Regulatory Action Criteria for Filth and Other Extraneous Materials V
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Autographa Gamma
1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ...................................................................................................... -
Cytogenetic Analysis, Heterochromatin
insects Article Cytogenetic Analysis, Heterochromatin Characterization and Location of the rDNA Genes of Hycleus scutellatus (Coleoptera, Meloidae); A Species with an Unexpected High Number of rDNA Clusters Laura Ruiz-Torres, Pablo Mora , Areli Ruiz-Mena, Jesús Vela , Francisco J. Mancebo , Eugenia E. Montiel, Teresa Palomeque and Pedro Lorite * Department of Experimental Biology, Genetics Area, University of Jaén, 23071 Jaén, Spain; [email protected] (L.R.-T.); [email protected] (P.M.); [email protected] (A.R.-M.); [email protected] (J.V.); [email protected] (F.J.M.); [email protected] (E.E.M.); [email protected] (T.P.) * Correspondence: [email protected] Simple Summary: The family Meloidae contains approximately 3000 species, commonly known as blister beetles for their ability to secrete a substance called cantharidin, which causes irritation and blistering in contact with animal or human skin. In recent years there have been numerous studies focused on the anticancer action of cantharidin and its derivatives. Despite the recent interest in blister beetles, cytogenetic and molecular studies in this group are scarce and most of them use only classical chromosome staining techniques. The main aim of our study was to provide new information in Citation: Ruiz-Torres, L.; Mora, P.; Meloidae. In this study, cytogenetic and molecular analyses were applied for the first time in the Ruiz-Mena, A.; Vela, J.; Mancebo, F.J.; family Meloidae. We applied fluorescence staining with DAPI and the position of ribosomal DNA in Montiel, E.E.; Palomeque, T.; Lorite, P. Hycleus scutellatus was mapped by FISH. Hycleus is one of the most species-rich genera of Meloidae Cytogenetic Analysis, but no cytogenetic data have yet been published for this particular genus. -
Heteroptera: Anthocoridae, Lasiochilidae)
2018 ACTA ENTOMOLOGICA 58(1): 207–226 MUSEI NATIONALIS PRAGAE doi: 10.2478/aemnp-2018-0018 ISSN 1804-6487 (online) – 0374-1036 (print) www.aemnp.eu RESEARCH PAPER Annotated catalogue of the fl ower bugs from India (Heteroptera: Anthocoridae, Lasiochilidae) Chandish R. BALLAL1), Shahid Ali AKBAR2,*), Kazutaka YAMADA3), Aijaz Ahmad WACHKOO4) & Richa VARSHNEY1) 1) National Bureau of Agricultural Insect Resources, Bengaluru, India; e-mail: [email protected] 2) Central Institute of Temperate Horticulture, Srinagar, 190007 India; e-mail: [email protected] 3) Tokushima Prefectural Museum, Bunka-no-Mori Park, Mukoterayama, Hachiman-cho, Tokushima, 770–8070 Japan; e-mail: [email protected] 4) Department of Zoology, Government Degree College, Shopian, Jammu and Kashmir, 192303 India; e-mail: [email protected] *) Corresponding author Accepted: Abstract. The present paper provides a checklist of the fl ower bug families Anthocoridae th 6 June 2018 and Lasiochilidae (Hemiptera: Heteroptera) of India based on literature and newly collected Published online: specimens including eleven new records. The Indian fauna of fl ower bugs is represented by 73 5th July 2018 species belonging to 26 genera under eight tribes of two families. Generic transfers of Blap- tostethus pluto (Distant, 1910) comb. nov. (from Triphleps pluto Distant, 1910) and Dilasia indica (Muraleedharan, 1978) comb. nov. (from Lasiochilus indica Muraleedharan, 1978) are provided. A lectotype is designated for Blaptostethus pluto. Previous, as well as new, distribu- -
Occurrence and Distribution of Fall Armyworm, Spodoptera Frugiperda (Lepidoptera: Noctuidae) and Other Moths on Maize in Ghana B
OCCURRENCE AND DISTRIBUTION OF FALL ARMYWORM, SPODOPTERA FRUGIPERDA (LEPIDOPTERA: NOCTUIDAE) AND OTHER MOTHS ON MAIZE IN GHANA By DJIMA KOFFI ID: 10600839 A THESIS SUBMITTED TO THE UNIVERSITY OF GHANA, LEGON IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF PHILOSOPHY (M.PHIL.) DEGREE IN ENTOMOLOGY. AFRICAN REGIONAL POSTGRADUATE PROGRAMME IN INSECT SCIENCE (ARPPIS) UNIVERSITY OF GHANA, LEGON, ACCRA, GHANA AUGUST, 2018 * JOINT INTER-FACULTY INTERNATIONAL PROGRAMME FOR THE TRAINING OF ENTOMOLOGISTS IN WEST AFRICA COLLABORATING DEPARTMENTS: ANIMAL BIOLOGY AND CONSERVATION SCIENCE (SCHOOL OF BIOLOGICAL SCIENCES) AND CROP SCIENCE (SCHOOL OF AGRICULTURE) COLLEGE OF BASIC AND APPLIED SCIENCES DECLARATION I hereby declare that this thesis is the result of the original work personally done by me for the award of a Master of Philosophy Degree in Entomology at the African Regional Postgraduate Programme in Insect Science (ARPPIS), University of Ghana, Legon. All the references to other people’s work have been duly acknowledged and this thesis has not been submitted in part or whole for the award of a degree elsewhere. Signature……………....................................... Date………………………………………….. DJIMA KOFFI (STUDENT) Signature……………....................................... Date………………………………………….. DR. ROSINA KYEREMATEN (PRINCIPAL SUPERVISOR) Signature……………....................................... Date………………………………………….. DR. VINCENT Y. EZIAH (CO-SUPERVISOR) Signature……………....................................... Date………………………………………….. DR. -
Pollen and Stamen Mimicry: the Alpine Flora As a Case Study
Arthropod-Plant Interactions DOI 10.1007/s11829-017-9525-5 ORIGINAL PAPER Pollen and stamen mimicry: the alpine flora as a case study 1 1 1 1 Klaus Lunau • Sabine Konzmann • Lena Winter • Vanessa Kamphausen • Zong-Xin Ren2 Received: 1 June 2016 / Accepted: 6 April 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Many melittophilous flowers display yellow and Dichogamous and diclinous species display pollen- and UV-absorbing floral guides that resemble the most com- stamen-imitating structures more often than non-dichoga- mon colour of pollen and anthers. The yellow coloured mous and non-diclinous species, respectively. The visual anthers and pollen and the similarly coloured flower guides similarity between the androecium and other floral organs are described as key features of a pollen and stamen is attributed to mimicry, i.e. deception caused by the flower mimicry system. In this study, we investigated the entire visitor’s inability to discriminate between model and angiosperm flora of the Alps with regard to visually dis- mimic, sensory exploitation, and signal standardisation played pollen and floral guides. All species were checked among floral morphs, flowering phases, and co-flowering for the presence of pollen- and stamen-imitating structures species. We critically discuss deviant pollen and stamen using colour photographs. Most flowering plants of the mimicry concepts and evaluate the frequent evolution of Alps display yellow pollen and at least 28% of the species pollen-imitating structures in view of the conflicting use of display pollen- or stamen-imitating structures. The most pollen for pollination in flowering plants and provision of frequent types of pollen and stamen imitations were pollen for offspring in bees. -
Arquivos De Zoologia MUSEU DE ZOOLOGIA DA UNIVERSIDADE DE SÃO PAULO
Arquivos de Zoologia MUSEU DE ZOOLOGIA DA UNIVERSIDADE DE SÃO PAULO ISSN 0066-7870 ARQ. ZOOL. S. PAULO 37(1):1-139 12.11.2002 A SYNONYMIC CATALOG OF THE NEOTROPICAL CRABRONIDAE AND SPHECIDAE (HYMENOPTERA: APOIDEA) SÉRVIO TÚLIO P. A MARANTE Abstract A synonymyc catalogue for the species of Neotropical Crabronidae and Sphecidae is presented, including all synonyms, geographical distribution and pertinent references. The catalogue includes 152 genera and 1834 species (1640 spp. in Crabronidae, 194 spp. in Sphecidae), plus 190 species recorded from Nearctic Mexico (168 spp. in Crabronidae, 22 spp. in Sphecidae). The former Sphecidae (sensu Menke, 1997 and auct.) is divided in two families: Crabronidae (Astatinae, Bembicinae, Crabroninae, Pemphredoninae and Philanthinae) and Sphecidae (Ampulicinae and Sphecinae). The following subspecies are elevated to species: Podium aureosericeum Kohl, 1902; Podium bugabense Cameron, 1888. New names are proposed for the following junior homonyms: Cerceris modica new name for Cerceris modesta Smith, 1873, non Smith, 1856; Liris formosus new name for Liris bellus Rohwer, 1911, non Lepeletier, 1845; Liris inca new name for Liris peruanus Brèthes, 1926 non Brèthes, 1924; and Trypoxylon guassu new name for Trypoxylon majus Richards, 1934 non Trypoxylon figulus var. majus Kohl, 1883. KEYWORDS: Hymenoptera, Sphecidae, Crabronidae, Catalog, Taxonomy, Systematics, Nomenclature, New Name, Distribution. INTRODUCTION years ago and it is badly outdated now. Bohart and Menke (1976) cleared and updated most of the This catalog arose from the necessity to taxonomy of the spheciform wasps, complemented assess the present taxonomical knowledge of the by a series of errata sheets started by Menke and Neotropical spheciform wasps1, the Crabronidae Bohart (1979) and continued by Menke in the and Sphecidae. -
Use of Cantharidin for Verruca
CHA PT ER 4 USE OF CANTHARIDIN FOR VERRUCA Mickey D. Stapp, DPM HISTORY MECHANISM OF ACTION Cantharidin has been used for more than 2,000 years in Cantharidin is a vesicant produced by beetles belonging to both folk and traditional medicine. It was used in China the order of Coleoptera and the family of Meloidae. for many medicinal purposes including furuncles, ulcers, and Cantharidin used medically is collected from species of the tuberculosis, topically, and for abdominal masses, rabies, and genera Mylabris and Lytta, especially Lytta vesicatoria, as an anticancer agent, orally. In Europe, it appeared in better known as “Spanish Fly.” The male blister beetle Materia Medica, a medical monograph written in 50 to produces the substance, giving the chemical to the female 100 AD. Hippocrates prescribed cantharidin as a treatment during mating. Afterwards the female beetle will cover its for dropsy (1). eggs with the chemical as a defense against predators (6). Cantharidin has a long infamous reputation for being Cantharidin acts as a blistering agent or acantholytic. an aphrodisiac and is known as Spanish fly. This reputation The lipid layers of epidermal cell membranes absorb it. Once is based on the observation of pelvic congestion in women applied, cantharidin causes release of neutral serine proteases and priapism in men after cantharidin ingestion. It is not that cause degeneration of the desmosmal plaque, leading a true aphrodisiac, and fatal poisonings can occur (2). to detachment of tonofilaments from desmosomes (7). This Cantharidin has also been used as a homicidal agent in leads to intraepidermal blistering and nonspecific lysis of the South Africa. -
The Use of Formica Rufa L. (Hymenoptera: Formicidae) to Flavour Aquavit Ingvar Svanberg1* and Åsa Berggren2
Svanberg and Berggren Journal of Ethnobiology and Ethnomedicine (2019) 15:68 https://doi.org/10.1186/s13002-019-0347-7 RESEARCH Open Access Ant schnapps for health and pleasure: the use of Formica rufa L. (Hymenoptera: Formicidae) to flavour aquavit Ingvar Svanberg1* and Åsa Berggren2 Abstract Background: The relationship between humans and insects goes long back and is important. Insects provide a multitude of ecosystem services for humans, e g. by pollinating crops and decomposing matter. Our current knowledge about the cultural ecosystem services that insects provide is limited and not much examined. Method: Scattered ethnographical descriptions and folklore records from pre-modern Sweden and other Scandinavian countries give us insights into local knowledge and use of insects among the peasantry in various parts of the country. These data have been analysed and critically reviewed. Source pluralism has been used as a method. Results: The mound-building red wood ant, Formica rufa L., is one of the species that were used in Sweden for their healing properties. It was a widespread belief that the formic acid could be used to cure various diseases, especially gout and rheumatism. Both anthills and the ants themselves were used for that purpose. It was also common to flavour distilled liquor (brännvin) with ants; a remedy used for medicinal purposes. However, already in the eighteenth century, this was also used as schnapps. The cultural services provided by this species stretches throughout history and still exists today. Conclusion: While the use of ants in medicine has vanished, the custom of making homemade ant flavoured alcoholic beverage survives in Sweden. -
Safety Aspects of the Production of Foods and Food Ingredients from Insects
DFG Senate Commission on Food Safety SKLM Safety aspects of the production of foods and food ingredients from insects Adopted on: April 20th 2016 Deutsche Forschungsgemeinschaft Kennedyallee 40 ∙ 53175 Bonn www.dfg.de/sklm DFG Members and guests of the DFG Senate Commission on Food Safety 2014-2016 Members: Pablo Steinberg (Chairman), Patrick Diel, Gerhard Eisenbrand, Karl-Heinz Engel, Bernd Epe, Volker Heinz, Hans-Ulrich Humpf, Hans-Georg Joost, Dietrich Knorr, Theo de Kok, Doris Marko, Rudi Vogel Permanent guests: Peter Fürst, Sabine Kulling, Alfonso Lampen, Gerhard Rechkemmer, Richard H. Stadler, Stefan Vieths The Commission would like to thank the members of the working group „Food Technology and Safety“: Dietrich Knorr (WG Chairman), Niels Bandick, Karl-Heinz Engel, Volker Heinz, Thomas Holzhauser, Henry Jäger, Sabine Kulling, Birgit Rumpold, Oliver Schlüter, Rudi Vogel and Walter Quasigroch for the preparation of the opinion and the SKLM staff represented by Angelika Roth, Stephanie Vogel and Sabine Guth for their support. SKLM Commission Secretariat Institut für Lebensmitteltoxikologie und Chemische Analytik, Stiftung Tierärztliche Hochschule Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany E-Mail: [email protected] • Phone: +49 511 8567227 • Fax: +49 511 856 82 7227 The "Food Technology and Safety" working group of the DFG Senate Commission on Food Safety (SKLM) deals with new technologies, which are being developed or used to treat foodstuffs. This statement examines insects as a novel source of proteins, lipids and other substances. The use of insects as a food source is not usual in Europe. The risks associated with such a use have not been sufficiently investigated. -
Indici Bollettini Mrsn 1-37
INDICI BOLLETTINI MRSN 1-37 VOL. 1 (1983) Elachistidi del Giappone (Lepidoptera, Elachistidae) / Umberto Parenti. – P. 1-20 Il genere Aptinus Bonelli, 1810 (Coleoptera, Carabidae) / Achille Casale, Augusto Vigna Taglianti.. – P. 21- 58 Amphionthophagus , nuovo sottogenere di Onthophagus Latr. (Coleoptera, Scarabaeidae) / Fermín Martin Piera, Mario Zunino. – P. 59-76 I Dryinidae della collezione di Massimiliano Spinola: scoperta del materiale tipico di Anteon jurineanum Latreille, cambiamento di status sistematico per il genere Prenanteon Kieffer e descrizione di una nuova specie, Gonatopus spinolai (Hymenoptera, Dryinidae) / Massimo Olmi. – P. 77-86 Colpotrochia giachinoi n. sp., un nuovo Metopiinae (Hymenoptera, Ichneumonidae) del Nord Africa / Pier Luigi Scaramozzino. – P. 87-92 Osservazioni su alcune specie del genere Hinia Leach (in Gray), 1857 (Nassariidae) / Maria Pia Bernasconi. – P. 93-120 Un nuovo Trechus d’Algeria (Coleoptera, Carabidae) / Achille Casale. – P. 121-126 Dasypolia calabrolucana Hartig bona sp. (Lep. Noctuidae) / Emilio Berio. – P. 127-130 Raymondiellus casalei , nuova specie di Curculionide dell’Algeria (Coleoptera) / Massimo Meregalli. – P. 131-136 Popolamenti e tanatocenosi a molluschi dei fanghi terrigeni costieri al largo di Brucoli (Siracusa) / Italo Di Geronimo, Salvatore Giacobbe. – P. 137-164 Composición sistemática y orígen biogeográfico de la fauna ibérica de Onthophagini (Coleoptera, Scarabaeoidea) / Fermín Martin Piera. – P. 165-200 New data on Orthogarantiana (Torrensia) Sturani, 1971 (Ammonitina, Stephanocerataceae) in the European Upper Bajocian / Giulio Pavia. – P. 201-214 “Faunae Ligusticae Fragmenta” e “Insectorum Liguriae species novae” di Massimiliano Spinola: note bibliografiche / Pietro Passerin d’Entrèves. – P. 215-226 Notes on some Borelli’s types of Dermaptera (Insecta) / Gyanendra Kumar Srivastana. – P. 227-242 Nuovi Carabidae e Catopidae endogei e cavernicoli dei Balcani meridionali e dell’Asia minore (Coleoptera) / Achille Casale. -
Fossil Calibrations for the Arthropod Tree of Life
bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted June 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE AUTHORS Joanna M. Wolfe1*, Allison C. Daley2,3, David A. Legg3, Gregory D. Edgecombe4 1 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 3 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PZ, UK 4 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author: [email protected] ABSTRACT Fossil age data and molecular sequences are increasingly combined to establish a timescale for the Tree of Life. Arthropods, as the most species-rich and morphologically disparate animal phylum, have received substantial attention, particularly with regard to questions such as the timing of habitat shifts (e.g. terrestrialisation), genome evolution (e.g. gene family duplication and functional evolution), origins of novel characters and behaviours (e.g. wings and flight, venom, silk), biogeography, rate of diversification (e.g. Cambrian explosion, insect coevolution with angiosperms, evolution of crab body plans), and the evolution of arthropod microbiomes. We present herein a series of rigorously vetted calibration fossils for arthropod evolutionary history, taking into account recently published guidelines for best practice in fossil calibration. -
Autumn 2011 Newsletter of the UK Heteroptera Recording Schemes 2Nd Series
Issue 17/18 v.1.1 Het News Autumn 2011 Newsletter of the UK Heteroptera Recording Schemes 2nd Series Circulation: An informal email newsletter circulated periodically to those interested in Heteroptera. Copyright: Text & drawings © 2011 Authors Photographs © 2011 Photographers Citation: Het News, 2nd Series, no.17/18, Spring/Autumn 2011 Editors: Our apologies for the belated publication of this year's issues, we hope that the record 30 pages in this combined issue are some compensation! Sheila Brooke: 18 Park Hill Toddington Dunstable Beds LU5 6AW — [email protected] Bernard Nau: 15 Park Hill Toddington Dunstable Beds LU5 6AW — [email protected] CONTENTS NOTICES: SOME LITERATURE ABSTRACTS ........................................... 16 Lookout for the Pondweed leafhopper ............................................................. 6 SPECIES NOTES. ................................................................18-20 Watch out for Oxycarenus lavaterae IN BRITAIN ...........................................15 Ranatra linearis, Corixa affinis, Notonecta glauca, Macrolophus spp., Contributions for next issue .................................................................................15 Conostethus venustus, Aphanus rolandri, Reduvius personatus, First incursion into Britain of Aloea australis ..................................................17 Elasmucha ferrugata Events for heteropterists .......................................................................................20 AROUND THE BRITISH ISLES............................................21-22