zealand, By
DESCRIPTIONS OF SOME MATURE KAURI FORESTS OF NEW ZEALAND by Moinuddin Ahmed and John Ogden Department of Botany, University of Auckland, Private Bag 92019, Auckland ABSTRACT A quantitative sampling of 25 mature kauri stands, throughout the species natural limits, was carried out. Each kauri stand is described in terms of its phytosociological attributes (frequency, density and basal area) for kauri and associated canopy and subcanopy species. A species list of plants under 10cm dbh is also given with their relative frequencies in each stand. In all stands kauri comprises most of the basal area. It is associated with 10 different co-dominant species. However, most of the forests have a similar species composition. It is suggested that all these kauri forest samples belong to one overall association. INTRODUCTION The vegetation of various kauri forests has been described by Adam (1889), Cockayne (1908, 1928), Cranwell and Moore (1936), Sexton (1941), Anon (1949) and more recently Barton (1972), Anon (1980) and Ecroyd (1982). A quantitative description of some kauri forests was given by Palmer (1982), Ogden (1983) and Wardle (1984). However, due to extensive past disturbance and milling, most of the above accounts do not describe the natural forest state. Observations on the population dynamics of mature kauri forests were presented by Ahmed and Ogden (1987) and Ogden et al. (1987) while multivariate analyses were performed by Ahmed (1988). However, no comprehensive attempt has yet been made to analyse mature undisturbed kauri forest stands in relation to their species composition. Kauri forests have a restricted distribution in the North Island. Among these remnants, there are few, if any, truly untouched sites. -
Examples of Totara Sapwood Resisting Attack by the Common Household Wood Borer (Anobium Punctatum)
EXAMPLES OF TOTARA SAPWOOD RESISTING ATTACK BY THE COMMON HOUSEHOLD WOOD BORER (ANOBIUM PUNCTATUM) A Report Prepared by Paul Quinlan for Tāne’s Tree Trust 31st January 2017 1 EXAMPLES OF TOTARA SAPWOOD RESISTING ATTACK BY THE COMMON HOUSEHOLD BORER (ANOBIUM PUNCTATUM) 31 January 2017 Paul Quinlan Paul Quinlan Landscape Architect Ltd. [email protected] PH.: (09) 4050052 A report prepared on behalf of the Northland Totara Working Group. Purpose of report. Presently, the NZ Standards NZS 3602 committee is undertaking a review of aspects of the New Zealand Building Code. To assist with that process, this report documents evidence that members of the Northland Totara Working Group can verify regarding examples where tōtara sapwood timber has shown resistance to the common household borer (Anobium punctatum). Disclaimer: In producing this report, reasonable care has been taken regarding the accuracy of the information presented. However, no guarantee as to the truth, accuracy or validity of any of the comments, implications, recommendations, findings or conclusions are made by the author, the Northland Totara Working Group, Tāne’s Tree Trust, or any other party. Therefore, neither the authors, nor any of the supporting organisations, shall not be liable for, or accept any responsibility for, any loss, damage or liability incurred as a result of direct or indirect result of any reliance by any person upon information or opinions or recommendations expressed in this work. Users of any of this information, whether contained or inferred, in or arising from this report do so at their own risk. 2 Table of Contents Table of Contents ................................................................................................................................... -
Exploring the Source-To-Sink Residence Time of Terrestrial Pollen Deposited Offshore Westland, New Zealand
ÔØ ÅÒÙ×Ö ÔØ Exploring the source-to-sink residence time of terrestrial pollen deposited offshore Westland, New Zealand Matthew T. Ryan, Rewi M. Newnham, Gavin B. Dunbar, Marcus J. Vandergoes, Andrew B.H. Rees, Helen Neil, S. Louise Callard, Brent V. Alloway, Helen Bostock, Quan Hua, Brian M. Anderson PII: S0034-6667(15)30011-7 DOI: doi: 10.1016/j.revpalbo.2016.03.005 Reference: PALBO 3738 To appear in: Review of Palaeobotany and Palynology Received date: 14 September 2015 Accepted date: 26 March 2016 Please cite this article as: Ryan, Matthew T., Newnham, Rewi M., Dunbar, Gavin B., Vandergoes, Marcus J., Rees, Andrew B.H., Neil, Helen, Callard, S. Louise, Alloway, Brent V., Bostock, Helen, Hua, Quan, Anderson, Brian M., Exploring the source-to-sink residence time of terrestrial pollen deposited offshore Westland, New Zealand, Review of Palaeobotany and Palynology (2016), doi: 10.1016/j.revpalbo.2016.03.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Exploring the source-to-sink residence time of terrestrial pollen deposited offshore Westland, New Zealand Matthew T. Ryan1, 2, Rewi M. Newnham1, Gavin B. Dunbar 2, Marcus J. Vandergoes 3, Andrew B.H. -
The Anatomy of the Bark of Libocedrus in New Zealand
IAWA Bulletin n.s., Vol. 6 (1),1985 23 THE ANATOMY OF THE BARK OF LlBOCEDRUS IN NEW ZEALAND by Lek-Lim Chan'" School of Forestry, University of Canterbury, Christchurch, New Zealand Summary The anatomy of the bark of Libocedrus bid southwards. In South Island it is also found in willii and L. plumosa, both indigenous to New lowland forests in the west. Libocedrus plumosa Zealand, is described. The phloem cell types in is also a tall tree and is found in lowland forest clude axial and ray parenchyma, sieve cells and from 35° to beyond 38° S in North Island and fibres. Fibres are of two types, thin-walled and between Collingwood and Westhaven (NW. Nel thick-walled. The ends of these fibres are most son) in South Island. ly blunt or abrupt. Minute crystals (crystal sand) were found in Terminology the radial walls of some axial parenchyma cells, 'Conducting phloem' refers to that part of sieve cells and fibres. Trabeculae were abun the phloem close to the vascular cambium where dant in the bark of L. bidwillii. sieve cells are still functioning in conduction, The walls of the phellem cells were very thin, and 'living bark' designates that part of the appearing flimsy. Phelloderm cells in L. plumo bark outside the vascular cambium up to and sa seem to undergo sclerification just prior to including the last-formed periderm. death, upon formation of a new periderm deep All other terms used for tissues of the bark er in the phloem. are in common usage (see IA WA, 1964; Society Key words: Bark anatomy, crystals, Libocedrus, of American Foresters, 1958). -
Click Beetles Elateridae
Family: Elateridae Common name: Click beetles, skipjacks, wireworms (larvae) Click beetlesClick Elateridae 299 300 Order: Coleoptera Family: Elateridae Taxonomic Name: Amychus candezei Pascoe, 1876 Common Names: Chatham Islands click beetle (Scott & Emberson 1999) Synonyms: Amychus schauinslandi, A.rotundicollis (Schwarz 1901 cited in Emberson 1998b). Hudson incorrectly thought A. candezei and Psorochroa granulata to be synonymous (J. Marris pers. comm. 2000) M&D Category: C Conservancy Office: WL Area Office: Chatham Islands Description: A large flightless click beetle,16 - 23 mm long. Generally brown, but variegated and variable in colour, with a rough surface resembling bark (Emberson & Marris 1993a; Emberson et al. 1996; Klimaszewski & Watt 1997). Type Locality: Pitt Island, Chatham Islands (Pascoe 1876). Body length: 23 mm Specimen Holdings: LUNZ, MONZ, NZAC. Distribution: Found on Rangatira (South East) Island; Main Dome, Middle Sister Island; Big Sister Island; Robin Bush, Mangere Island; (Emberson & Marris 1993a; Emberson et al. 1996); Little Mangere (Tapuaenuku) Island; and Motuhope Island, Star Keys (Emberson 1998b). Originally described from Pitt Island, however, it has not been seen there for many years. It was also present at Hapupu, Chatham Island, until at least 1967 (Emberson 1998b). Estimate a population in the thousands (Emberson 1998a). Habitat: Adults are most commonly found on tree trunks at night (Emberson & Marris 1993a), but have occasionally been found under logs, rocks, and amongst organic litter (Emberson 1998b; Emberson et al. 1996; Klimaszewski & Watt 1997; J. Marris pers. comm. 2000). The larvae have been found in soil, litter, and rotten wood (Emberson et Permission: Manaaki Whenua Press. Permission: Manaaki Whenua Press. Klimaszewski & Watt 1997, p 144, Fig. -
An Updated List of Species Used in Tree-Ring Research
TREE-RING BULLETIN, Vol. 53, 1993 AN UPDATED LIST OF SPECIES USED IN TREE-RING RESEARCH HENRI D. GRISSINO-MAYER Laboratory of Tree-Ring Research University of Arizona Tucson, AZ 85721, U.S.A. ABSTRACT During the past 100 years, researchers have investigated the potential of hundreds of tree and shrub species for use in applications of tree-ring research. Although several lists of species known to crossdate have been published, investigated species that do not crossdate are rarely included despite the usefulness of this infonnation for future research. This paper provides a list of the Latin and common names of 573 species that have been investigated in tree-ring research, infor mation on species known to crossdate, and information on species with measurement and/or chronology data in the International Tree-Ring Data Bank. In addition, a measure of the suitability of a species for future tree-ring applications, the Crossdating Index (CDI), is developed and pro posed for standard usage. 1n den letzten hundert J ahren haben Forscher das Potential von hunderten von Baum- und Buscharten fi.ir die Anwendung in der Jahresring-Forschung untersucht. Zahlreiche Listen mit Arten, von denen man wei~, da~ sie zeitlich korrespondieren, sind bereits veroffentlicht worden, dagegen sind untersuchte Arten, die nicht zeitlich korresponclieren, selten in Publikationen beriick sichtigt worden, obwohl diese Informationen fi.ir die kiinftige Forschung nutzvoll sein konnten. Dieser Artikel legt eine Liste der lateinischen und der gemeinen Narnen von 573 Arten vor, die im Rahmen der Jahresring-Forschung untersucht worden sind, Inforrnationen Uber Arten, die bekan nterweise zeitlich korrespondieren sowie Informationen iiber Arten mit Ma~- und/oder Chronologiedaten in der intemationalen Jahresring-Datenbank (International Tree-Ring Data Bank). -
The Evolution of Cavitation Resistance in Conifers Maximilian Larter
The evolution of cavitation resistance in conifers Maximilian Larter To cite this version: Maximilian Larter. The evolution of cavitation resistance in conifers. Bioclimatology. Univer- sit´ede Bordeaux, 2016. English. <NNT : 2016BORD0103>. <tel-01375936> HAL Id: tel-01375936 https://tel.archives-ouvertes.fr/tel-01375936 Submitted on 3 Oct 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. THESE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE DE BORDEAUX Spécialité : Ecologie évolutive, fonctionnelle et des communautés Ecole doctorale: Sciences et Environnements Evolution de la résistance à la cavitation chez les conifères The evolution of cavitation resistance in conifers Maximilian LARTER Directeur : Sylvain DELZON (DR INRA) Co-Directeur : Jean-Christophe DOMEC (Professeur, BSA) Soutenue le 22/07/2016 Devant le jury composé de : Rapporteurs : Mme Amy ZANNE, Prof., George Washington University Mr Jordi MARTINEZ VILALTA, Prof., Universitat Autonoma de Barcelona Examinateurs : Mme Lisa WINGATE, CR INRA, UMR ISPA, Bordeaux Mr Jérôme CHAVE, DR CNRS, UMR EDB, Toulouse i ii Abstract Title: The evolution of cavitation resistance in conifers Abstract Forests worldwide are at increased risk of widespread mortality due to intense drought under current and future climate change.