Insect Pests and Crop Losses 2 Smriti Sharma, Rubaljot Kooner, and Ramesh Arora

Total Page:16

File Type:pdf, Size:1020Kb

Insect Pests and Crop Losses 2 Smriti Sharma, Rubaljot Kooner, and Ramesh Arora Insect Pests and Crop Losses 2 Smriti Sharma, Rubaljot Kooner, and Ramesh Arora Abstract The world population has been galloping upwards at an unprecedented rate dur- ing the last 50 years. So far, the modern agricultural technology has enabled us to largely keep pace with the increasing human population through increased productivity of major crops. But in addition to causing environmental deteriora- tion, it has also resulted in increasing losses by pests, pathogens and weeds. There is however a paucity of reliable data on the extent of food losses caused by these biotic agents, especially in the developing countries. The limited data avail- able indicate that arthropods may be destroying an estimated 18–20% of the annual crop production worldwide estimated at a value of more than US$470 bil- lion. Further, the losses are considerably higher in the developing tropics of Asia and Africa, where most of the future increase in world population is expected during the next 50 years. There is an urgent need to precisely estimate the extent of food loss and waste at different stages from the agricultural fields to human consumption with emphasis on the developing countries. This is the necessary first step towards development of safe, economical and sustainable methods of pest management, as well as food security, for the future. Keywords Crop losses • Insect pests • Global losses • Food security • Potential food loss S. Sharma (*) • R. Kooner Department of Entomology, Punjab Agricultural University, Ludhiana 141004, India e-mail: [email protected]; [email protected] R. Arora Department of Entomology & Zoology, Eternal University, Baru Sahib, Himachal Pradesh 173101, India e-mail: [email protected] © Springer Nature Singapore Pte Ltd. 2017 45 R. Arora, S. Sandhu (eds.), Breeding Insect Resistant Crops for Sustainable Agriculture, DOI 10.1007/978-981-10-6056-4_2 46 S. Sharma et al. 2.1 Introduction In natural ecosystems, phytophagous insects coexist in a complex relationship with plant communities. Different species of plant-feeding insects must search out their host plants from the mixed vegetation. In this search, they face the dangers of anni- hilation by various abiotic and biotic agents. Therefore, the damage caused by insects is quite limited in the natural ecosystems. In contrast, the natural regulating factors play only a limited role in agroecosystem, and insect pest outbreaks are quite frequent. Further, rapidly increasing human population during the last century has necessitated intensification of agriculture, which has resulted in aggravation of pest problems and increasing pest-associated losses (Pimental 1977; Bramble 1989; Arora and Dhaliwal 1996; Dhaliwal and Arora 2006). Despite great advances in agricultural productivity and economic well-being in much of the world over the past 50 years, food insecurity continues to be a serious issue for large sections of the human population. The world population has been galloping upwards rather rapidly in the recent past. While it took more than a mil- lion years for humans to reach the first billion mark in 1804, it reached a level of 7 billion in another 207 years by 2011 (Anonymous 2011). During the last 50 years, the human population has jumped from 3.5 billion to more than 7.4 billion. There has thus been more growth in human population in the last 50 years than during the entire period of more than a million years that humans have inhabited the Earth. Interestingly, the greatest episode of population growth in human history was accompanied by an increase in the per capita food supply, especially during the first half of this period. This was made possible by the ‘green revolution’, which resulted in a quantum jump in the productivity of major cereal crops in Asia and to a lesser extent other parts of the world from the late 1960s onwards. It thus helped to avert mass famines but may also have contributed to the population explosion. During the last five decades, intensive agriculture utilizing green revolution tech- nologies has caused tremendous damage to the natural resources that sustain it. Fresh water, quality soil, energy and biodiversity are all being depleted, degraded and/or polluted (International Food Policy Research Institute 2016). The rate of increase in productivity of major cereal crops has also declined significantly. Consequently, the per capita availability of food grains has been declining of late. Thus, intensive high-input technologies may not be able to meet the human needs for food, feed and fibre in future. As per various estimates, around 1 billion people in the world are undernour- ished and/or living without adequate energy. Further, the human population contin- ues to grow at a rapid rate and is likely to reach 9.1 billion by 2050. Even more alarming is the fact that future increases in population will be largely concentrated in the developing countries of Asia and Africa, many of which are already battling severe food shortages. It has been estimated that world food production will need to rise by 70%, and production in developing countries will need to double to meet the food needs of the world by 2050 (Anonymous 2015a). This must be achieved in the face of energy shortages, growing depletion of underground aquifers, continuing 2 Insect Pests and Crop Losses 47 loss of farmland to urbanization and increased drought and flooding due to climate change (Schuster and Torero 2016). In the face of increasing demand for food, it is ironic that at least one-third of the potential agricultural production is lost due to damage by animal pests and diseases (Oerke et al. 1994). Reduction in pre-harvest pest-associated losses is one of the important means of increasing agricultural production. Minimizing pest-associated losses will take us a step closer to achieving the recently adopted global Sustainable Development Goals (SDGs) of ending poverty, hunger and all forms of malnutrition (Anonymous 2016). However, precise estimates of the extent of losses caused by insect and non-insect pests in important crops are not available for most of the developing countries (Culliney 2014). The losses have been reported to vary widely in different crops as well as across different regions of the world (Oerke et al. 1994; Oerke 2006). This chapter attempts a brief overview of the extent of field losses caused by insect pests in important crops. 2.2 Types of Crop Losses Insects are the most ubiquitous, diverse and abundant group of animals on planet Earth. These tiny but versatile creatures are the major competitors with humans for the resources generated by agriculture (Oerke and Dehne 2004). The damage caused by these organisms is one of the most important factors in the reduced productivity of any crop plant species (Metcalf 1996; Pimentel 1976). FAO/WHO (2014) have defined pest as ‘any species, strain or biotype of plant, animal or pathogenic agent injurious to plants and plant products, materials or environments and includes vec- tors of parasites or pathogens of humans and animal disease and animals causing public health nuisance’. Crop losses are usually defined as the reduction in either quantity or quality of yield (Zadoks and Schein 1979), and these may be caused by abiotic and biotic fac- tors, leading to the reduction in crop productivity and lower actual yield than the attainable yield of crops. Losses can occur at any stage of crop production in the field (preharvest) or even during storage (postharvest) (Oerke 2006). Direct yield losses caused by pathogens, animals and weeds are altogether responsible for 20–40% loss of global agricultural productivity (Teng 1987; Oerke et al. 1994; Oerke 2006). Although crop protection aims to avoid or prevent crop losses or to reduce them to an economically acceptable level, the availability of quantitative data on damage caused by these pests is limited (Oerke 2006). The ultimate effect of the attack by pest organisms on a crop is commonly expressed as the effect on yield, the quantity of harvestable economic product which is typically given as weight of product per unit area, such as kilograms or tonnes per hectare. Still, several ways of categorizing yield have been proposed (Nutter et al. 1993). The theoretical yield potential is the yield obtained, when crops are grown under optimal environmental conditions using all available production and pest con- trol technologies to maximize the yield. The attainable yield is defined as the site-­ specific technical maximum, depending on abiotic growth conditions, which in 48 S. Sharma et al. general is well below the yield potential. This is a theoretical yield level that cannot be realized under practical growth conditions. The actual yield is the site-specific yield obtained, when crops are grown using practical cultivation and plant protec- tion practices at the farm level (Oerke et al. 1994). Crop losses may also be expressed in absolute terms (kg/ha, financial loss/ha) or in relative terms (per cent loss). Quantitative losses are expressed as loss in productivity leading to a smaller yield per unit area, while qualitative losses are defined as loss in content of important ingredients or reduced market quality. Two loss rates must be differentiated: the potential loss and the actual loss. The potential loss from pests includes the losses without physical, biological and chemical crop protection com- pared with yields with similar intensity of crop production in a no-loss scenario. Actual losses comprise the crop losses sustained despite the crop protection practices employed, and under such conditions, the efficacy of crop protection practices is cal- culated as the percentage of potential loss prevented (Oerke 2006). The loss rate may be expressed as the proportion of attainable yield, but sometimes the proportion of the actual yield is calculated. The economic relevance of crop losses may be assessed by comparing the costs of control options with the potential income from the crop losses prevented due to pest control.
Recommended publications
  • A-Razowski X.Vp:Corelventura
    Acta zoologica cracoviensia, 46(3): 269-275, Kraków, 30 Sep., 2003 Reassessment of forewing pattern elements in Tortricidae (Lepidoptera) Józef RAZOWSKI Received: 15 March, 2003 Accepted for publication: 20 May, 2003 RAZOWSKI J. 2003. Reassessment of forewing pattern elements in Tortricidae (Lepidop- tera). Acta zoologica cracoviensia, 46(3): 269-275. Abstract. Forewing pattern elements of moths in the family Tortricidae are discussed and characterized. An historical review of the terminology is provided. A new system of nam- ing pattern elements is proposed. Key words. Lepidoptera, Tortricidae, forewing pattern, analysis, terminology. Józef RAZOWSKI, Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, S³awkowska 17, 31-016 Kraków, Poland. E-mail: razowski.isez.pan.krakow.pl I. INTRODUCTION Early tortricid workers such as HAWORTH (1811), HERRICH-SCHHÄFFER (1856), and others pre- sented the first terminology for forewing pattern elements in their descriptions of new species. Nearly a century later, SÜFFERT (1929) provided a more eclectic discussion of pattern elements for Lepidoptera in general. In recent decades, the common and repeated use of specific terms in de- scriptions and illustrations by FALKOVITSH (1966), DANILEVSKY and KUZNETZOV (1968), and oth- ers reinforced these terms in Tortricidae. BRADLEY et al. (1973) summarized and commented on all the English terms used to describe forewing pattern elements. DANILEVSKY and KUZNETZOV (1968) and KUZNETZOV (1978) analyzed tortricid pattern elements, primarily Olethreutinae, dem- onstrating the taxonomic significance of the costal strigulae in that subfamily. For practical pur- poses they numbered the strigulae from the forewing apex to the base, where the strigulae often become indistinct. KUZNETZOV (1978) named the following forewing elements in Tortricinae: ba- sal fascia, subterminal fascia, outer fascia (comprised of subapical blotch and outer blotch), apical spot, and marginal line situated in the marginal fascia (a component of the ground colour).
    [Show full text]
  • The Microlepidopterous Fauna of Sri Lanka, Formerly Ceylon, Is Famous
    ON A COLLECTION OF SOME FAMILIES OF MICRO- LEPIDOPTERA FROM SRI LANKA (CEYLON) by A. DIAKONOFF Rijksmuseum van Natuurlijke Historie, Leiden With 65 text-figures and 18 plates CONTENTS Preface 3 Cochylidae 5 Tortricidae, Olethreutinae, Grapholitini 8 „ „ Eucosmini 23 „ „ Olethreutini 66 „ Chlidanotinae, Chlidanotini 78 „ „ Polyorthini 79 „ „ Hilarographini 81 „ „ Phricanthini 81 „ Tortricinae, Tortricini 83 „ „ Archipini 95 Brachodidae 98 Choreutidae 102 Carposinidae 103 Glyphipterigidae 108 A list of identified species no A list of collecting localities 114 Index of insect names 117 Index of latin plant names 122 PREFACE The microlepidopterous fauna of Sri Lanka, formerly Ceylon, is famous for its richness and variety, due, without doubt, to the diversified biotopes and landscapes of this beautiful island. In spite of this, there does not exist a survey of its fauna — except a single contribution, by Lord Walsingham, in Moore's "Lepidoptera of Ceylon", already almost a hundred years old, and a number of small papers and stray descriptions of new species, in various journals. The authors of these papers were Walker, Zeller, Lord Walsingham and a few other classics — until, starting with 1905, a flood of new descriptions 4 ZOOLOGISCHE VERHANDELINGEN I93 (1982) and records from India and Ceylon appeared, all by the hand of Edward Meyrick. He was almost the single specialist of these faunas, until his death in 1938. To this great Lepidopterist we chiefly owe our knowledge of all groups of Microlepidoptera of Sri Lanka. After his death this information stopped abruptly. In the later years great changes have taken place in the tropical countries. We are now facing, alas, the disastrously quick destruction of natural bio- topes, especially by the reckless liquidation of the tropical forests.
    [Show full text]
  • Insecta: Lepidoptera) SHILAP Revista De Lepidopterología, Vol
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Vives Moreno, A.; Gastón, J. Contribución al conocimiento de los Microlepidoptera de España, con la descripción de una especie nueva (Insecta: Lepidoptera) SHILAP Revista de Lepidopterología, vol. 45, núm. 178, junio, 2017, pp. 317-342 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Disponible en: http://www.redalyc.org/articulo.oa?id=45551614016 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto SHILAP Revta. lepid., 45 (178) junio 2017: 317-342 eISSN: 2340-4078 ISSN: 0300-5267 Contribución al conocimiento de los Microlepidoptera de España, con la descripción de una especie nueva (Insecta: Lepidoptera) A. Vives Moreno & J. Gastón Resumen Se describe una especie nueva Oinophila blayi Vives & Gastón, sp. n. Se registran dos géneros Niphonympha Meyrick, 1914, Sardzea Amsel, 1961 y catorce especies nuevas para España: Niphonympha dealbatella Zeller, 1847, Tinagma balteolella (Fischer von Rösslerstamm, [1841] 1834), Alloclita francoeuriae Walsingham, 1905 (Islas Ca- narias), Epicallima bruandella (Ragonot, 1889), Agonopterix astrantiae (Heinemann, 1870), Agonopterix kuznetzovi Lvovsky, 1983, Depressaria halophilella Chrétien, 1908, Depressaria cinderella Corley, 2002, Metzneria santoline- lla (Amsel, 1936), Phtheochroa sinecarina Huemer, 1990 (Islas Canarias), Sardzea diviselloides Amsel, 1961, Pem- pelia coremetella (Amsel, 1949), Epischnia albella Amsel, 1954 (Islas Canarias) y Metasia cyrnealis Schawerda, 1926. Se citan como nuevas para las Islas Canarias Eucosma cana (Haworth, 1811) y Cydia blackmoreana (Wal- singham, 1903).
    [Show full text]
  • Survey of the Insect Pests from Some Orchards in the Middle of Iraq
    1 Plant Archives Vol. 20, Supplement 2, 2020 pp. 4119-4125 e-ISSN:2581-6063 (online), ISSN:0972-5210 SURVEY OF THE INSECT PESTS FROM SOME ORCHARDS IN THE MIDDLE OF IRAQ Hanaa H. Al-Saffar and Razzaq Shalan Augul Iraq Natural History Research Center & Museum, University of Baghdad, Baghdad, Iraq. E-mails : [email protected], [email protected] Abstract This study designed at identifying insect pests that attack some trees and shrubs grown in the orchards in different regions, middle of Iraq. The investigation included date palm, citrus, pomegranate trees and grape shrubs. During the survey, 10 species were recorded on date palms (the most infested was Ommatissus lybicus de Bergevin, 1930, followed by Oryctes elegans Prell, 1914), four species on citrus (the most infested was Aonidiella orientalis (Newstead, 1894) followed by whitefly Trialeurodes vaporariorum (Westwood, 1856), one species only on pomegranate ( Aphis punicae Passerini, 1863), and one species Arboridia hussaini (Ghauri, 1963) on Grapes. Given the importance of date palm trees in Iraq, the most important insect pests present and recorded in previous studies have been summarized. Also, the synonyms of the species and their geographical distribution are provided. Keywords : Iraq, Orchards, Pests, Shrubs, Survey, Trees. Introduction pomegranates, figs and grapes randomly during the period from 1 st .March to 1 st .November.2019. There are many tools The orchards in the middle of Iraq are one of the most important by farmers due to the important crops they offer in used to collect the specimens that including: nets, aspirators, the local market, such as dates, citrus fruits, pomegranate, light traps, and also by direct method using the forceps.
    [Show full text]
  • An Assessment of Biological Control of the Banana Pseudostem Weevil Odoiporus Longicollis (Olivier) by Entomopathogenic Fungi Beauveria Bassiana T
    Biocatalysis and Agricultural Biotechnology 20 (2019) 101262 Contents lists available at ScienceDirect Biocatalysis and Agricultural Biotechnology journal homepage: www.elsevier.com/locate/bab An assessment of biological control of the banana pseudostem weevil Odoiporus longicollis (Olivier) by entomopathogenic fungi Beauveria bassiana T Alagersamy Alagesana, Balakrishnan Padmanabanb, Gunasekaran Tharania, Sundaram Jawahara, Subramanian Manivannana,c,* a PG and Research Department of Biotechnology, Bharath College of Science and Management, Thanjavur, 613 005, Tamil Nadu, India b Division of Crop Protection, National Research Centre for Banana (ICAR), Tiruchirappalli, 620 102, Tamil Nadu, India c Department of Zoology, Kongunadu Arts and Science College, Coimbatore, 641 029, Tamil Nadu, India ARTICLE INFO ABSTRACT Keywords: Banana (Musa sp.) is the most imperative staple food crop for all types of people worldwide, which is commonly Banana production grown in Southeast Asia. Banana plantain can be severely affected by the devastating pest Odoiporus longicollis Odoiporus longicollis that results in severe economic losses in India. Management of weevil pests using chemical methods is harmful to Beauveria bassiana the environment, and cultural methods are also partially successful. Therefore, an alternative approach of plant Bioefficacy defense mediated by endophytic fungi to control banana stem borer larvae is necessary, which could affect the Extracellular enzyme extracellular enzyme chitinase and protease. Among four isolates, Beauveria bassiana isolate KH3 is the most Phylogeny virulent entomopathogenic fungus compared with other isolates, and species identification was achieved using molecular phylogenetic characteristics. The B. bassiana isolate KH3 (1 × 108 conidia/mL-1) is more bioeffective against O. longicollis larvae, causing > 90% significant mortality in 12 and 18 days.
    [Show full text]
  • Biology of Anar Butterfly, Deudorix Isocrates (Fab.) (Lycaenidae: Lepidoptera) on Pomegranate, Punica Granatum L
    Available online at www.ijpab.com Kumar et al Int. J. Pure App. Biosci. 5 (1): 498-503 (2017) ISSN: 2320 – 7051 DOI: http://dx.doi.org/10.18782/2320-7051.2564 ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 5 (1): 498-503 (2017) Research Article Biology of Anar Butterfly, Deudorix isocrates (Fab.) (Lycaenidae: Lepidoptera) on Pomegranate, Punica granatum L. K. P. Kumar1*, P. D. Kamala Jayanthi2, S. Onkara Naik2, Abraham Verghese3 and A. K. Chakravarthy2 1Department of Agricultural Entomology, University of Agricultural Sciences, Gandhi Krishi Vignan Kendra (GKVK), Bengaluru-560065, Karnataka, India 2Division of Entomology and Nematology, Indian Institute of Horticultural Research, Hesseraghatta Lake PO, Bengaluru-560089, Karnataka, India 3GPS Institute of Agricultural Management, Bengaluru- 560 058, Karnataka, India *Corresponding Author E-mail: [email protected] Received: 8.02.2017 | Revised: 20.02.2017 | Accepted: 21.02.2017 ABSTRACT Pomegranate butterfly, Deudorix isocrates is one the most obnoxious pest on pomegranate crop incurring about 65-70 percent of yield loss worldwide. However, the experiment was conducted on biology of pomegranate fruit borer at the laboratory of Division of Entomology and Nematology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bengaluru during 2013-14. Biological studies revealed that gravid female lays shiny white eggs singly on the calyx of flowers or on young fruits. The incubation, larval, prepupal and pupal periods were 7.15 ± 0.10, 32.9 ± 2.38, 4.35 ± 0.12 and 10.25 ± 0.10 days respectively. The adult longevity of male and female was 8.26 ± 0.14 and 10.28 ± 0.20 days respectively.
    [Show full text]
  • Downloaded from BOLD Or Requested from Other Authors
    www.nature.com/scientificreports OPEN Towards a global DNA barcode reference library for quarantine identifcations of lepidopteran Received: 28 November 2018 Accepted: 5 April 2019 stemborers, with an emphasis on Published: xx xx xxxx sugarcane pests Timothy R. C. Lee 1, Stacey J. Anderson2, Lucy T. T. Tran-Nguyen3, Nader Sallam4, Bruno P. Le Ru5,6, Desmond Conlong7,8, Kevin Powell 9, Andrew Ward10 & Andrew Mitchell1 Lepidopteran stemborers are among the most damaging agricultural pests worldwide, able to reduce crop yields by up to 40%. Sugarcane is the world’s most prolifc crop, and several stemborer species from the families Noctuidae, Tortricidae, Crambidae and Pyralidae attack sugarcane. Australia is currently free of the most damaging stemborers, but biosecurity eforts are hampered by the difculty in morphologically distinguishing stemborer species. Here we assess the utility of DNA barcoding in identifying stemborer pest species. We review the current state of the COI barcode sequence library for sugarcane stemborers, assembling a dataset of 1297 sequences from 64 species. Sequences were from specimens collected and identifed in this study, downloaded from BOLD or requested from other authors. We performed species delimitation analyses to assess species diversity and the efectiveness of barcoding in this group. Seven species exhibited <0.03 K2P interspecifc diversity, indicating that diagnostic barcoding will work well in most of the studied taxa. We identifed 24 instances of identifcation errors in the online database, which has hampered unambiguous stemborer identifcation using barcodes. Instances of very high within-species diversity indicate that nuclear markers (e.g. 18S, 28S) and additional morphological data (genitalia dissection of all lineages) are needed to confrm species boundaries.
    [Show full text]
  • Biology of Pomegranate Fruit Borer, Deudorix Isocrates
    Journal of Pharmacognosy and Phytochemistry 2018; 7(5): 328-330 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2018; 7(5): 328-330 Biology of pomegranate fruit borer, Deudorix Received: 28-07-2018 Accepted: 30-08-2018 isocrates (Fab.) (Lycaenidae: lepidoptera) on pomegranate, Punica granatum L RY Khandare Department of Agricultural Entomology, College of Agriculture, Vasantrao Naik RY Khandare, DR Kadam and NE Jayewar Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India Abstract The studies on biology of fruit borer, Deudorix isocrates Fabricius on pomegranate as hosts carried out DR Kadam under laboratory conditions revealed that the total developmental period was completed within 67.00 ± Department of Agricultural 8.67 days through five larval instars on pomegranate. The average longevity of female and male moth Entomology, College of Agriculture, Vasantrao Naik was 9.50 ± 1.27 and 8.10 ± 0.88 days when reared on pomegranate. The mean number of eggs laid by Marathwada Krishi Vidyapeeth, female moth developed from larva fed on the fruits of pomegranate was 27.70 ± 3.56 eggs per female. Parbhani, Maharashtra, India The sex ratio (F/M) of emerged adults was found 1.82: 1, while the mean duration of mating i.e. coitus was 76.70 ± 10.84 minutes on pomegranate. NE Jayewar Department of Agricultural Keywords: Biology, pomegranate, fruit borer, Deudorix isocrates Entomology, College of Agriculture, Vasantrao Naik Introduction Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India Anar butterfly/ fruit borer, D. isocrates (Fab.) is a major constraint in the production of appropriate quantity and quality fruits of pomegranate for domestic and export markets. Pomegranate fruit borer is the most widespread, polyphagous and destructive pest with a wide range of host plants viz., pomegranate, citrus, guava, litchi, aonla, wood apple, apple, ber, loquat, mulberry, peach, pear, plum, sapota, tamarind, etc.
    [Show full text]
  • Crambidae Biosecurity Occurrence Background Subfamilies Short Description Diagnosis
    Diaphania nitidalis Chilo infuscatellus Crambidae Webworms, Grass Moths, Shoot Borers Biosecurity BIOSECURITY ALERT This Family is of Biosecurity Concern Occurrence This family occurs in Australia. Background The Crambidae is a large, diverse and ubiquitous family of moths that currently comprises 11,500 species globally, with at least half that number again undescribed. The Crambidae and the Pyralidae constitute the superfamily Pyraloidea. Crambid larvae are concealed feeders with a great diversity in feeding habits, shelter building and hosts, such as: leaf rollers, shoot borers, grass borers, leaf webbers, moss feeders, root feeders that shelter in soil tunnels, and solely aquatic life habits. Many species are economically important pests in crops and stored food products. Subfamilies Until recently, the Crambidae was treated as a subfamily under the Pyralidae (snout moths or grass moths). Now they form the superfamily Pyraloidea with the Pyralidae. The Crambidae currently consists of the following 14 subfamilies: Acentropinae Crambinae Cybalomiinae Glaphyriinae Heliothelinae Lathrotelinae Linostinae Midilinae Musotiminae Odontiinae Pyraustinae Schoenobiinae Scopariinae Spilomelinae Short Description Crambid caterpillars are generally cylindrical, with a semiprognathous head and only primary setae (Fig 1). They are often plainly coloured (Fig. 16, Fig. 19), but can be patterned with longitudinal stripes and pinacula that may give them a spotted appearance (Fig. 10, Fig. 11, Fig. 14, Fig. 22). Prolegs may be reduced in borers (Fig. 16). More detailed descriptions are provided below. This factsheet presents, firstly, diagnostic features for the Pyraloidea (Pyralidae and Crambidae) and then the Crambidae. Information and diagnostic features are then provided for crambids listed as priority biosecurity threats for northern Australia.
    [Show full text]
  • Seasonal Incidence of Fruit Borers (Conogethes Punctiferalis and Deudorix Isocrates) in Guava Cv. Taiwan White
    Journal of Entomology and Zoology Studies 2021; 9(2): 282-286 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Seasonal incidence of fruit borers (Conogethes www.entomoljournal.com JEZS 2021; 9(2): 282-286 punctiferalis and Deudorix isocrates) in guava cv. © 2021 JEZS Received: 01-01-2021 Taiwan white Accepted: 03-02-2021 Giddi Thirumala Devi PG Scholar, Department of Giddi Thirumala Devi, N Emmanuel, CP Viji, DR Salomi Suneetha and V Sekhar Entomology, College of Horticulture, Dr. Y.S.R. Abstract Horticultural University, A number of insect pests are known to infest fruits of guava in India. The most important pest is fruitflies Venkataramannagudem, (Bactrocera dorsalis, B. zonata and B. correcta) followed by the next report of the fruit borers West Godavari, Andhra Pradesh, (Conogethes punctiferalis and Deudorix isocrates). However, the experiment was conducted on seasonal India incidence of fruit borers on guava cv. Taiwan white at the College of Horticulture and farmer’s orchard, N Emmanuel Venkataramannagudem-West Godavari during 2019-2020. The peak larval population of guava fruit Associate Professor, Department borer Conogethes punctiferalis (4.50 larvae/tree) and its fruit infestation (32.79%) was found in 9th of Entomology, College of Standard Mean Week of 2020. The highest incidence and infestation of Deudorix isocrates was recorded Horticulture, Dr. Y.S.R. in 5th Standard Mean Week of 2020 (4.25 larvae/tree and 30.80 per cent fruit infestation). The maximum Horticultural University, and minimum temperature was negatively correlated and relative humidity is having positively Venkataramannagudem, correlation with the incidence of fruit borers whereas, rainfall was negatively correlated with the West Godavari, Andhra Pradesh, incidence of Conogethes punctiferalis and positively correlated with incidence of Deudorix isocrates.
    [Show full text]
  • Phylogeny of Tortricidae (Lepidoptera): a Morphological Approach with Enhanced Whole
    Template B v3.0 (beta): Created by J. Nail 06/2015 Phylogeny of Tortricidae (Lepidoptera): A morphological approach with enhanced whole mount staining techniques By TITLE PAGE Christi M. Jaeger AThesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Agriculture and Life Sciences (Entomology) in the Department of Biochemistry, Molecular Biology, Entomology, & Plant Pathology Mississippi State, Mississippi August 2017 Copyright by COPYRIGHT PAGE Christi M. Jaeger 2017 Phylogeny of Tortricidae (Lepidoptera): A morphological approach with enhanced whole mount staining techniques By APPROVAL PAGE Christi M. Jaeger Approved: ___________________________________ Richard L. Brown (Major Professor) ___________________________________ Gerald T. Baker (Committee Member) ___________________________________ Diana C. Outlaw (Committee Member) ___________________________________ Jerome Goddard (Committee Member) ___________________________________ Kenneth O. Willeford (Graduate Coordinator) ___________________________________ George M. Hopper Dean College of Agriculture and Life Sciences Name: Christi M. Jaeger ABSTRACT Date of Degree: August 11, 2017 Institution: Mississippi State University Major Field: Agriculture and Life Sciences (Entomology) Major Professor: Dr. Richard L. Brown Title of Study: Phylogeny of Tortricidae (Lepidoptera): A morphological approach with enhanced whole mount staining techniques Pages in Study 117 Candidate for Degree of Master of
    [Show full text]
  • Early Shoot Borer on Sugarcane Chilo Infuscatellus Vernacular Name: Illam Kuruthu Puzhu
    PEST MANAGEMENT DECISION GUIDE: GREEN AND YELLOW LIST Early Shoot Borer on Sugarcane Chilo infuscatellus Vernacular name: Illam kuruthu Puzhu. Prevention Monitoring Direct Control Direct Control Restrictions l Planting to be done l Monitor for: l Spray Granulosis Virus (750 numbers l Repeated use of same insecticide should be avoided. in early season (Dec l Presence of egg masses under the of diseased larvae) 200ml per acre. l Avoid spraying insecticides up to five to seven days – Jan) surface of the leaves. l Release Trichogramma chilonis 2cc per after parasitoid release. l Avoid moisture l Presence of dead hearts which can acre /release for three times at fifteen stress in the early days interval starting from 30 days after be easily pulled out. l Spray chlorantraniliprole 18.5% l WHO Class U stages of crop, e.g. planting. SC @ 375 ml per ha. Diamide (Unlikely to by making small l Presence of bore holes at the collar l Release 125 gravid females of pesticide. Stomach and contact present acute bundles of plant region. Bore hole at the collar region Sturmiopsis inferens/ha on 30 and 45 poison. hazard in normal (TNAU Agritech Portal) trash and put them in l Light trap catches @ one per five days after planting. use). furrows. hectare. l Spray neem seed kernel extract 5%. l Intercropping with l Monitoring through pheromone (25 kg of NSK/ha dissolved in 500 litres l Spray fipronil 5% SC @ 2 litres l WHO Class II dhaincha or pulses to traps @ 5 per acre. Erect the trap of water). per ha.
    [Show full text]