Smart Antenna Development

Total Page:16

File Type:pdf, Size:1020Kb

Smart Antenna Development Smart Antenna Technology CUL/EM/030854/RP/06 Development of Smart Antenna Technology Final Report August 2006 http://www.vectorfields.co.uk A Cobham company © Copyright 2006 Smart Antenna Technology CUL/EM/030854/RP/06 Final Report (Issue 2) 2 Smart Antenna Technology CUL/EM/030854/RP/06 Final Report (Issue 2) Title Development of Smart Antenna Technology Customer Ofcom Customer ref. “Contract for the Provision of Development of Smart Antenna Technology for the Office of Communications” Contract 410000267 This document has been prepared for Ofcom under the above contract. Copyright © Copyright 2006 Reference number CUL/EM/030854/RP/06 Contact Name Dr K D Ward Vector Fields Ltd 24 Bankside Kidlington OXON, OX5 1JE Telephone: 01865 370151 Facsimile: 01865 370277 Document Control Number: CUL/EM/030854/RP/06 Date of Issue: August, 2006 Issue 2 Authorization Name Signature Position Prepared by Mr M Hook Project Manager Approved by Dr K D Ward Managing Director 3 Smart Antenna Technology CUL/EM/030854/RP/06 Final Report (Issue 2) Disclaimer This report was commissioned by Ofcom to provide an independent view on issues relevant to its duties as regulator for the UK communication industry, for example issues of future technology or efficient use of the radio spectrum in the United Kingdom. The assumptions, conclusions and recommendations expressed in this report are entirely those of the contractors and should not be attributed to Ofcom. Acknowledgements The authors would like to thank those people and companies in the wireless industry who have contributed information and advice during the course of the work presented in this report. The authors would also like to thank Ofcom for sponsoring the work and for their helpful discussions and suggestions. 4 Smart Antenna Technology CUL/EM/030854/RP/06 Final Report (Issue 2) EXECUTIVE SUMMARY Introduction Wireless systems are undoubtedly an essential part of modern society and are becoming more so as we move towards the “information society” and demand access to more information, more immediately and in more places. Concurrently, technological developments are making new applications possible, opening up new markets, and promising significant economic benefits. In all cases, spectrum is an essential basic resource which, although reusable, cannot be created to meet demand. It is, therefore, increasingly important to improve the efficiency with which use is made of the spectrum. As an example, the next generation mobile telephone system may require an order of magnitude increase in capacity. Since present day systems are close to the Shannon limit, there is relatively little to be gained by improving the modulation and coding schemes, and smart antennas have been identified as one technique that may close the predicted performance gap. A smart antenna is one that responds in some way to its electromagnetic environment in order to improve a specified performance metric; in so-doing, they can provide, for example, increased immunity to interference, or reduced signal level towards a vulnerable receiver. In general, provision of these capabilities requires the use of multi-element array antennas, with control over the excitation of each element. Smart antennas are not new in concept, yet, with a number of notable exceptions, they have not seen widespread adoption. This project, which was awarded as part of the Ofcom Spectrum Efficiency Scheme, set out to investigate smart antennas and their potential application areas, in an attempt to understand the reasons why they have not been implemented widely. Possible reasons for this may be that their forecast benefits are unobtainable, that the technology for their implementation is not mature, or that they cannot currently be implemented economically. These lead to the overall objectives of the project, namely, to assess and demonstrate the potential of smart antennas for enhancing spectrum efficiency in wireless systems. To meet these aims a work programme was developed, which drew on the skills of a number of organisations, namely, Vector Fields Limited, Quotient Associates, Plextek Limited, Loughborough University, and European Antennas Limited. 5 Smart Antenna Technology CUL/EM/030854/RP/06 Final Report (Issue 2) Work programme The activities undertaken during this project divide into four main areas: Application review The first element of the work, which is described in Section 2 of the main report, considers the types of smart antenna available and the applications that are most suitable for their adoption. In addition, it must be remembered that the use of the spectrum sits within a regulatory framework. How this may affect the use of smart antennas, and whether their amendment may assist more widespread adoption of smart antennas is preliminarily considered in advance of the other activities. Technology review Section 3 details a review of the technology available for the implementation of smart antennas, the main sub-systems of which are the radiating structure and the beam forming network. Both areas are considered to determine the options presently available and possible future developments. Technology development The technology review was expected to highlight areas where more novel, less mature techniques could benefit the performance of a smart antenna system. Provision was made within the programme to select and develop such a technique; the results of this are discussed in Section 4. Performance benefits analysis The assessment of the benefits brought by smart antennas is an essential part of the programme. From the outset, it was intended to perform a hardware demonstration of a smart antenna operating in a wireless system. An analysis of a wider area wireless system has also been performed, in this case by simulation rather than by hardware demonstration. The selected system, namely broadband wireless access (BWA), was chosen during the programme following the consideration of the most likely smart antenna applications. The details of the simulation and hardware demonstration are given in Section 5 of the main report. The results of the above activities allow us to form a view on why smart antennas have not achieved widespread adoption. This is addressed in Section 6 of the main report. The remainder of this Executive Summary describes the work performed and the findings from the above activities, and concludes with a discussion of adoption issues. 6 Smart Antenna Technology CUL/EM/030854/RP/06 Final Report (Issue 2) Summary of activities The work performed under each of the activities is summarized briefly below, and the principal findings highlighted. Applications As a precursor to considering potential applications, the various types of smart antenna were reviewed. It was found to be useful to classify them broadly as operating in “beam space” or “signal space”. The former uses knowledge of the geometry of the antenna, combined with an ability to vary the excitation of each antenna element, to steer and shape the radiation pattern (ie the beam). The latter uses knowledge of the structure of parts of the received signals, and adjusts the antenna element weights to minimize the difference between the combined signal at the output and the known (or training) sequence. Basic implementations of these require relatively little integration with the receive chain or the link protocol, and are often suitable for overlaying on the system as an appliqué layer. More sophisticated implementations combine one or other of these with processing in the time domain (ie space-time processing and detection) in order to incorporate signal components that have been temporally dispersed. While these offer improved performance, they are correspondingly more demanding on the signal processing hardware. Figure E1 shows how these techniques may be viewed in relation to their complexity, level of integration and to the characteristics of the propagation environment. “Signalspace” “Space-time “Space-time Processing” Detection” Diversity combining Space-time Single channel equalisation Simple MIMO equalisation on e.g. Advanced MIMO si sper di el ann e “Beamspace” Ch Fixed beam switching ons Wideband adaptive p Narrowband adaptive beam-forming spatial beam-forming a res Temporally spread Uplink only (HSR) signal beam-forming SFIR e antenn abl SDMA t c edi Pr Integration with protocol / receive chain Complexity & performance Figure E1: Main smart antenna methods and primary constraints for their application A distinction is made between those “smart” systems that achieve improved performance using diversity methods, for example diversity combining and MIMO, and those that adapt weighted excitations to the elements of the antenna to optimise its pattern performance. Simple diversity systems are used widely, and the incorporation of MIMO techniques is rising rapidly, albeit in advance of a formal specification. This project hence concentrated on the weight adaptation techniques, which are further from widespread adoption, but which may offer additional or complementary benefits to the diversity methods. 7 Smart Antenna Technology CUL/EM/030854/RP/06 Final Report (Issue 2) A wide range of possible wireless applications that have high economic value to the UK have been considered as candidates for the early adoption of smart antennas. These include mobile and broadcast communications, wireless local area networks (WLAN) and broadband wireless access (BWA). In some cases, smart antennas based on various techniques are already available commercially, or have
Recommended publications
  • User Guide 026V029
    User Guide 026v029 System Release 3.5.2 ePMP 2000 5 GHz Connectorized Access Point (Full Product Description and Lite System Planning ePMP 1000 2.4/2.5/5/6.4 GHz Connectorized Radio Configuration with Sync (Full and Lite) Operation and ePMP 1000 2.4/2.5/5/6.4 GHz Connectorized Radio Troubleshooting ePMP 1000 2.4/5 GHz Integrated Radio Legal and Reference ePMP 2.4/5 GHz Force 200AR-25 High Gain Radio Information ePMP 5 GHz Force 190 Subscriber Module ePMP 5 GHz Force 180 Integrated Radio CAMBIUM NETWORKS Accuracy While reasonable efforts have been made to assure the accuracy of this document, Cambium Networks assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. Cambium reserves the right to make changes to any products described herein to improve reliability, function, or design, and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Cambium does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others. It is possible that this publication may contain references to, or information about Cambium products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Cambium intends to announce such Cambium products, programming or services in your country.
    [Show full text]
  • Multibeam- Smart Antenna Systems for Wless Communications
    MULTIBEAM- SMART ANTENNA SYSTEMS FOR WLESS COMMUNICATIONS XIAOMING W, M.Eng. (Tsinghua University) B .Eng.(Shanghai Jiaotong Universiw) A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirernents for the Degree PhD McMaster University @ Copyright by Xiaoming Yu, November 17, 1999 National Library Bibliothèque nationale du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 WeUington Street 395. rue WeUington Ottawa ON KtA ON4 Ottawa ON KIA ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence dowing the exclusive permettant à la National Libmy of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la fome de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantid extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. MULTIBEAM SMART ANTENNA SYSTEMS FOR WIRELESS COMMUNICATIONS PHD (1999) MCMASTER UNIVERSITY (Electrical and Computer Engineering) Hamilton, Ontario TITLE: Multibeam Srnart Antenna Systems for Wireless Communications AUTHOR: Xiaoming Yu M.Eng. (Tsinghua University) B .Eng.(Shanghai Jiaotong University) SUPERWSOR: Dr. John Litva NUMBER OF PAGES: xii, 123 ABSTRACT Smart antennas have emerged as one of the key technologies in wireless com- munications.
    [Show full text]
  • American Broadcasting Company from Wikipedia, the Free Encyclopedia Jump To: Navigation, Search for the Australian TV Network, See Australian Broadcasting Corporation
    Scholarship applications are invited for Wiki Conference India being held from 18- <="" 20 November, 2011 in Mumbai. Apply here. Last date for application is August 15, > 2011. American Broadcasting Company From Wikipedia, the free encyclopedia Jump to: navigation, search For the Australian TV network, see Australian Broadcasting Corporation. For the Philippine TV network, see Associated Broadcasting Company. For the former British ITV contractor, see Associated British Corporation. American Broadcasting Company (ABC) Radio Network Type Television Network "America's Branding Broadcasting Company" Country United States Availability National Slogan Start Here Owner Independent (divested from NBC, 1943–1953) United Paramount Theatres (1953– 1965) Independent (1965–1985) Capital Cities Communications (1985–1996) The Walt Disney Company (1997– present) Edward Noble Robert Iger Anne Sweeney Key people David Westin Paul Lee George Bodenheimer October 12, 1943 (Radio) Launch date April 19, 1948 (Television) Former NBC Blue names Network Picture 480i (16:9 SDTV) format 720p (HDTV) Official abc.go.com Website The American Broadcasting Company (ABC) is an American commercial broadcasting television network. Created in 1943 from the former NBC Blue radio network, ABC is owned by The Walt Disney Company and is part of Disney-ABC Television Group. Its first broadcast on television was in 1948. As one of the Big Three television networks, its programming has contributed to American popular culture. Corporate headquarters is in the Upper West Side of Manhattan in New York City,[1] while programming offices are in Burbank, California adjacent to the Walt Disney Studios and the corporate headquarters of The Walt Disney Company. The formal name of the operation is American Broadcasting Companies, Inc., and that name appears on copyright notices for its in-house network productions and on all official documents of the company, including paychecks and contracts.
    [Show full text]
  • XM Radio Smart Antenna (GXM-30)
    GXM 30® XM Radio Smart Antenna owner’s manual © Copyright 2005 Garmin Ltd. or its subsidiaries Garmin International, Inc. Garmin (Europe) Ltd. Garmin Corporation 1200 East 151st Street, Unit 5, The Quadrangle, Abbey Park No. 68, Jangshu 2nd Road, Shijr, Taipei Olathe, Kansas 66062, U.S.A. Industrial Estate, Romsey, SO51 9DL, U.K. County, Taiwan Tel. 913/397.8200 or 800/800.1020 Tel. 44/0870.8501241 Tel. 886/2.2642.9199 Fax 913/397.8282 Fax 44/0870.8501251 Fax 886/2.2642.9099 All rights reserved. Except as expressly provided herein, no part of this manual may be reproduced, copied, transmitted, disseminated, downloaded or stored in any storage medium, for any purpose without the express prior written consent of Garmin. Garmin hereby grants permission to download a single copy of this manual onto a hard drive or other electronic storage medium to be viewed and to print one copy of this manual or of any revision hereto, provided that such electronic or printed copy of this manual must contain the complete text of this copyright notice and provided further that any unauthorized commercial distribution of this manual or any revision hereto is strictly prohibited. Information in this document is subject to change without notice. Garmin reserves the right to change or improve its products and to make changes in the content without obligation to notify any person or organization of such changes or improvements. Visit the Garmin Web site (www.garmin. com) for current updates and supplemental information concerning the use and operation of this and other Garmin products.
    [Show full text]
  • Radio Channel Measurements and Modeling for Smart Antenna Array Systems Using a Software Radio Receiver
    Radio Channel Measurements and Modeling for Smart Antenna Array Systems Using a Software Radio Receiver William G. Newhall Dissertation submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering Committee Jeffrey H. Reed (Chairman) Warren L. Stutzman William H. Tranter Brian D. Woerner C. Patrick Koelling April 2003 Blacksburg, Virginia © 2003 William G. Newhall Keywords: Propagation Measurement, Channel Modeling, Vector Channels, Smart Antenna, Software Radio, Multipath, Wireless Communications. Radio Channel Measurements and Modeling for Smart Antenna Array Systems Using a Software Radio Receiver William G. Newhall Abstract This dissertation presents research performed in the areas of radio wave propagation measurement and modeling, smart antenna arrays, and software-defined radio development. A four-channel, wideband, software-defined receiver was developed to serve as a test bed for wideband measurements and antenna array experiments. This receiver was used to perform vector channel measurements in terrestrial and air-to-ground environments using an antenna array. Measurement results served as input to radio channel simulations based on three geometric channel models. The simulation results were compared to measurement results to evaluate the performance of the radio channel models under test. Criteria for evaluation include RMS delay spread, excess delay spread, signal envelope fading, antenna diversity gain, and gain achieved through the use of a two-dimensional rake receiver. This research makes contributions to the wireless communications field through analysis, development, measurement, and simulation that builds upon past theoretical and experimental results. Contributions include a software-defined radio architecture, based on object oriented techniques, that has been developed and successfully demonstrated using the wideband receiver.
    [Show full text]
  • Beam Forming in Smart Antenna with Improved Gain and Suppressed Interference Using Genetic Algorithm
    Cent. Eur. J. Comp. Sci. • 2(1) • 2012 • 1-14 DOI: 10.2478/s13537-012-0001-0 Central European Journal of Computer Science Beam forming in smart antenna with improved gain and suppressed interference using genetic algorithm Research Article T. S. Ghouse Basha1∗, M. N. Giri Prasad2, P.V. Sridevi3 1 K.O.R.M.College of Engineering, Kadapa, Andhra Pradesh, India 2 J.N.T.U.College of Engineering, Anantapur, Andhra Pradesh, India 3 Department of ECE, AU College of Engineering, Andhra University, Visakha Patnam, Andhra Pradesh, India Received 21 September 2011; accepted 18 November 2011 Abstract: The most imperative process in smart antenna system is beam forming, which changes the beam pattern of an antenna for a particular angle. If the antenna does not change the position for the specified angle, then the signal loss will be very high. By considering the aforesaid drawback, here a new genetic algorithm based technique for beam forming in smart antenna system is proposed. In the proposed technique, if the angle is given as input, the maximum signal gain in the beam pattern of the antenna with corresponding position and phase angle is obtained as output. The length of the beam, interference, phase angle, and the number of patterns are the factors that are considered in our proposed technique. By using this technique, the gain of the system gets increased as well as the interference is reduced considerably. The implementation result exhibits the efficiency of the system in beam forming. Keywords: smart antenna • beam forming • genetic algorithm (GA) • phase angle • main beam © Versita Sp.
    [Show full text]
  • Technology Niche Analysis® Radio Direction Finding System June 30, 2017
    Technology Niche Analysis® Radio Direction Finding System June 30, 2017 Science/Technology Fields: antennae, radio signals Technology Type: Product International Patent Classification: H01Q, G06F Geographic Region: Global SAMPLE Prepared by: Foresight Science & Technology 401-273-4844 [email protected] Foresight Science & Technology, 34 Hayden Rowe Street, Suite #300, Hopkinton MA 01748 Voice: 401-273-4844; Fax: 401-354-1301; Web: http://www.foresightst.com/ Foresight Science & Technology— Technology Niche Analysis® Executive Summary The function of Technology Niche Analysis® report is to provide data that can be used to help small businesses strategically position their technology in the specific market niche. Our findings are based on an examination of the material provided by the client, conducted interviews and Web searching. The key findings are: • Innovation Being Commercialized: Reconfigurable radio signal direction finder antenna for millimeter wave technology. • Intellectual Property: Patents for estimating the direction of arrival of radio signals using a reconfigurable antenna. • Major Substitutable Products and Technology That Already Exists: Lower frequency radio waves. • Commercialization Strategy Considerations: Licensing the technology for use by multiple industries. • Examples of Potential Targets: Cell phones, marine, aerial, defense, and tracking. • Value Proposition: Provide small-scale antenna that estimates the radio signal angle-of- arrival which is then used to steer/reconfigure the antenna to find/maximize the signal. Introduction The following is a generic description of this technology. Description of Technology Reconfigurable antenna radio direction finder system This technology is a reconfigurable radio direction finder antenna technology that estimates the angle-of-arrival (AOA) of radio signal using receiver and antenna system which estimates the low resolution of the AOA, then simulates the high-resolution estimate of AOA which is then used for the steering/reconfiguring the antenna.
    [Show full text]
  • Adaptive Beamforming Approaches for Smart Antenna Systems
    ADAPTIVE BEAMFORMING APPROACHES FOR RAWAN MANSOUR RAWAN SMART ANTENNA SYSTEMS A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF APPLIED SCIENCES OF ADAPTIVE BEAMFORMING APPROACHES BEAMFORMING ADAPTIVE FOR NEAR EAST UNIVERSITY SMART ANTENNA SYSTEMS ANTENNA SMART By RAWAN MANSOUR In Partial Fulfillment of the Requirements for The Degree of Master of Science in Electrical and Electronic Engineering NEU 2016 NICOSIA, 2016 ADAPTIVE BEAMFORMING APPROCHES FOR SMART ANTENNA SYSTEMS A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF APPLIED SCIENCES OF NEAR EAST UNIVERSITY By RAWAN MANSOUR In Partial Fulfillment of the Requirements for The Degree of Master of Science in Electrical and Electronic Engineering NICOSIA, 2016 Rawan MANSOUR: ADAPTIVE BEAMFORMING APPROACHES FOR SMART ANTENNA SYSTEMS Approval of Director of Graduate School of Applied Sciences Prof. Dr. İlkay SALİHOĞLU We certify this thesis is satisfactory for the award of the degree of Masters of Science in Electrical and Electronic Engineering Examining Committee in Charge: I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name: Rawan Mansour Signature: Date: i ACKNOWLEDGMENTS I would like to express my sincere appreciation and thanks to my supervisor, Dr. Refet Ramiz, for his guidance and support throughout my study and thesis preparation. His knowledge, advices and creative thinking were the source of inspiration throughout this work. I would also like to express my gratitude to my mother, my father, brothers, and sisters for their support, patience, and feelings of love all over my life.
    [Show full text]
  • Cablevision Systems Long Island Corporation
    APPLICATION FOR RENEWAL OF FRANCHISE OR CERTIFICATE OF CONFIRMATION 1. The exact legal name of applicant is: Cablevision Systems Long Island Corporation 2. Applicant does business under the following trade name or names: Altice USA Optimum 3. Applicant's mailing address is: 1 Court Square West Long Island City, NY 11101 4. Applicant's telephone number(s) is/are: (516) 803-2300 5. (A) This application is for a renewal of operating rights in the The Village of Mill Neck (B) Applicant serves the following additional municipalities from the same headend or from a different headend but in the same or an adjacent county: "See Attachment A" 6. The following signals are regularly carried by the applicant's cable system (where signals are received other than by direct off-air pickup, please so indicate): "See Attachment B" 7. Applicant does [X] does not [ ] provide channel capacity and/or production facilities for local origination. If answer is affirmative, specify below the number of hours of locally originated programming carried by the system during the past twelve months and briefly describe the nature of the programming: Applicant provides local programming through News 12 Networks, the leader in hyper-local content, providing news, weather, traffic and sports exclusively to cable subscribers in the New York Metro Area through a 24/7 local news channel (commercial advertising being interspersed with regular programming), a traffic and weather channel, and coverage of local high school sports. Public Access, Government Access and Educational Access, produced by community members, including topics such as health, religion, cooking, sports, talk shows, municipal and school meetings and announcements, fill out the community programming complement of offerings.
    [Show full text]
  • Southern Westchester 2 2
    FOLD -------- FOLD -------- T-42233 - 7869(1,2,6-18) MotorTrend (HD only) 150 • • • • Game+3,7 238 TMC West1,7 392 EWTN Español6,7 1097 Effective March 2021 Crime & Investigation Willow3,6 239/1171 TMC Xtra1,7 393 En Español On Demand6,8 1099 152 • • • • Southern Westchester Network (HD only) World Fishing Network3,7 241 • TMC Xtra West1,7 394 Noire Africa1,6,7 1100 Pop 154 • • Sportsman Channel3,7 242 • MGM (HD only) 395 • Afrotainment Plus1,6,7 1101 7 3,7 1,6,7 Channel Guide Lineup Fusion 156 • • MavTV Motorsport Network 243 Sony Movie Channel 396 • CEEN 1103 7 • • 3,7 1,6,7 The Cowboy Channel 157 Fight Network 244 Flix7 397 • • CaribVision 1104 Nat Geo Wild 158 • • TVG Network3,7 245 • ON DEMAND & PPV Tempo1,6,7 1105 160 • • 4,7 1,6,7 Key FYI SEC 246 • • On Demand1, 8 500 • • • • • i24NEWS (in French) 1108 1,6,7 Vice TV 161 • • BTN3,4 247 • • • 8 TV5MONDE 1109 ● ● ● Free On Demand 502 • • • • • Broadcast Basic Optimum Value Optimum Premier High Definition 2 1,6,7 National Geographic 162 • • • ACC Network3,4,7 248 • • • TOKU On Demand1, 8 506 BFMTV 1110 ● ● 4,7 1,7 Optimum Core Optimum Preferred/Optimum Select Smithsonian Channel 163 • • FOX College Sports Atlantic 249 Anime Network On Demand1, 8 507 DW Deutsch 1112 7 1,6,7 Z Living 164 • • FOX College Sports Central4,7 250 here! On Demand1, 8 509 iTVN 1115 7 1,6,7 Networks Ch. Package C-SPAN 27 66 • • • • • Classic Arts Showcase 165 • • • • FOX College Sports Pacific4,7 251 Adult Programming1, 8 520-533 TVN24 1117 1,7 • • • • Turner Classic Movies2 67 • • • Cooking Channel 166 • •
    [Show full text]
  • Modified MUSIC Algorithm for Doa Estimation Using CRLH Leaky-Wave
    WK,QWHUQDWLRQDO&RQIHUHQFHRQ&RJQLWLYH5DGLR2ULHQWHG:LUHOHVV1HWZRUNV &52:1&20 Modified MUSIC Algorithm for DoA Estimation Using CRLH Leaky-Wave Antennas Henna Paaso and Aarne Mammel¨ a¨ Damiano Patron and Kapil R. Dandekar VTT Technical Research Centre of Department of Electrical and Computer Engineering Finland Drexel University Email: {Henna.Paaso,Aarne.Mammela}@vtt.fi Philadelphia, PA, USA Email: {damiano.patron,dandekar}@drexel.edu Abstract—In this paper, we formulate and experimentally demonstrate direction of arrival (DoA) estimation with a two-port composite right/left handed (CRLH) leaky-wave antenna (LWA) using the multiple signal classification (MUSIC) algorithm. The CRLH LWA consists of a cascade of metamaterial unit cells, periodically modulated using varactor diodes. By changing the voltages across series and shunt varactors, the antenna is able to uniformly steer its radiation pattern. The proposed modified MUSIC algorithm, uses both antenna’s input ports to estimate the DoA. Conventionally, the MUSIC algorithm needs to calculate the correlation matrix from the output vector of an array of antenna elements. In this work, we show in detail how the correlation matrix can be computed when using leaky-wave antennas. The algorithm is demonstrated using LWA in an anechoic chamber and the estimated DoA results are in good agreement with the predicted angles. Fig. 1. System model. I. INTRODUCTION Direction of arrival estimation using compact antenna arrays be significantly improved over previous methods. In this paper are of great importance to future cognitive radio systems. we focus on the MUSIC algorithm, showing how it can be The spectrum reuse and sensing performance can be greatly used with a metamaterial LWA instead of conventional antenna improved by using spatial dimension with the help of reconfig- arrays.
    [Show full text]
  • Design Analysis of Adaptive Beamforming in a MIMO-Millimeter Wave 5G Heterogeneous Wireless Network Using Machine Learning Models
    Design Analysis of Adaptive Beamforming in a MIMO-millimeter Wave 5G Heterogeneous Wireless Network using Machine Learning Models Sanjeev Chopra ( [email protected] ) Thapar Institute of Engineering and Technology https://orcid.org/0000-0002-6915-6746 Research Article Keywords: Adaptive Beamforming, Multiple-Input-Multiple-Output, Millimeter- Wave, 5G Machine Learning, Random Forest, Maximum Signal-to-Noise- Interference Ratio Posted Date: April 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-312958/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Design Analysis of Adaptive Beamforming in a MIMO-millimeter Wave 5G Heterogeneous Wireless Network using Machine Learning Models Sanjeev Chopra ECED, T.I.E.T., Punjab. [email protected] Abstract Beamforming (BF) is a smart antenna technique to provide a summation of the weighted signal over multi-users to produce the more concentrated transmitted signal from massive MIMO antenna arrays deployed in a Millimeter-Wave (mm- Wave) 5G heterogeneous wireless network. It adjusts the amplitudes and phases of the signals received over different antennas in an optimum manner in the form of directional radiation. This paper will help in the installation of 5G and 6G mm- Wave heterogeneous wireless networks. Here, adaptive BF is designed and being implemented on the Machine Learning (ML) platform using Signal-to-Noise- Interference Ratio (SINR). The four ML methods having six BF properties to estimate the SINR of Multiple-Input-Multiple-Output (MIMO) - mm-Wave 5G wireless network are explored. The proposed algorithm suppresses noise plus interference and can reduce the power consumption.
    [Show full text]