Selective Engagement of G Protein Coupled Receptor Kinases (Grks) Encodes Distinct Functions of Biased Ligands

Total Page:16

File Type:pdf, Size:1020Kb

Selective Engagement of G Protein Coupled Receptor Kinases (Grks) Encodes Distinct Functions of Biased Ligands Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands David A. Zidara, Jonathan D. Violina, Erin J. Whalena, and Robert J. Lefkowitza,b,c,1 Departments of aMedicine, bBiochemistry, and cHoward Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710 Contributed by Robert J. Lefkowitz, April 24, 2009 (sent for review February 13, 2009) CCL19 and CCL21 are endogenous agonists for the seven-trans- to be uniquely required for ␤-arrestin-mediated MAP kinase membrane receptor CCR7. They are equally active in promoting G signaling (16, 17). protein stimulation and chemotaxis. Yet, we find that they result The chemokine receptor CCR7 is particularly important for in striking differences in activation of the G protein-coupled immune responses requiring the coordinated interaction of receptor kinase (GRK)/ß-arrestin system. CCL19 leads to robust various cell types within lymphoid tissues (18, 19). It is unique CCR7 phosphorylation and ␤-arrestin2 recruitment catalyzed by for its high expression on mature, naïve T lymphocytes and is both GRK3 and GRK6 whereas CCL21 activates GRK6 alone. This vital for homeostatic recirculation of these cells through sec- differential GRK activation leads to distinct functional conse- ondary lymphoid tissues. CCR7 has two endogenous ligands, quences. Although each ligand leads to ␤-arrestin2 recruitment, CCL19 and CCL21, which have evolved from a series of complex only CCL19 leads to redistribution of ␤-arrestin2-GFP into endocytic gene duplications and retain 32% amino acid sequence homol- vesicles and classical receptor desensitization. In contrast, these ago- ogy (20–22). They are predicted to be structurally similar except ␤ nists are both capable of signaling through GRK6 and -arrestin2 to that CCL21 has a conserved motif consisting of an additional 37 ERK kinases. Thus, this mechanism for ‘‘ligand bias’’ whereby amino acids at its C terminus (23). CCL19 and CCL21 have been endogenous agonists activate different GRK isoforms leads to shown to have similar binding affinities (Kd Ϸ100 pM), equal ␤ BIOCHEMISTRY functionally distinct pools of -arrestin. efficacy for G protein activation, calcium flux, and chemotactic responses (20–22, 24–26). Yet, some signaling characteristics ͉ ͉ ͉ ͉ CCR7 CCL19 CCL21 chemokine arrestin appear to be unique to CCL19-activated CCR7. For instance, CCL19 but not CCL21 is reported to lead to receptor desensi- raditional agonists of seven-transmembrane receptors tization (20), internalization (27, 28), receptor degradation (29), T(7TMRs) lead to the simultaneous activation of G protein- and rapid dendrite extension (30). Recently, Kohout et al. (31) ␤ and -arrestin-dependent signaling pathways through a series of have reported that CCL19 but not CCL21 also leads to receptor broadly conserved biochemical steps (1). Receptor activation phosphorylation and ␤-arrestin recruitment. Here, we examine promotes the dissociation of heterotrimeric G proteins into free ␥ the role of individual GRKs in orchestrating the differential G␣ and G␤ subunits and subsequent second messenger signal- signaling of CCR7 with particular emphasis on ␤-arrestin- ing. Agonist-activated 7TMRs undergo phosphorylation by G mediated functions. protein-coupled receptor kinases (GRKs), and this promotes the binding of ␤-arrestins (2). ␤-Arrestins desensitize 7TMR- Results mediated G protein signaling at several mechanistic levels G Protein Signaling. CCL19 and CCL21 have been shown to have including direct steric hindrance of the receptor by ␤-arrestin i/o equal binding affinities for CCR7 and equivalent efficacy and attachment (3), recruitment of 2nd messenger-degrading en- potency for the activation of the G subfamily of G proteins (21, zymes (4, 5), and by acting as a scaffold for proteins that facilitate i/o 24, 25). To confirm this in live cells, we designed an assay to study receptor internalization (6). G -mediated inhibition of adenylate cyclase by using the cAMP ␤-Arrestin binding also initiates additional signaling programs i/o through coordinated recruitment of signaling intermediates to biosensor ICUE2 (32, 33). Human embryonic kidney (HEK) ␤ cells stably coexpressing CCR7 and ICUE2 were treated with activated receptors. For instance, -arrestin-dependent signaling ␮ to MAP kinase has been extensively characterized and is de- forskolin (50 M) in the absence or presence of saturating monstrable for many 7TMRs (7, 8). Proteomic approaches concentrations of CCL19 (100 nM) or CCL21 (100 nM). Fors- predict an ‘‘interactome’’ of hundreds of additional binding kolin stimulation results in a large decrease in ICUE2 FRET, partners (9). indicating an increase in intracellular cAMP concentration (Fig. Recently, ‘‘␤-arrestin-biased’’ synthetic ligands have been 1A). Coincubation of forskolin with either CCR7 ligand led to a blunted response indicative of simultaneous G signaling. There described for the angiotensin 1A receptor (10), ␤2-adrenergic i/o receptor (␤2AR) (11, 12), and parathyroid hormone receptor was no difference between CCL19 and CCL21 for the inhibition (13). These ligands each cause receptor phosphorylation and of forskolin responsiveness, indicating that these ligands have ␤-arrestin-mediated effects in the absence of G protein activa- comparable efficacy for Gi/o signaling. tion. The mechanism of ligand bias is poorly understood al- though biophysical studies suggest that agonists and receptors Author contributions: D.A.Z., J.D.V., E.J.W., and R.J.L. designed research; D.A.Z. performed oscillate among multiple conformations, some of which may be research; D.A.Z., J.D.V., E.J.W., and R.J.L. analyzed data; and D.A.Z., J.D.V., E.J.W., and R.J.L. capable of differential signaling (14, 15). wrote the paper. ␤ Given the complexity of -arrestin function, the traditional The authors declare no conflict of interest. concept of GRKs as redundant kinases is likely overly simplistic. Freely available online through the PNAS open access option. GRKs 2, 3, 5, and 6 are ubiquitously expressed. The extent to 1To whom correspondence should be addressed at: Box 3821, Duke University Medical which they provide redundancy versus functional specialization Center, Durham, NC 27710. E-mail: [email protected]. is largely unknown, but evidence for the latter has recently This article contains supporting information online at www.pnas.org/cgi/content/full/ emerged in some receptor systems. For instance, GRK5/6 appear 0904361106/DCSupplemental. www.pnas.org͞cgi͞doi͞10.1073͞pnas.0904361106 PNAS ͉ June 16, 2009 ͉ vol. 106 ͉ no. 24 ͉ 9649–9654 Downloaded by guest on September 28, 2021 ABC 9 -10 -10 CCL19 7 -8 -8 NS CCL19CCL21 FSK 5 -6 -6 FSK IP: CCR7- CCL21 -4 -4 FLAG 3 %FRET -2 FSK+CCL19 -2 FSK+CCL21 1 CXCL12 ICUE2 %FRET ICUE2 %FRET 0 0 2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0 -1 Minutes Minutes Minutes 90 100 80 60 *** 70 75 50 60 *** 40 50 50 40 30 *** CCR7 30 ** -arrestin 20 β (%CCL19) 20 25 Recruitment (AUC, %FRET) (AUC, (AUC, %FRET) 10 10 Phosphorylation cAMP Accumulation cAMP 0 0 0 __ FSK + + + _ _ CXCL12 + _ _ CCL19 + _ _ CCL19 + __ CCL19 + _ _ CCL21 + _ _ CCL21 + CCL21 + Fig. 1. CCL19 and CCL21 lead to equivalent G protein responses but differential CCR7 phosphorylation and ß-arrestin2 recruitment. (A) HEK-293 cells stably expressing CCR7 and the cAMP biosensor ICUE2 were stimulated with 50 ␮M forskolin in the presence or absence of saturating concentrations of CCL19 (100 nM) or CCL21 (100 nM). cAMP accumulation was measured as the change in ICUE2 FRET ratio. (Upper) Change in FRET (mean Ϯ SE, n ϭ 4). (Lower) Integrated response 32 after 10 min. (B) HEK-293 cells stably expressing CCR7-FLAG were labeled with Pi and stimulated at 37 °C for 10 min with or without 100 nM CCL19 or 100 nM 32 CCL21 as indicated. (Upper) Representative image showing Pi incorporation. (Lower) Bar graph that represents the mean Ϯ SE from six independent experiments. (C) Live HEK-293 cells stably expressing CCR7-CFP and ß-arrestin2-YFP were stimulated with 100 nM CXCL12, 100 nM CCL21, or 100 nM CCL19, and the recruitment of ß-arrestin2 was measured by FRET. Data represent the mean Ϯ SE from six experiments. Statistical significance was determined by paired two-tailed t tests. **, P Ͻ 0.01; ***, P Ͻ 0.001. CCR7 Phosphorylation and ␤-Arrestin2 Recruitment. The ability to nor class B, suggesting that this interaction is even more transient undergo agonist-induced phosphorylation is a hallmark of than that typically seen for class A receptors. 7TMRs and an important, proximate indicator of GRK function. ␤-Arrestin recruitment classically leads to agonist-induced To compare CCL19 and CCL21 for bulk receptor phosphory- receptor desensitization. To compare the CCR7 ligands for their 32 lation, we analyzed the incorporation of Pi into CCR7-FLAG ability to induce desensitization, HEK cells stably expressing after 10 min of stimulation. CCL19 (100 nM) led to robust CCR7 CCR7 and ICUE2 were preincubated with CCL19 (100 nM) or phosphorylation (Fig. 1B), whereas CCL21 (100 nM) mediated CCL21 (100 nM) for 60 min. Cells were then washed, and Gi/o a much smaller but consistent level of CCR7 phosphorylation activity was assessed by restimulation with CCL21 (100 nM) and Ϯ (21.6 6.1% of that induced by CCL19). forskolin (50 ␮M). We found that preincubation with CCL19 ␤ Next, we sought to compare -arrestin2 recruitment with leads to complete desensitization of CCR7 toward subsequent G CCR7 in response to CCL19 and CCL21. Live HEK cells stably protein activation (Fig. 2B). In contrast, desensitization was not ␤ expressing CCR7-CFP and -arrestin2-YFP were stimulated observed after preincubation with CCL21. with 100 nM CCL19 or 100 nM CCL21, and the time course of ␤ -arrestin recruitment to the receptor was analyzed by FRET ␤-Arrestin2-Mediated MAPK Signaling. In addition to desensitiza- (Fig. 1C). CCL19 promoted a robust interaction between the tion, ␤-arrestins also function as scaffolds to facilitate signaling receptor and ␤-arrestin2 whereas the effect of CCL21 was weak pathways such as ERK activation.
Recommended publications
  • Defective Lymphocyte Chemotaxis in Я-Arrestin2- and GRK6-Deficient Mice
    Defective lymphocyte chemotaxis in ␤-arrestin2- and GRK6-deficient mice Alan M. Fong*, Richard T. Premont*, Ricardo M. Richardson*, Yen-Rei A. Yu†, Robert J. Lefkowitz*‡§, and Dhavalkumar D. Patel*†¶ Departments of *Medicine, ‡Biochemistry, and †Immunology, and §Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710 Contributed by Robert J. Lefkowitz, April 4, 2002 Lymphocyte chemotaxis is a complex process by which cells move kinase, extracellular receptor kinase, and c-jun terminal kinase within tissues and across barriers such as vascular endothelium and activation (9–12), they might also act as positive regulators of is usually stimulated by chemokines such as stromal cell-derived chemotaxis. To evaluate the role of the GRK-arrestin pathway factor-1 (CXCL12) acting via G protein-coupled receptors. Because in chemotaxis, we studied the chemotactic responses of lym- members of this receptor family are regulated (‘‘desensitized’’) by phocytes from ␤-arrestin- and GRK-deficient mice toward G protein-coupled receptor kinase (GRK)-mediated receptor phos- gradients of stromal cell-derived factor 1 (CXCL12), a well ␤ phorylation and -arrestin binding, we examined signaling and characterized chemokine whose receptor is CXCR4, a core- chemotactic responses in splenocytes derived from knockout mice ceptor for HIV. deficient in various ␤-arrestins and GRKs, with the expectation that these responses might be enhanced. Knockouts of ␤-arrestin2, Materials and Methods GRK5, and GRK6 were examined because all three proteins are :expressed at high levels in purified mouse CD3؉ T and B220؉ B Mice. The following mouse strains were used in this study splenocytes. CXCL12 stimulation of membrane GTPase activity was ␤-arrestin2-deficient (back-crossed for six generations onto the unaffected in splenocytes derived from GRK5-deficient mice but C57͞BL6 background; ref.
    [Show full text]
  • Combined Integrin Phosphoproteomic Analyses and Small Interfering RNA–Based Functional Screening Identify Key Regulators for Cancer Cell Adhesion and Migration
    Published OnlineFirst April 7, 2009; DOI: 10.1158/0008-5472.CAN-08-2515 Published Online First on April 7, 2009 as 10.1158/0008-5472.CAN-08-2515 Research Article Combined Integrin Phosphoproteomic Analyses and Small Interfering RNA–Based Functional Screening Identify Key Regulators for Cancer Cell Adhesion and Migration Yanling Chen,1 Bingwen Lu,2 Qingkai Yang,1 Colleen Fearns,3 John R. Yates III,2 and Jiing-Dwan Lee1 Departments of 1Immunology, 2Chemical Physiology, and 3Chemistry, The Scripps Research Institute, La Jolla, California Abstract cytoskeletal components (2, 7) and regulation of cell survival, Integrins interact with extracellular matrix (ECM) and deliver proliferation, differentiation, cell cycle, and migration (8, 9). Understanding the mechanism by which integrins modulate these intracellular signaling for cell proliferation, survival, and motility. During tumor metastasis, integrin-mediated cell cellular activities is of significant biological importance. adhesion to and migration on the ECM proteins are required The most common cancers in human include breast cancer, for cancer cell survival and adaptation to the new microen- prostate cancer, lung cancer, colon cancer, and ovarian cancer (10, 11), and their metastasis is the leading cause of mortality in vironment. Using stable isotope labeling by amino acids in cell cancer patients, causing 90% of deaths from solid tumors (11, 12). culture–mass spectrometry, we profiled the phosphoproteo- During the process of metastasis, tumor cells leave the primary mic changes induced by the interactions of cell integrins with site, travel via blood and/or lymphatic circulatory systems, attach type I collagen, the most common ECM substratum. Integrin- to the substratum of ECM at a distant site, and establish a ECM interactions modulate phosphorylation of 517 serine, secondary tumor, accompanied by angiogenesis of the newly threonine, or tyrosine residues in 513 peptides, corresponding formed neoplasm (12).
    [Show full text]
  • Investigating the Role of Cdk11in Animal Cytokinesis
    Investigating the Role of CDK11 in Animal Cytokinesis by Thomas Clifford Panagiotou A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Molecular Genetics University of Toronto © Copyright by Thomas Clifford Panagiotou (2020) Investigating the Role of CDK11 in Animal Cytokinesis Thomas Clifford Panagiotou Master of Science Department of Molecular Genetics University of Toronto 2020 Abstract Finely tuned spatio-temporal regulation of cell division is required for genome stability. Cytokinesis constitutes the final stages of cell division, from chromosome segregation to the physical separation of cells, abscission. Abscission is tightly regulated to ensure it occurs after earlier cytokinetic events, like the maturation of the stem body, the regulatory platform for abscission. Active Aurora B kinase enforces the abscission checkpoint, which blocks abscission until chromosomes have been cleared from the cytokinetic machinery. Currently, it is unclear how this checkpoint is overcome. Here, I demonstrate that the cyclin-dependent kinase CDK11 is required for cytokinesis. Both inhibition and depletion of CDK11 block abscission. Furthermore, the mitosis-specific CDK11p58 kinase localizes to the stem body, where its kinase activity rescues the defects of CDK11 depletion and inhibition. These results suggest a model whereby CDK11p58 antagonizes Aurora B kinase to overcome the abscission checkpoint to allow for successful completion of cytokinesis. ii Acknowledgments I am very grateful for the support of my family and friends throughout my studies. I would also like to express my deep gratitude to Wilde Lab members, both past and present, for their advice and collaboration. In particular, I am very grateful to Matthew Renshaw, whose work comprises part of this thesis.
    [Show full text]
  • The Emerging Roles and Therapeutic Potential of Cyclin- Dependent Kinase 11 (CDK11) in Human Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 26 Review The emerging roles and therapeutic potential of cyclin- dependent kinase 11 (CDK11) in human cancer Yubing Zhou1,2, Jacson K. Shen2, Francis J. Hornicek2, Quancheng Kan1 and Zhenfeng Duan1,2 1 Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China 2 Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, United States of America Correspondence to: Quancheng Kan, email: [email protected] Correspondence to: Zhenfeng Duan, email: [email protected] Keywords: CDK11, CDKs inhibitor, cell cycle, therapeutic target, cancer therapy Received: January 20, 2016 Accepted: March 28, 2016 Published: March 31, 2016 ABSTRACT Overexpression and/or hyperactivation of cyclin-dependent kinases (CDKs) are common features of most cancer types. CDKs have been shown to play important roles in tumor cell proliferation and growth by controlling cell cycle, transcription, and RNA splicing. CDK4/6 inhibitor palbociclib has been recently approved by the FDA for the treatment of breast cancer. CDK11 is a serine/threonine protein kinase in the CDK family and recent studies have shown that CDK11 also plays critical roles in cancer cell growth and proliferation. A variety of genetic and epigenetic events may cause universal overexpression of CDK11 in human cancers. Inhibition of CDK11 has been shown to lead to cancer cell death and apoptosis. Significant evidence has suggested that CDK11 may be a novel and promising therapeutic target for the treatment of cancers. This review will focus on the emerging roles of CDK11 in human cancers, and provide a proof-of-principle for continued efforts toward targeting CDK11 for effective cancer treatment.
    [Show full text]
  • Supplementary Table 1. in Vitro Side Effect Profiling Study for LDN/OSU-0212320. Neurotransmitter Related Steroids
    Supplementary Table 1. In vitro side effect profiling study for LDN/OSU-0212320. Percent Inhibition Receptor 10 µM Neurotransmitter Related Adenosine, Non-selective 7.29% Adrenergic, Alpha 1, Non-selective 24.98% Adrenergic, Alpha 2, Non-selective 27.18% Adrenergic, Beta, Non-selective -20.94% Dopamine Transporter 8.69% Dopamine, D1 (h) 8.48% Dopamine, D2s (h) 4.06% GABA A, Agonist Site -16.15% GABA A, BDZ, alpha 1 site 12.73% GABA-B 13.60% Glutamate, AMPA Site (Ionotropic) 12.06% Glutamate, Kainate Site (Ionotropic) -1.03% Glutamate, NMDA Agonist Site (Ionotropic) 0.12% Glutamate, NMDA, Glycine (Stry-insens Site) 9.84% (Ionotropic) Glycine, Strychnine-sensitive 0.99% Histamine, H1 -5.54% Histamine, H2 16.54% Histamine, H3 4.80% Melatonin, Non-selective -5.54% Muscarinic, M1 (hr) -1.88% Muscarinic, M2 (h) 0.82% Muscarinic, Non-selective, Central 29.04% Muscarinic, Non-selective, Peripheral 0.29% Nicotinic, Neuronal (-BnTx insensitive) 7.85% Norepinephrine Transporter 2.87% Opioid, Non-selective -0.09% Opioid, Orphanin, ORL1 (h) 11.55% Serotonin Transporter -3.02% Serotonin, Non-selective 26.33% Sigma, Non-Selective 10.19% Steroids Estrogen 11.16% 1 Percent Inhibition Receptor 10 µM Testosterone (cytosolic) (h) 12.50% Ion Channels Calcium Channel, Type L (Dihydropyridine Site) 43.18% Calcium Channel, Type N 4.15% Potassium Channel, ATP-Sensitive -4.05% Potassium Channel, Ca2+ Act., VI 17.80% Potassium Channel, I(Kr) (hERG) (h) -6.44% Sodium, Site 2 -0.39% Second Messengers Nitric Oxide, NOS (Neuronal-Binding) -17.09% Prostaglandins Leukotriene,
    [Show full text]
  • Targeting CDK2 Overcomes Melanoma Resistance Against BRAF and Hsp90 Inhibitors
    Targeting CDK2 overcomes melanoma resistance against BRAF and Hsp90 inhibitors Downloaded from: https://research.chalmers.se, 2019-05-11 18:56 UTC Citation for the original published paper (version of record): Azimi, A., Caramuta, S., Seashore-Ludlow, B. et al (2018) Targeting CDK2 overcomes melanoma resistance against BRAF and Hsp90 inhibitors Molecular Systems Biology, 14(3) http://dx.doi.org/10.15252/msb.20177858 N.B. When citing this work, cite the original published paper. research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library (article starts on next page) Published online: March 5, 2018 Article Targeting CDK2 overcomes melanoma resistance against BRAF and Hsp90 inhibitors Alireza Azimi1,†, Stefano Caramuta1,†, Brinton Seashore-Ludlow2,†, Johan Boström3 , Jonathan L Robinson4, Fredrik Edfors5, Rainer Tuominen1, Kristel Kemper6, Oscar Krijgsman6 , Daniel S Peeper6 , Jens Nielsen4 , Johan Hansson1, Suzanne Egyhazi Brage1, Mikael Altun3 , Mathias Uhlen5 & Gianluca Maddalo5,* Abstract Introduction Novel therapies are undergoing clinical trials, for example, the Malignant melanoma has the highest somatic mutational rate Hsp90 inhibitor, XL888, in combination with BRAF inhibitors for among cancers (Alexandrov et al, 2013) and its incidence is steadily the treatment of therapy-resistant melanomas. Unfortunately, our increasing (https://training.seer.cancer.gov/melanoma/intro/). In data show that this combination elicits a heterogeneous response the majority of the cases, it harbors BRAF (~60%) or NRAS (~20%) in a panel of melanoma cell lines including PDX-derived models.
    [Show full text]
  • High Constitutive Cytokine Release by Primary Human Acute Myeloid Leukemia Cells Is Associated with a Specific Intercellular Communication Phenotype
    Supplementary Information High Constitutive Cytokine Release by Primary Human Acute Myeloid Leukemia Cells Is Associated with a Specific Intercellular Communication Phenotype Håkon Reikvam 1,2,*, Elise Aasebø 1, Annette K. Brenner 2, Sushma Bartaula-Brevik 1, Ida Sofie Grønningsæter 2, Rakel Brendsdal Forthun 2, Randi Hovland 3,4 and Øystein Bruserud 1,2 1 Department of Clinical Science, University of Bergen, 5020, Bergen, Norway 2 Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway 3 Department of Medical Genetics, Haukeland University Hospital, 5021, Bergen, Norway 4 Institute of Biomedicine, University of Bergen, 5020, Bergen, Norway * Correspondence: [email protected]; Tel.: +55-97-50-00 J. Clin. Med. 2019, 8, x 2 of 36 Figure S1. Mutational studies in a cohort of 71 AML patients. The figure shows the number of patients with the various mutations (upper), the number of mutations in for each patient (middle) and the number of main classes with mutation(s) in each patient (lower). 2 J. Clin. Med. 2019, 8, x; doi: www.mdpi.com/journal/jcm J. Clin. Med. 2019, 8, x 3 of 36 Figure S2. The immunophenotype of primary human AML cells derived from 62 unselected patients. The expression of the eight differentiation markers CD13, CD14, CD15, CD33, CD34, CD45, CD117 and HLA-DR was investigated for 62 of the 71 patients included in our present study. We performed an unsupervised hierarchical cluster analysis and identified four patient main clusters/patient subsets. The mutational profile for each f the 62 patients is also given (middle), no individual mutation of main class of mutations showed any significant association with any of the for differentiation marker clusters (middle).
    [Show full text]
  • Detection of Selection Signatures in Farmed Coho Salmon (Oncorhynchus Kisutch) Using Dense Genome‑Wide Information M
    www.nature.com/scientificreports OPEN Detection of selection signatures in farmed coho salmon (Oncorhynchus kisutch) using dense genome‑wide information M. E. López1, M. I. Cádiz2, E. B. Rondeau3, B. F. Koop3 & J. M. Yáñez2,4* Animal domestication and artifcial selection give rise to gradual changes at the genomic level in populations. Subsequent footprints of selection, known as selection signatures or selective sweeps, have been traced in the genomes of many animal livestock species by exploiting variation in linkage disequilibrium patterns and/or reduction of genetic diversity. Domestication of most aquatic species is recent in comparison with land animals, and salmonids are one of the most important fsh species in aquaculture. Coho salmon (Oncorhynchus kisutch), cultivated primarily in Chile, has been subjected to breeding programs to improve growth, disease resistance traits, and fesh color. This study aimed to identify selection signatures that may be involved in adaptation to culture conditions and traits of productive interest. To do so, individuals of two domestic populations cultured in Chile were genotyped with 200 thousand SNPs, and analyses were conducted using iHS, XP‑EHH and CLR. Several signatures of selection on diferent chromosomal regions were detected across both populations. Some of the identifed regions under selection contained genes such anapc2, alad, chp2 and myn, which have been previously associated with body weight in Atlantic salmon, or sec24d and robo1, which have been associated with resistance to Piscirickettsia salmonis in coho salmon. Findings in our study can contribute to an integrated genome‑wide map of selection signatures, to help identify the genetic mechanisms of phenotypic diversity in coho salmon.
    [Show full text]
  • Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*□S
    crossmark Research Author’s Choice © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*□S Rolf Turk‡§¶ʈ**, Jordy J. Hsiao¶, Melinda M. Smits¶, Brandon H. Ng¶, Tyler C. Pospisil‡§¶ʈ**, Kayla S. Jones‡§¶ʈ**, Kevin P. Campbell‡§¶ʈ**, and Michael E. Wright¶‡‡ Mutations in genes encoding components of the sar- The muscular dystrophies are hereditary diseases charac- colemmal dystrophin-glycoprotein complex (DGC) are re- terized primarily by the progressive degeneration and weak- sponsible for a large number of muscular dystrophies. As ness of skeletal muscle. Most are caused by deficiencies in such, molecular dissection of the DGC is expected to both proteins associated with the cell membrane (i.e. the sarco- reveal pathological mechanisms, and provides a biologi- lemma in skeletal muscle), and typical features include insta- cal framework for validating new DGC components. Es- bility of the sarcolemma and consequent death of the myofi- tablishment of the molecular composition of plasma- ber (1). membrane protein complexes has been hampered by a One class of muscular dystrophies is caused by mutations lack of suitable biochemical approaches. Here we present in genes that encode components of the sarcolemmal dys- an analytical workflow based upon the principles of pro- tein correlation profiling that has enabled us to model the trophin-glycoprotein complex (DGC). In differentiated skeletal molecular composition of the DGC in mouse skeletal mus- muscle, this structure links the extracellular matrix to the cle. We also report our analysis of protein complexes in intracellular cytoskeleton.
    [Show full text]
  • The Mitotic Checkpoint Is a Targetable Vulnerability of Carboplatin-Resistant
    www.nature.com/scientificreports OPEN The mitotic checkpoint is a targetable vulnerability of carboplatin‑resistant triple negative breast cancers Stijn Moens1,2, Peihua Zhao1,2, Maria Francesca Baietti1,2, Oliviero Marinelli2,3, Delphi Van Haver4,5,6, Francis Impens4,5,6, Giuseppe Floris7,8, Elisabetta Marangoni9, Patrick Neven2,10, Daniela Annibali2,11,13, Anna A. Sablina1,2,13 & Frédéric Amant2,10,12,13* Triple‑negative breast cancer (TNBC) is the most aggressive breast cancer subtype, lacking efective therapy. Many TNBCs show remarkable response to carboplatin‑based chemotherapy, but often develop resistance over time. With increasing use of carboplatin in the clinic, there is a pressing need to identify vulnerabilities of carboplatin‑resistant tumors. In this study, we generated carboplatin‑resistant TNBC MDA‑MB‑468 cell line and patient derived TNBC xenograft models. Mass spectrometry‑based proteome profling demonstrated that carboplatin resistance in TNBC is linked to drastic metabolism rewiring and upregulation of anti‑oxidative response that supports cell replication by maintaining low levels of DNA damage in the presence of carboplatin. Carboplatin‑ resistant cells also exhibited dysregulation of the mitotic checkpoint. A kinome shRNA screen revealed that carboplatin‑resistant cells are vulnerable to the depletion of the mitotic checkpoint regulators, whereas the checkpoint kinases CHEK1 and WEE1 are indispensable for the survival of carboplatin‑ resistant cells in the presence of carboplatin. We confrmed that pharmacological inhibition of CHEK1 by prexasertib in the presence of carboplatin is well tolerated by mice and suppresses the growth of carboplatin‑resistant TNBC xenografts. Thus, abrogation of the mitotic checkpoint by CHEK1 inhibition re‑sensitizes carboplatin‑resistant TNBCs to carboplatin and represents a potential strategy for the treatment of carboplatin‑resistant TNBCs.
    [Show full text]
  • Adrenergic Receptor Transactivation of the EGFR Confers Cardioprotection
    β-Arrestin–mediated β1-adrenergic receptor transactivation of the EGFR confers cardioprotection Takahisa Noma, … , Robert J. Lefkowitz, Howard A. Rockman J Clin Invest. 2007;117(9):2445-2458. https://doi.org/10.1172/JCI31901. Research Article Deleterious effects on the heart from chronic stimulation of β-adrenergic receptors (βARs), members of the 7 transmembrane receptor family, have classically been shown to result from Gs-dependent adenylyl cyclase activation. Here, we identify a new signaling mechanism using both in vitro and in vivo systems whereby β-arrestins mediate β1AR signaling to the EGFR. This β-arrestin–dependent transactivation of the EGFR, which is independent of G protein activation, requires the G protein–coupled receptor kinases 5 and 6. In mice undergoing chronic sympathetic stimulation, this novel signaling pathway is shown to promote activation of cardioprotective pathways that counteract the effects of catecholamine toxicity. These findings suggest that drugs that act as classical antagonists for G protein signaling, but also stimulate signaling via β-arrestin–mediated cytoprotective pathways, would represent a novel class of agents that could be developed for multiple members of the 7 transmembrane receptor family. Find the latest version: https://jci.me/31901/pdf Related Commentary, page 2396 Research article β-Arrestin–mediated β1-adrenergic receptor transactivation of the EGFR confers cardioprotection Takahisa Noma,1 Anthony Lemaire,1 Sathyamangla V. Naga Prasad,1 Liza Barki-Harrington,1 Douglas G. Tilley,1 Juhsien Chen,1 Philippe Le Corvoisier,1 Jonathan D. Violin,1 Huijun Wei,1 Robert J. Lefkowitz,1,2 and Howard A. Rockman1,3,4 1Department of Medicine, 2Howard Hughes Medical Institute, 3Department of Cell Biology, and 4Department of Molecular Genetics, Duke University Medical Center, Durham, North Carolina, USA.
    [Show full text]
  • PRODUCTS and SERVICES Target List
    PRODUCTS AND SERVICES Target list Kinase Products P.1-11 Kinase Products Biochemical Assays P.12 "QuickScout Screening Assist™ Kits" Kinase Protein Assay Kits P.13 "QuickScout Custom Profiling & Panel Profiling Series" Targets P.14 "QuickScout Custom Profiling Series" Preincubation Targets Cell-Based Assays P.15 NanoBRET™ TE Intracellular Kinase Cell-Based Assay Service Targets P.16 Tyrosine Kinase Ba/F3 Cell-Based Assay Service Targets P.17 Kinase HEK293 Cell-Based Assay Service ~ClariCELL™ ~ Targets P.18 Detection of Protein-Protein Interactions ~ProbeX™~ Stable Cell Lines Crystallization Services P.19 FastLane™ Structures ~Premium~ P.20-21 FastLane™ Structures ~Standard~ Kinase Products For details of products, please see "PRODUCTS AND SERVICES" on page 1~3. Tyrosine Kinases Note: Please contact us for availability or further information. Information may be changed without notice. Expression Protein Kinase Tag Carna Product Name Catalog No. Construct Sequence Accession Number Tag Location System HIS ABL(ABL1) 08-001 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) BTN BTN-ABL(ABL1) 08-401-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ABL(ABL1) [E255K] HIS ABL(ABL1)[E255K] 08-094 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) HIS ABL(ABL1)[T315I] 08-093 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) [T315I] BTN BTN-ABL(ABL1)[T315I] 08-493-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ACK(TNK2) GST ACK(TNK2) 08-196 Catalytic domain
    [Show full text]