The Microlepidopterous Fauna of Sri Lanka, Formerly Ceylon, Is Famous

Total Page:16

File Type:pdf, Size:1020Kb

The Microlepidopterous Fauna of Sri Lanka, Formerly Ceylon, Is Famous ON A COLLECTION OF SOME FAMILIES OF MICRO- LEPIDOPTERA FROM SRI LANKA (CEYLON) by A. DIAKONOFF Rijksmuseum van Natuurlijke Historie, Leiden With 65 text-figures and 18 plates CONTENTS Preface 3 Cochylidae 5 Tortricidae, Olethreutinae, Grapholitini 8 „ „ Eucosmini 23 „ „ Olethreutini 66 „ Chlidanotinae, Chlidanotini 78 „ „ Polyorthini 79 „ „ Hilarographini 81 „ „ Phricanthini 81 „ Tortricinae, Tortricini 83 „ „ Archipini 95 Brachodidae 98 Choreutidae 102 Carposinidae 103 Glyphipterigidae 108 A list of identified species no A list of collecting localities 114 Index of insect names 117 Index of latin plant names 122 PREFACE The microlepidopterous fauna of Sri Lanka, formerly Ceylon, is famous for its richness and variety, due, without doubt, to the diversified biotopes and landscapes of this beautiful island. In spite of this, there does not exist a survey of its fauna — except a single contribution, by Lord Walsingham, in Moore's "Lepidoptera of Ceylon", already almost a hundred years old, and a number of small papers and stray descriptions of new species, in various journals. The authors of these papers were Walker, Zeller, Lord Walsingham and a few other classics — until, starting with 1905, a flood of new descriptions 4 ZOOLOGISCHE VERHANDELINGEN I93 (1982) and records from India and Ceylon appeared, all by the hand of Edward Meyrick. He was almost the single specialist of these faunas, until his death in 1938. To this great Lepidopterist we chiefly owe our knowledge of all groups of Microlepidoptera of Sri Lanka. After his death this information stopped abruptly. In the later years great changes have taken place in the tropical countries. We are now facing, alas, the disastrously quick destruction of natural bio- topes, especially by the reckless liquidation of the tropical forests. The result• ing drastic changes all over tropical Asia make it necessary to hasten our faunistic studies, before it is too late. It is a favourable and welcome under• taking of the United States National Museum of Washington, D.C., in collaboration with the Department of National Museums, Sri Lanka, to have organized a series of collecting expeditions from 1970 to 1980, in order to gain insight into the contemporary situation of the insect fauna of the island by a general faunistic study. The present paper presents a survey of a part of the collected material and partly records of the existing fauna. The survey is limited because of the relatively short periods of collecting, which is much dependent on season, weather, location, and the chief methods of collecting used: black light and Malaise traps. In the following pages a survey is given of the identified genera and species of the following families: Cochylidae, Tortricidae, Brachodidae, Choreutidae, Carposinidae and Glyphipterigidae. In total 131 species have been recorded, belonging to 85 genera; of these 12 genera, one subgenus, 24 species and one subspecies have been described as new to science. The identified material will be divided between the US National Museum of Natural History and the Department of National Museums, Sri Lanka, and the University of Peradeniya, Sri Lanka. Under the name of each species are recorded: a list of references, distribu• tion, known food plants and a list of the present collecting localities, with numbers of specimens, divided according to sex. These localities are indicated by the leading locality name only; an alphabetical list of these names, with dates, collectors, and, as far as possible, geographical coordinates, is given separately. The author is indebted to the first mentioned Museum for the invitation to study this interesting material and for the permission to retain certain duplicates for the Leiden Museum collection. For help, interest and advice, he is grateful to the following colleagues: Dr. Karl V. Krombein, Senior Scientist and Principal Investigator of the project, to Dr. J. F. Gates Clarke, Research Associate and Dr. Donald R. Davis, Chairman, Department of DIAKONOFF, MICROLEPIDOFTERA FROM SRI LANKA 5 Entomology, Smithsonian Institution; all these colleagues have also parti• cipated in the collecting of the material; to Professor Dr. W. Vervoort, Direc• tor of the Rijksmuseum van Natuurlijke Historie, Leiden, the author is greatly obliged for granting permission and the facilities of the museum for the carrying out of this study, without which facilities it would not have been possible; furthermore, to the Netherlands Organisation for Pure Science, for a grant, covering the costs of the drawings of the genitalia, executed by Mr. A. C. M. van Dijk of The Hague with his usual skill. Sketches of wing neuration and photographs have been made by the author, the latter some• times assisted by the Museum photographer, Mr. E. van Esch. A list of contents and indices to insect and plant names is given at the end of this series. COCHILIDAE Phalonidia permixtana (Denis & Schiffermiiller) Phalaena Tortrix permixtana Denis & Schiffermuller, 1775, Schmett. Wiener Gegend: 129, no. 19. Phalonia permixtana; Kennel, 1913, Zoologica, 54: 281, pi. 12 fig. 80. Phalonidia permixtana; Hannemann, 1964, Tierwelt Deutschl., 50: 26, figs, na-b, pi. 1 fig. 15. Razowsky, 1970, Microlep. Pal., 3, Cochylidae: 227, no. 138, pi. 12 fig. 138, pi. 64 fig. 138, pi. 134 figs. 138 1-2. Cochylis mussehliana Treitschke, 1835, Schm. Eur., 10 (3) : 141. Cochylis dymotana Treitschke, 1835, loc. cit.: 142. (Further very extensive Palaearctic literature on this quite common species may be omitted here.) Distribution. Widely distributed throughout Europe, from England to Ural, except the high North; the Mediterranean region; E Afghanistan; Manchu• ria; Mongolia; China; C Asia: Bukhara; Asia Minor (After Razowsky, 1970). Food plants (in Europe). In stalks of Pedicularis, Euphrasia, Rhinanthus, Butomus umbellatus, Alisma plantago and Gentiana lutea. New collecting data in Sri Lanka: Inginiyagala 1 ?. Mannar Id. 2 $, genit. slide 10180. Wilpattu 2 ?, genit. slide 10179. Eupoecilia charixantha (Meyrick) comb. nov. Clysia charixantha Meyrick, 1928, Exot. Microlep., 3: 435. Clysiana charixantha; Clarke, 1963, Meyrick's Types, 4: 11, pi. 5 figs. i-ib. Distribution. Ceylon. India, Coorg. New collecting data in Sri Lanka: Rakwana 1 <5, genit. slide 10176. Upper Hantana Hill 1 ?, genit. slide 10178. 6 ZOOLOGISCHE VERHANDELINGEN I93 (1982) Eupoecilia cracens spec. nov. [cracens = graceful] (pi. 1 figs. 1-2) <3 13 mm. Head and thorax pale ochreous, frons becoming white. Palpus whitish-ochreous, little dilated, moderately long. Antenna pale ochreous, faintly ringed with light brown. Abdomen pale ochreous. Fore wing oblong, hardly dilated, costa curved at base, almost straight posteriorly, apex pointed and appearing rather produced because of the very oblique straight termen. Pale golden ochreous, more than anterior half of costa suffused with greyish, becoming brown at extreme base; central fascia from before middle of costa to about 1/3 of dorsum, costal half triangularly dilated upwards, suffused grey, top of triangle above middle, ill-defined, almost interrupted, touched with pinkish-orange, lower half of fascia dark fuscous, not dilated, except slightly on dorsal edge; apex of wing touched with faintest orangeish. Cilia glossy whitish-ochreous. Hind wing pale ochreous, towards cell becoming whitish and subpellucent, towards marginal third, especially towards apex, with faintest and sparse blackish dusting. Cilia as in fore wing. Male genitalia as characterised for the genus. Valva rather narrow, oblique, moderately narrowed, sacculus rolled, its top about opposite 1/4 of costa, so cucullus very oblique; apex rounded. Uncus an oval sclerotic strongly bristled knob. Socius long, with triangular base, thence but gradually and little nar• rowed, ribbon-like, top rounded. Transtilla in middle with a massive sclerotic triangle, on apical half densely spined throughout. Aedeagus characteristical for the genus, inverted-oblong-clavate, moderate, lower surface of orifice sclerotic; cornutus, a single slightly sinuate spine, shorter than half aedeagus. Sri Lanka, NE District, Kanda-ela Reservoir, 5.6 mi SW Nuwara Eliya, 6200 ft, 10-21.ii.1970 (Davis & Rowe), 1 (3, holotype, genit. slide 10175. Eupoecilia anisoneura spec. nov. [aviaovsupos = with unequal veins] 6 6 mm. Head whitish. Antenna and palpus pale ochreous. Thorax pale ochreous. Abdomen whitish. Fore wing sublanceolate, rather narrow, not dilated, costa almost straight, gently curved before apex, apex pointed, termen faintly sinuate, strongly oblique, dorsum convex, forming with dorsum an almost gradual curve, tornus ill-defined. Whitish-ochreous, towards costa becoming suffused with a trifle DIAKONOFF, MICROLEPIDOPTERA FROM SRI LANKA 7 Fig. i. Eupoecilia anisoneura sp. n., $ genitalia, type. brighter ochreous. Basal 3/4 of costa with a dark brown-fuscous streak, strongly suffused along lower edge; central fascia median, strongly inwards- oblique, blackish-fuscous, wider in costa, gradually constricted in middle, anterior edge concave and well defined, posterior irregular, oblique and suf• fused; traces of dark fuscous scattered points beyond fascia and towards termen. Hind wing pellucent, white, strewn with light fuscous scales, moderately dense along apex and termen, thinly elsewhere, cell and space between veins 2 and 3+4 with only a few scales. Cilia whitish-hyaline, thinly suffused with light fuscous along apical third and a subbasal moderate band; posterior half of edges of cell, discoidal and veins 2, 3+4 and 5 denser suffused
Recommended publications
  • Multiple Polyploidy Events in the Early Radiation of Nodulating And
    Multiple Polyploidy Events in the Early Radiation of Nodulating and Nonnodulating Legumes Steven B. Cannon,*,y,1 Michael R. McKain,y,2,3 Alex Harkess,y,2 Matthew N. Nelson,4,5 Sudhansu Dash,6 Michael K. Deyholos,7 Yanhui Peng,8 Blake Joyce,8 Charles N. Stewart Jr,8 Megan Rolf,3 Toni Kutchan,3 Xuemei Tan,9 Cui Chen,9 Yong Zhang,9 Eric Carpenter,7 Gane Ka-Shu Wong,7,9,10 Jeff J. Doyle,11 and Jim Leebens-Mack2 1USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 2Department of Plant Biology, University of Georgia 3Donald Danforth Plant Sciences Center, St Louis, MO 4The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia 5The School of Plant Biology, The University of Western Australia, Crawley, WA, Australia 6Virtual Reality Application Center, Iowa State University 7Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada 8Department of Plant Sciences, The University of Tennessee Downloaded from 9BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China 10Department of Medicine, University of Alberta, Edmonton, AB, Canada 11L. H. Bailey Hortorium, Department of Plant Biology, Cornell University yThese authors contributed equally to this work. *Corresponding author: E-mail: [email protected]. http://mbe.oxfordjournals.org/ Associate editor:BrandonGaut Abstract Unresolved questions about evolution of the large and diverselegumefamilyincludethetiming of polyploidy (whole- genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown.
    [Show full text]
  • 1 1 DNA Barcodes Reveal Deeply Neglected Diversity and Numerous
    Page 1 of 57 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France. 12 3Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, 13 CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France. 14 4 Landesmuseum für Kärnten, Abteilung Zoologie, Museumgasse 2, 9020 Klagenfurt, Austria 15 5 Department of Entomology, University of Antananarivo, Antananarivo 101, Madagascar 16 6 Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road E., Guelph, ON 17 N1G2W1, Canada 18 7Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Genome Downloaded from www.nrcresearchpress.com by UNIV GUELPH on 10/03/18 19 Montpellier–Université Paul-Valéry Montpellier–EPHE), 1919 Route de Mende, F-34293 20 Montpellier, France. 21 8Department of Life Sciences, Natural History Museum, Cromwell Road, SW7 5BD, UK. 22 23 24 Email for correspondence: [email protected] For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. 1 Page 2 of 57 25 26 Abstract 27 Madagascar is a prime evolutionary hotspot globally, but its unique biodiversity is under threat, 28 essentially from anthropogenic disturbance.
    [Show full text]
  • DNA Barcodes Reveal Deeply Neglected Diversity and Numerous Invasions of Micromoths in Madagascar
    Genome DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar Journal: Genome Manuscript ID gen-2018-0065.R2 Manuscript Type: Article Date Submitted by the 17-Jul-2018 Author: Complete List of Authors: Lopez-Vaamonde, Carlos; Institut National de la Recherche Agronomique (INRA), ; Institut de Recherche sur la Biologie de l’Insecte (IRBI), Sire, Lucas; Institut de Recherche sur la Biologie de l’Insecte Rasmussen,Draft Bruno; Institut de Recherche sur la Biologie de l’Insecte Rougerie, Rodolphe; Institut Systématique, Evolution, Biodiversité (ISYEB), Wieser, Christian; Landesmuseum für Kärnten Ahamadi, Allaoui; University of Antananarivo, Department Entomology Minet, Joël; Institut de Systematique Evolution Biodiversite deWaard, Jeremy; Biodiversity Institute of Ontario, University of Guelph, Decaëns, Thibaud; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE), , CEFE UMR 5175 CNRS Lees, David; Natural History Museum London Keyword: Africa, invasive alien species, Lepidoptera, Malaise trap, plant pests Is the invited manuscript for consideration in a Special 7th International Barcode of Life Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 57 Genome 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France.
    [Show full text]
  • Genome Analysis of a Novel Clade B Betabaculovirus Isolated from the Legume Pest Matsumuraeses Phaseoli (Lepidoptera: Tortricidae)
    viruses Article Genome Analysis of a Novel Clade b Betabaculovirus Isolated from the Legume Pest Matsumuraeses phaseoli (Lepidoptera: Tortricidae) Ruihao Shu 1, Qian Meng 1, Lin Miao 1, Hongbin Liang 2, Jun Chen 2, Yuan Xu 2, Luqiang Cheng 1,3, Wenyi Jin 1,4, Qilian Qin 1 and Huan Zhang 1,* 1 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (R.S.); [email protected] (Q.M.); [email protected] (L.M.); [email protected] (L.C.); [email protected] (W.J.); [email protected] (Q.Q.) 2 National Animal Collection Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (H.L.); [email protected] (J.C.); [email protected] (Y.X.) 3 College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China 4 College of Life Sciences, Hebei University, Baoding 071002, China * Correspondence: [email protected] Received: 25 August 2020; Accepted: 20 September 2020; Published: 23 September 2020 Abstract: Matsumuraeses phaseoli is a Lepidopteran pest that primarily feeds on numerous species of cultivated legumes, such as Glycine and Phaseolus. It is widely distributed in northeast Asia. A novel granulovirus, designated as Matsumuraeses phaseoli granulovirus (MaphGV), was isolated from pathogenic M. phaseoli larvae that dwell in rolled leaves of Astragalus membranaceus, a Chinese medicinal herb. In this study, using next-generation sequencing, we report the complete genome of MaphGV. MaphGV genome comprises a double-stranded DNA of 116,875 bp, with 37.18% GC content.
    [Show full text]
  • Entomology of the Aucklands and Other Islands South of New Zealand: Lepidoptera, Ex­ Cluding Non-Crambine Pyralidae
    Pacific Insects Monograph 27: 55-172 10 November 1971 ENTOMOLOGY OF THE AUCKLANDS AND OTHER ISLANDS SOUTH OF NEW ZEALAND: LEPIDOPTERA, EX­ CLUDING NON-CRAMBINE PYRALIDAE By J. S. Dugdale1 CONTENTS Introduction 55 Acknowledgements 58 Faunal Composition and Relationships 58 Faunal List 59 Key to Families 68 1. Arctiidae 71 2. Carposinidae 73 Coleophoridae 76 Cosmopterygidae 77 3. Crambinae (pt Pyralidae) 77 4. Elachistidae 79 5. Geometridae 89 Hyponomeutidae 115 6. Nepticulidae 115 7. Noctuidae 117 8. Oecophoridae 131 9. Psychidae 137 10. Pterophoridae 145 11. Tineidae... 148 12. Tortricidae 156 References 169 Note 172 Abstract: This paper deals with all Lepidoptera, excluding the non-crambine Pyralidae, of Auckland, Campbell, Antipodes and Snares Is. The native resident fauna of these islands consists of 42 species of which 21 (50%) are endemic, in 27 genera, of which 3 (11%) are endemic, in 12 families. The endemic fauna is characterised by brachyptery (66%), body size under 10 mm (72%) and concealed, or strictly ground- dwelling larval life. All species can be related to mainland forms; there is a distinctive pre-Pleistocene element as well as some instances of possible Pleistocene introductions, as suggested by the presence of pairs of species, one member of which is endemic but fully winged. A graph and tables are given showing the composition of the fauna, its distribution, habits, and presumed derivations. Host plants or host niches are discussed. An additional 7 species are considered to be non-resident waifs. The taxonomic part includes keys to families (applicable only to the subantarctic fauna), and to genera and species.
    [Show full text]
  • Comparative Morpho-Micrometric Analysis of Some Bauhinia Species (Leguminosae) from East Coast Region of Odisha, India
    Indian Journal of Natural Products and Resources Vol. 11(3), September 2020, pp. 169-184 Comparative morpho-micrometric analysis of some Bauhinia species (Leguminosae) from east coast region of Odisha, India Pritipadma Panda1, Sanat Kumar Bhuyan2, Chandan Dash3, Deepak Pradhan3, Goutam Rath3 and Goutam Ghosh3* 1Esthetic Insights Pvt. Ltd., Plot No: 631, Rd Number 1, KPHB Phase 2, Kukatpally, Hyderabad, Telangana 500072, India 2Institute of Dental Sciences, 3School of Pharmaceutical Sciences, Siksha ‗O‘ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India Received 18 May 2018; Revised 19 May 2020 Bauhinia vahlii has been reported for several medicinal properties, such as tyrosinase inhibitory, immunomodulatory and free radical scavenging activities. Bauhinia tomentosa and Bauhinia racemosa also possess anti-diabetic, anticancer, antidiabetic, anti-obesity and antihyperlipidemic activities. Therefore, the correct identification of these plants is critically important. The aim was to investigate the comparative morpho-micrometric analysis of 3 species of Bauhinia belonging to the family Leguminosae (Fabaceae) by using conventional as well as scanning electron microscopy to support species identification. In B. racemosa, epidermal cells are polygonal with anticlinical walls; whereas wavy walled cells are found in B. tomentosa and B. vahlii. Anisocytic stomata are present in B. racemosa, while B. tomentosa shows the presence of paracytic stomata and anomocytic stomata in B. vahlii. Stomatal numbers and stomatal indices were found to be more in B. vahlii than B. tomentosa and B. racemosa. On the other hand, uniseriate, unicellular covering trichomes are found in B. racemosa and B. tomentosa but B. vahlii contains only uniseriate, multicellular covering trichomes. Based on these micromorphological features, a diagnostic key was developed for identification of the particular species which helps a lot in pharmaceutical botany, taxonomy and horticulture, in terms of species identification.
    [Show full text]
  • Observations on Insects Associated Withacacia
    Journal of Tropical Forest Science 9(4): 561 -564 (1997) OBSERVATIONS ON INSECTS ASSOCIATED WITH ACACIA MANGIUM IN PENINSULAR MALAYSIA J. Intachat & L.G. Kirton Forest Research Institute Malaysia, Kepong, 52109 Kuala Lumpur, Malaysia Acacia mangium Willd. is presently the most widely planted fast-growing exotic tree species for forest plantations in Peninsular Malaysia. This legume is native to the Molucca Islands of eastern Indonesia, southwestern New Guine smala d alan area of northwestern Queensland in Australia. It was first planted in Sabah and then in the peninsula in the late 1970s. Plantations of A. mangium, like other monocultures, are exposed to risks of introduced indigenoud an s insect pests genera.A l overvie mangium. A f wo pests gives i Hutacharery nb n (1993). However, some of the pests mentioned in the review were not encountered in the present study, and vice versa. This paper lists indigenous insect species that have been recorde thin do s tree highlightd an , s those species which have proven, thuse b far o t , potentially important pests in Peninsular Malaysia. Surveys in various plantation nurseries were carried out from 1989 to 1995. A total of 14 forest plantation nurseries were visite t leasda tstatee oncth f Perils o n si e , Kedah, Kelantan, Terengganu, Perak, Selangor, Negeri Sembila Johord nan . Immature insects were collected and reared to adult stage in the laboratory. Pest outbreaks in actual plantations were monitored through requests for advisory services by the State Forest Departments since the establishment of A. mangium as a plantation species. A total of 38 insect species were recorded on A.
    [Show full text]
  • Big Creek Lepidoptera Checklist
    Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae
    [Show full text]
  • A-Razowski X.Vp:Corelventura
    Acta zoologica cracoviensia, 46(3): 269-275, Kraków, 30 Sep., 2003 Reassessment of forewing pattern elements in Tortricidae (Lepidoptera) Józef RAZOWSKI Received: 15 March, 2003 Accepted for publication: 20 May, 2003 RAZOWSKI J. 2003. Reassessment of forewing pattern elements in Tortricidae (Lepidop- tera). Acta zoologica cracoviensia, 46(3): 269-275. Abstract. Forewing pattern elements of moths in the family Tortricidae are discussed and characterized. An historical review of the terminology is provided. A new system of nam- ing pattern elements is proposed. Key words. Lepidoptera, Tortricidae, forewing pattern, analysis, terminology. Józef RAZOWSKI, Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, S³awkowska 17, 31-016 Kraków, Poland. E-mail: razowski.isez.pan.krakow.pl I. INTRODUCTION Early tortricid workers such as HAWORTH (1811), HERRICH-SCHHÄFFER (1856), and others pre- sented the first terminology for forewing pattern elements in their descriptions of new species. Nearly a century later, SÜFFERT (1929) provided a more eclectic discussion of pattern elements for Lepidoptera in general. In recent decades, the common and repeated use of specific terms in de- scriptions and illustrations by FALKOVITSH (1966), DANILEVSKY and KUZNETZOV (1968), and oth- ers reinforced these terms in Tortricidae. BRADLEY et al. (1973) summarized and commented on all the English terms used to describe forewing pattern elements. DANILEVSKY and KUZNETZOV (1968) and KUZNETZOV (1978) analyzed tortricid pattern elements, primarily Olethreutinae, dem- onstrating the taxonomic significance of the costal strigulae in that subfamily. For practical pur- poses they numbered the strigulae from the forewing apex to the base, where the strigulae often become indistinct. KUZNETZOV (1978) named the following forewing elements in Tortricinae: ba- sal fascia, subterminal fascia, outer fascia (comprised of subapical blotch and outer blotch), apical spot, and marginal line situated in the marginal fascia (a component of the ground colour).
    [Show full text]
  • First Record of the Sedge Feeder Bactra Verutana Zeller (Lepidoptera
    Revista Brasileira de Entomologia 63 (2019) 104–107 REVISTA BRASILEIRA DE Entomologia A Journal on Insect Diversity and Evolution www.rbentomologia.com Short Communication First record of the sedge feeder Bactra verutana Zeller (Lepidoptera: Tortricidae) in Chile based on morphology and DNA barcodes a,∗ b Héctor A. Vargas , Marcelo Vargas-Ortiz a Universidad de Tarapacá, Facultad de Ciencias Agronómicas, Departamento de Recursos Ambientales, Arica, Chile b Universidad de Concepción, Facultad de Ciencias Naturales y Oceanográficas, Departamento de Zoología, Programa de Doctorado en Sistemática y Biodiversidad Concepción, Chile a r a b s t r a c t t i c l e i n f o Article history: The sedge-feeding moth Bactra verutana Zeller, 1875 (Lepidoptera: Tortricidae: Olethreutinae: Bactrini), Received 4 October 2018 described from Dallas, Texas, USA, is widespread, recorded throughout much North America, Central Accepted 27 February 2019 and South America, including the Caribbean, and Africa. The species is recorded for the first time from Available online 21 March 2019 Chile based on specimens collected in the coastal valleys of the Atacama Desert, where its larvae feed Associate Editor: Livia Pinheiro on Cyperus corymbosus Rottb. var. subnodosus (Nees & Meyen) Kük. (Cyperaceae). A single DNA barcode haplotype, which is widespread in USA, was found in two Chilean specimens sequenced. Keywords: © 2019 Sociedade Brasileira de Entomologia. Published by Elsevier Editora Ltda. This is an open Atacama Desert Cyperaceae access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Cyperus corymbosus DNA barcoding Bactra Stephens, 1834 (Olethreutinae: Bactrini) is a widespread sequences (sensu Hebert et al., 2003) were used to assess the rela- genus of Tortricidae (Lepidoptera) with 106 described species tionships of the Chilean specimens.
    [Show full text]
  • Sex Pheromones and Reproductive Isolation of Three Species in Genus Adoxophyes
    J Chem Ecol (2009) 35:342–348 DOI 10.1007/s10886-009-9602-z Sex Pheromones and Reproductive Isolation of Three Species in Genus Adoxophyes Chang Yeol Yang & Kyeung Sik Han & Kyung Saeng Boo Received: 9 September 2008 /Revised: 29 December 2008 /Accepted: 18 January 2009 /Published online: 17 February 2009 # Springer Science + Business Media, LLC 2009 Abstract We tested differences in female pheromone to the binary blends increased attraction of male A. orana production and male response in three species of the but not A. honmai and Adoxophyes sp. males, suggesting genus Adoxophyes in Korea. Females of all three species that these minor components, in addition to the relative produced mixtures of (Z)-9-tetradecenyl acetate (Z9–14: ratios of the two major components, play an important role OAc) and (Z)-11-tetradecenyl acetate (Z11–14:OAc) as in reproductive isolation between Adoxophyes species in major components but in quite different ratios. The ratio the southern and midwestern Korea where these species of Z9–14:OAc and Z11–14:OAc in pheromone gland occur sympatrically. extracts was estimated to be ca. 100:200 for Adoxophyes honmai, 100:25 for Adoxophyes orana, and 100:4,000 for Keywords Adoxophyes . (Z)-9-tetradecenyl acetate . Adoxophyes sp. Field tests showed that males of each (Z)-11-tetradecenyl acetate . Lepidoptera . Tortricidae . species were preferentially attracted to the two-component Reproductive isolation blends of Z9–14:OAc and Z11–14:OAc mimicking the blends found in pheromone gland extracts of conspecific females. The effects of minor components identified in Introduction gland extracts on trap catches varied with species.
    [Show full text]
  • Nota Lepidopterologica
    ©Societas Europaea Lepidopterologica; download unter http://www.biodiversitylibrary.org/ und www.zobodat.at Nota lepid. 14 (2) : 179-190 ; 30.IX.1991 ISSN 0342-7536 Some Japanese genera and species of the tribe Euliini (Lepidoptera, Tortricidae) Tosiro Yasuda* & Jözef Razowski** *College of Agriculture, University of Osaka Pref., 4-Cho Mozuumemachi, Sakai, Osaka, 591 Japan. **Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, 17 Slawkowska, 31-016 Krakow, Poland. Summary Two Asiatic Euliini genera, Drachmobola Meyrick and Protopterna Meyrick are characterised, and two are described : Dicanticinta gen.n. (for Tortrix diticinctana Walsingham) and Minutargyrotoza gen.n. (for Capua minuta Walsingham). All their known species are discussed or mentioned, and one is described : Protopterna eremia sp.n. A preliminary note on the tribe Euliini and some data on its non-Palaearctic genera are given. Résumé Identification de deux genres asiatiques d'Euliini : Drachmobola Meyrick et Protopterna Meyrick, et description de deux genres nouveaux de cette tribu : Dicanticinta gen.n. (pour Tortrix diticinctana Walsingham) et Mi- nutargyrotoza gen.n. (pour Capua minuta Walsingham). Toutes les espèces connues de ces genres sont présentées ou mentionées, et une nouvelle espèces est décrite : Protopterna eremia sp.n. Note préliminaire sur la tribu Euliini, avec quelques renseignements sur ses genres non paléarctiques. Introduction Obraztsov (1965) placed the genera Drachmobola Meyrick and Protopterna Meyrick in the tribe Cnephasiini. Common (1963) included at least two Australian genera in that tribe and redescribed Drachmobola strigulata Meyrick. Diakonoff (1975) transferred Drachmobola to the Epitymbiini, describing in it one unrelated species. Kuznetsov & Stekolnikov (1977) erected in the Cochylini a new subtribe Euliina to comprise two genera, viz., Eulia Hübner and Pseudargyrotoza Obraztsov.
    [Show full text]