Approaches for the Biological Control of Stored Product Pests
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Efficacy of Pheromones for Managing of the Mediterranean Flour Moth
12th International Working Conference on Stored Product Protection (IWCSPP) in Berlin, Germany, October 7-11, 2018 HOSSEININAVEH, V., BANDANI, A.R., AZMAYESHFARD, P., HOSSEINKHANI, S. UND M. KAZZAZI, 2007. Digestive proteolytic and amylolytic activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). J. Stored Prod. Res., 43: 515-522. ISHAAYA, I. UND R. HOROWITZ, 1995. Pyriproxyfen, a novel insect growth regulator for controlling whiteflies. Mechanism and resistance management. Pestic. Sci., 43: 227–232. ISHAAYA, I., BARAZANI, A., KONTSEDALOV, S. UND A.R. HOROWITZ, 2007. Insecticides with novel mode of action: Mechanism, selectivity and cross-resistance. Entomol. Res., 37: 148-152. IZAWA, Y., M. UCHIDA, T. SUGIMOTO AND T. ASAI, 1985. Inhibition of Chitin Biosynthesis by buprofezin analogs in relation to their activity controlling Nilaparvata lugens. Pestic. Biochem. Physiol., 24: 343-347. KLJAJIC, P. UND I. PERIC, 2007. Effectiveness of wheat-applied contact insecticide against Sitophilus granarius (L.) originating from different populations. J. Stored Prod. Res., 43: 523-529. KONNO, T., 1990. Buprofezin: A reliable IGR for the control of rice pests. Soci. Chem. Indus., 23: 212 - 214. KOSTYUKOVSKY, M. UND A. TROSTANETSKY, 2006. The effect of a new chitin synthesis inhibitor, novaluron, on various developmental stages ofTribolium castaneum (Herbst). J. Stored Prod. Res., 42: 136-148. KOSTYUKOVSKY, M., CHEN, B., ATSMI, S. UND E. SHAAYA, 2000. Biological activity of two juvenoids and two ecdysteroids against three stored product insects. Insect Biochem. Mol. Biol., 30: 891-897. LIANG, P., CUI, J.Z., YANG, X.Q. UND X.W. GAO, 2007. Effects of host plants on insecticide susceptibility and carboxylesterase activity in Bemisia tabaci biotype B and greenhouse whitefly, Trialeurodes vaporariorum. -
Environmental Significance of Riparian Agroecosystems with Special Reference to Influence on Wetland Livelihood
[ VOLUME 6 I ISSUE 2 I APRIL– JUNE 2019] E ISSN 2348 –1269, PRINT ISSN 2349-5138 Environmental Significance of Riparian Agroecosystems with special reference to Influence on Wetland Livelihood Dr. Reshma J.K.1 & Dr. Allan Thomas2 1Asst. Professor and Head, PG Department of Environmental Sciences All Saints’ College, Thiruvananthapuram, Kerala. 2Asst. Professor and Head, Department of Extension College of Agriculture, Vellayani, Kerala. Received: February 12, 2019 Accepted: March 24, 2019 INTRODUCTION Riparian Agroecosystem (Agriculture + Ecosystem = Agroecosystem) is construed as a spatially and functionally coherent unit of agricultural activity along river banks, subsuming both biotic & abiotic components, their respective interaction as well. An agroecosystem appends the region that is stuffed in by agricultural activity, prodigally by changes to the complexity ofspecies assemblagesandenergy flows, as well as to the net nutrient balance. Traditionally an agroecosystem, particularly one managed intensively, is epitomized as having a simpler species composition and simpler energy and nutrient flows which makes it unique from other "natural" ecosystems. Moreover, agroecosystems are often confederated with elevated nutrient input, as in the case of forest gardens, probably the world's oldest and most resilient agroecosystemswhich is balanced byeutrophication of consociated ecosystems not directly engaged in agriculture. Substaintial components of Agroecosystem derive all its energy requirements from solar input along with atmospheric and human inputs that come from outside the system, which are referred to as “consumption and markets. Some of the unparagoned features of agroecosystems are monoculture, use of genetically modified organisms and artificially selected crops, row crops, increased soil aeration, simplification of biodiversity and maintenance at an early succession state. -
Cultural Ecosystem Services of Agroecosystems Along the Wasatch Front, Utah
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2020 Cultural Ecosystem Services of Agroecosystems Along the Wasatch Front, Utah Tiffany K. Woods Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Environmental Design Commons, and the Landscape Architecture Commons Recommended Citation Woods, Tiffany K., "Cultural Ecosystem Services of Agroecosystems Along the Wasatch Front, Utah" (2020). All Graduate Theses and Dissertations. 7904. https://digitalcommons.usu.edu/etd/7904 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. CULTURAL ECOSYSTEM SERVICES OF AGROECOSYSTEMS ALONG THE WASATCH FRONT, UTAH by Tiffany K. Woods A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Bioregional Planning Approved: __________________________ __________________________ Brent Chamberlain, Ph.D. Arthur J. Caplan, Ph.D. Major Professor Committee Member __________________________ __________________________ Sarah C. Klain, Ph.D. Janis L. Boettinger, Ph.D. Committee Member Acting Vice Provost of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2020 ii Copyright Tiffany K. Woods 2020 All Rights Reserved iii ABSTRACT Cultural ecosystem services of agroecosystems along the Wasatch Front, Utah by Tiffany K. Woods, Master of Science Utah State University, 2020 Major Professor: Brent Chamberlain, Ph.D. Department: Landscape Architecture and Environmental Planning Agroecosystems, including peri-urban systems, are important providers of a range of services. However, management of these systems has generally been based on the market value of crops, neglecting to capture the broader public goods that ecosystem services provide to stakeholders. -
Appl. Entomol. Zool. 45(1): 89-100 (2010)
Appl. Entomol. Zool. 45 (1): 89–100 (2010) http://odokon.org/ Mini Review Psocid: A new risk for global food security and safety Muhammad Shoaib AHMEDANI,1,* Naz SHAGUFTA,2 Muhammad ASLAM1 and Sayyed Ali HUSSNAIN3 1 Department of Entomology, University of Arid Agriculture, Rawalpindi, Pakistan 2 Department of Agriculture, Ministry of Agriculture, Punjab, Pakistan 3 School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK (Received 13 January 2009; Accepted 2 September 2009) Abstract Post-harvest losses caused by stored product pests are posing serious threats to global food security and safety. Among the storage pests, psocids were ignored in the past due to unavailability of the significant evidence regarding quantitative and qualitative losses caused by them. Their economic importance has been recognized by many re- searchers around the globe since the last few years. The published reports suggest that the pest be recognized as a new risk for global food security and safety. Psocids have been found infesting stored grains in the USA, Australia, UK, Brazil, Indonesia, China, India and Pakistan. About sixteen species of psocids have been identified and listed as pests of stored grains. Psocids generally prefer infested kernels having some fungal growth, but are capable of excavating the soft endosperm of damaged or cracked uninfected grains. Economic losses due to their feeding are directly pro- portional to the intensity of infestation and their population. The pest has also been reported to cause health problems in humans. Keeping the economic importance of psocids in view, their phylogeny, distribution, bio-ecology, manage- ment and pest status have been reviewed in this paper. -
Indian Meal Moth Plodia Interpunctella
Indian Meal Moth Plodia interpunctella Description QUICK SCAN Adults: Up to 13 mm (0.5 inches) long with wings that have copper brown tips. The part of the wings closest to the head is off white. SIZE / LENGTH Eggs: Oval, ivory in color and 2 mm (0.08 inches) long Adult 0.5 inch (13 mm) Larvae: Creamy white, brown head capsule. Coloration varies from Eggs 0.08 inch (2 mm) cream to light pink color, sometimes pale green. Pupae: Pupal cases are whitish with a yellow to brownish colored pupa COLOR RANGE inside. Adult Long wings with copper tips Larvae Creamy white, brown head Life Cycle Adult moths live for 10-14 days. Mated females can lay 200-400 eggs LIFE CYCLE singly or in groups. Eggs hatch in 3-5 days in warmer months and up to 7 days in cooler months. Larvae feed and become mature in 21 days Adults Live 10-14 days or as long as 30 days depending on food quality, temperature and Eggs Hatch 3-7 days humidity. Larvae will wander and pupation will occur away from infested materials. Adults emerge from the pupae in 7 to 10 days depending on temperature. FEEDING HABITS Damage and Detection Larvae Prefer: woolens, furs, and materials made with hair and Granular frass the size of ground pepper can be found in, on food feathers. materials such as nuts, dried fruits, cereals and processed foods containing nuts or seeds and made from wheat, rice or corn. The use of pheromone traps and inspections can determine location and degree of INFESTATION SIGNS infestation. -
Networking Agroecology: Integrating the Diversity of Agroecosystem Interactions
Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances In Ecological Research, Vol. 49 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From David A. Bohan, Alan Raybould, Christian Mulder, Guy Woodward, Alireza Tamaddoni-Nezhad, Nico Bluthgen, Michael J.O. Pocock, Stephen Muggleton, Darren M. Evans, Julia Astegiano, François Massol, Nicolas Loeuille, Sandrine Petit, Sarina Macfadyen, Networking Agroecology: Integrating the Diversity of Agroecosystem Interactions. In Guy Woodward and David A. Bohan, editors: Advances In Ecological Research, Vol. 49, Amsterdam, The Netherlands: Academic Press, 2013, pp. 1-67. ISBN: 978-0-12-420002-9 © Copyright 2013 Elsevier Ltd Elsevier Author's personal copy CHAPTER ONE Networking Agroecology: -
Functional Response of Habrobracon Hebetor Say (Hym.: Braconidae) to Mediterranean Flour Moth (Anagasta Kuehniella Zeller), in Response to Pesticides
JOURNAL OF PLANT PROTECTION RESEARCH Vol. 53, No. 4 (2013) DOI: 10.2478/jppr-2013-0059 FUNCTIONAL RESPONSE OF HABROBRACON HEBETOR SAY (HYM.: BRACONIDAE) TO MEDITERRANEAN FLOUR MOTH (ANAGASTA KUEHNIELLA ZELLER), IN RESPONSE TO PESTICIDES Vahid Mahdavi1*, Moosa Saber2 1 Young Researchers Club, Parsabad Moghan Branch, Islamic Azad University, Parsabad, 56918-53356, Iran 2 Department of Plant Protection, College of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran Received: April 1, 2013 Accepted: October 21, 2013 Abstract: The functional response is a behavioral phenomena defined as the relation between the parasitized host per each parasitoid and host density. This phenomenon can be useful in assessing parasitoid efficiency for the biological control of the host. Parasitoid wasps are most important insects and they play a significant role in the natural control of pests via their parasitism activities. In this study, the effects of diazinon and malathion were evaluated on the functional response of Habrobracon hebetor Say to different densi- ties of last instar larvae of Anagasta kuehniella Zeller. Young adult females (< 24 h old) of the parasitoid were exposed to LC30 values of pesticides. Host densities of 2, 4, 8, 16, 32, and 64 were offered, to treated young females for 24 h in 10 cm Petri dishes. At this point, the parasitism data were recorded. The experiments were conducted in eight replications. The functional response was type Ш in the control and insecticide treatments. Searching efficiency in the control, diazinon and malathion-treated wasps were 0.008±0.002, 0.003±0.002, and 0.004±0.002 h–1, handling times were 1.38±0.1, 7.95±0.91, and 6.4±0.81 h, respectively. -
Influence of Wheat Cultivar, Temperature, and Theocolax
INFLUENCE OF WHEAT CULTIVAR, TEMPERATURE, AND THEOCOLAX ELEGANS (HYMENOPTERA: PTEROMALIDAE) ON RHYZOPERTHA DOMINICA (COLEOPTERA: BOSTRICHIDAE) DEVELOPMENT BY MICHAEL D. TOEWS Bachelor ofScience Fort Hays State University Hays, Kansas 1995 Submitted to the Faculty ofthe Graduate College ofthe Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May 1998 INFLUENCE OF WHEAT CULTrVAR, TEMPERATURE, AND THEOCOLAX ELEGANS (HYMENOPTERA: PTEROMALIDAE) ON RHYZOPERTHA DOMINICA (COLEOPTERA: BOSTRICHIDAE) DEVELOPMENT Thesis Approved: ~~~ ~JJ.~D~~_ /~,) 6L~fN-r , ean ofthe Graduate College n PREFACE The first chapter ofthis thesis is a literature review focused on issues in stored wheat. Also induded in chapter one is a review ofthe lesser grain borer, the parasitoid Theocolax elegans, and interactions among the trophic levels in my research. Subsequent chapters are formal papers representing my M.S. research project and are written in compliance with the publication policies and guidelines for manuscript preparation with the Entomological Society ofAmerica. The completion ofthis degree would not have been possible without the guidance ofmany people. I would like to express my sincere appreciation to my graduate advisor, Dr. Gemt Cuperus, for his assistance and direction. My co-advisor, Dr. Tom Phillips, provided a great deal ofpractical assistance and advice while also housing me in his laboratory space. This research project greatly benefited from the insight offered by Dr. Richard Berberet and Dr. Phillip Mulder. Special appreciation is directed toward Dr. Mark Payton who answered many questions and assisted me with the design and analysis of each experiment. I wish to extend special thanks to Edmond Bonjour for his proofreading and example throughout all phases ofmy degree. -
Functional Agrobiodiversity and Agroecosystem Services in Sustainable Wheat Production
Functional agrobiodiversity and agroecosystem services in sustainable wheat production. A review Ambrogio Costanzo, Paolo Bàrberi To cite this version: Ambrogio Costanzo, Paolo Bàrberi. Functional agrobiodiversity and agroecosystem services in sus- tainable wheat production. A review. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2014, 34 (2), pp.327-348. 10.1007/s13593-013-0178-1. hal-01234799 HAL Id: hal-01234799 https://hal.archives-ouvertes.fr/hal-01234799 Submitted on 27 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Agron. Sustain. Dev. (2014) 34:327–348 DOI 10.1007/s13593-013-0178-1 REVIEW ARTICLE Functional agrobiodiversity and agroecosystem services in sustainable wheat production. A review Ambrogio Costanzo & Paolo Bàrberi Accepted: 6 September 2013 /Published online: 27 September 2013 # INRA and Springer-Verlag France 2013 Abstract Agrobiodiversity can improve the sustainability of Contents cropping systems in a context of low external inputs and 1. Introduction unpredictable climate change. Agrobiodiversity strategies to 2. State-of-the-art strategies for using agrobiodiversity in grow wheat are breeding ad hoc cultivars for organic and low- sustainable wheat production input systems, wheat–legume intercrops and living mulches, 3. -
And Cephalonomia Tarsalis (Ashmead) (Hymenoptera: Bethylidae) in Biological Control of Stored Grain Pests
Plant Protect. Sci. Vol. 39, No. 1: 29–34 Compatibility of Cheyletus eruditus (Schrank) (Acari: Cheyletidae) and Cephalonomia tarsalis (Ashmead) (Hymenoptera: Bethylidae) in Biological Control of Stored Grain Pests E�� ŽĎÁRKOVÁ, J�� LUKÁŠ and P���� HORÁK Department of Stored-Product Pest Control, Research Institute of Crop Production, Prague-Ruzyně, Czech Republic Abstract Ž������� E., L���� J., H���� P. (2003): Compatibility of Cheyletus eruditus (Schrank) (Acari: Cheyletidae) and Ce- phalonomia tarsalis (Ashmead) (Hymenoptera: Bethylidae) in biological control of stored grain pests. Plant Protect. Sci., 38: 29–34. A laboratory experiment was carried out on stored wheat infested by the stored product mite Acarus siro and beetle Oryzaephilus surinamensis. The initial infestation was 150 mites of A. siro and 15 beetles of O. surinamensis per 1 kg of wheat. The predatory mite Cheyletus eruditus and parasitoid Cephalonomia tarsalis were added in the ratio 1:20 and 1:12, repectively. Three combinations were tested: (1) mites and (2) beetles separately, and (3) mites and beetles together. The experiment ran for three months at 22°C and 75% RH. The pests were suppressed by their antagonists in all combinations. Synchronous application of both natural enemies resulted in better control of O. surinamensis through an enhanced effect of both antagonists. Keywords: Acarus siro; Oryzaephilus surinamensis; Cheyletus eruditus; Cephalonomia tarsalis; stored wheat; biological control Increasing demand by consumers on food quality The biological control of stored product mites and safety is reflected in changes of the protection by the predatory mite Cheyletus eruditus Schrank measures used on stored products. The use of pes- is well known and it is used in practice preven- ticides is minimised to an essential level, while that tively and repressively (Ž������� 1998; Ž������� of alternative protective methods is maximised. -
Biology and Behavior of the Mite Cheletomorpha Lepidopterorum (Shaw) (Prostigmata:Cheyletidae) and Its Role As a Predator of a Grain Mite Acarus Farris (Oud
AN ABSTRACT OF THE THESIS OF JAMES ROGER ALLISONfor the DOCTOR OF PHILOSOPHY (Name (Degree) in ENTOMOLOGY presented on41a21712Ajd2W;) /2.'7/ (Major) (Date) Title: BIOLOGY AND BEHAVIOR OF THE MITECHELETOMORPHA LEPIDOPTERORUM (SHAW) (PROSTIGMATA:CHEYLETIDAE) AND ITS ROLE AS A PREDATOR OF A GRAIN MITEACARUS FARRIS (OUD. )(ASTIGIV&TIAaR. Redacted for Privacy Abstract approved: /7J //I G.- W. Krantz Cheletomorpha lepidopterorum (Shaw), a predaceous, prostig- matid mite, was studied under laboratory conditions of20° - 30° C and 80% - 90% R. H. to determine its effectiveness as apossible biological control agent of Acarus farris (Oud. ),a graminivorous mite which infests stored grains and grain products.Although Cheletophyes knowltoni Beer and Dailey had been synonymized with C. lepidopterorum, it was found that the latter couldbe differentiated from C. knowltoni on the basis of biological, morphological,and behavioral data obtained from four species "populations"(Kansas, Oregon, California, and World-Wide). A temperature range of 20° - 25° C and relative humidities of 80% - 90% created conditions ideally suited to the rearing 'of C. lepidopterorum.Egg survival under optimal temperature and humidity regimes exceeded75%. Mated females laid more eggs than unmatedfemales at optimal environmental conditions. Development time from egg to adult ranged from alow of 192 hours for a single male at 30° C, 90% R. H. ,to 420 hours for a male at 20° C, 90% R. H.The second nymphal stage sometimes was omitted in the male ontogeny. Mated females produced male and female progeny,while unmated females produced a higher percentage ofmales. Starved C. lepidopterorum females survivedlongest at 20° C, 80% R. H. -- 31. -
Regulatory Action Criteria for Filth and Other Extraneous Materials V
Regulatory Toxicology and Pharmacology 33, 363–392 (2001) doi:10.1006/rtph.2001.1472, available online at http://www.idealibrary.com on Regulatory Action Criteria for Filth and Other Extraneous Materials V. Strategy for Evaluating Hazardous and Nonhazardous Filth Alan R. Olsen, John S. Gecan, George C. Ziobro, and John R. Bryce Microanalytical Branch, HFS-315, U.S. Food and Drug Administration, 200 C Street, SW, Washington, DC 20204 Received January 12, 2001; published online it bears or contains an added poisonous or deleterious The U.S. Food and Drug Administration (FDA) uses substance which may render it injurious to health. regulatory action criteria for filth and extraneous ma- Under section 402(a) (3) (21 U.S. Code, section 342(a) terials to evaluate adulteration of food products. The (3)) a food product shall be deemed to be adulterated criteria are organized into three categories: health if it consists in whole or in part of a filthy, putrid, or hazards, indicators of insanitation, and natural or un- decomposed substance. avoidable defects. The health hazard category includes Under section 402(a) (4) (21 U.S. Code, section 342(a) criteria for physical, chemical, and microbiological (4)) a food product shall be deemed to be adulterated if it hazards associated with filth and extraneous mate- is prepared, packed, or held under insanitary conditions rials. The health hazard category encompasses crite- whereby it may have become contaminated with filth or ria for HACCP (Hazard Analysis and Critical Control whereby it may have been rendered injurious to health. Point) hazards and HACCP contributing factors.