The Porphyrin Ring Rather Than the Metal Ion Dictates Long-Range Electron Transport Across Proteins Suggesting Coherence-Assisted Mechanism

Total Page:16

File Type:pdf, Size:1020Kb

The Porphyrin Ring Rather Than the Metal Ion Dictates Long-Range Electron Transport Across Proteins Suggesting Coherence-Assisted Mechanism The porphyrin ring rather than the metal ion dictates long-range electron transport across proteins suggesting coherence-assisted mechanism Yuval Agama, Ramesh Nandia, Alexander Kaushanskya, Uri Peskina, and Nadav Amdurskya,1 aSchulich Faculty of Chemistry, Technion–Israel Institute of Technology, 3200003 Haifa, Israel Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved November 2, 2020 (received for review May 4, 2020) The fundamental biological process of electron transfer (ET) takes distances, has also been observed across the multicellular body of place across proteins with common ET pathways of several nano- cablebacteria(19–21). The only common feature of long-range meters. Recent discoveries push this limit and show long-range extracellular ET is the presence of large multiheme cytochromes. extracellular ET over several micrometers. Here, we aim in deci- The mechanism of this extraordinary ET as well as the nature of phering how protein-bound intramolecular cofactors can facilitate the bacterial nanowire is a source of great scientific debate. The such long-range ET. In contrast to natural systems, our protein- two most frequently discussed ET mechanisms are: 1) incoherent, based platform enables us to modulate important factors associ- nonadiabatic electron hopping across the Fe ions within the heme ated with ET in a facile manner, such as the type of the cofactor (8, 22, 23); and 2) metallic-like or coherent ET across the bacterial and its quantity within the protein. We choose here the biologi- nanowire, perhaps involving an aromatic sidechain of the protein cally relevant protoporphyrin molecule as the electron mediator. (13, 14, 24). Recent electron-beam (e-beam) diffraction studies Unlike natural systems having only Fe-containing protoporphyrins, have revealed the presence of a rather amazing type of protein i.e., heme, as electron mediators, we use here porphyrins with nanowire of the G. sulfurreducens, composed solely of the hexa- different metal centers, or lacking a metal center. We show that heme cytochrome OmcS (25, 26). The existence of this unique the metal redox center has no role in ET and that ET is mediated one-dimensional (1D) wire assembly of heme molecules strongly solely by the conjugated backbone of the molecule. We further suggests that they mediate ET, regardless of the ET mechanism. discuss several ET mechanisms, accounting to our observations CHEMISTRY with possible contribution of coherent processes. Our findings While bacterial mutants may be created in order to study the role contribute to our understanding of the participation of heme mol- of the different proteins participating in the ET pathway, it is nearly ecules in long-range biological ET. impossible to specifically investigate the role of the heme molecules in ET, due to the ubiquity of the iron-containing heme molecule. In G. sulfurreducens electron transfer | conductive polymers | heme | porphyrin | biopolymers thecaseofthe nanowires of the OmcS protein, the coordination with the Fe ion iswhatdrivestheself-assembly process, and, therefore, the iron cannot be removed. ron-containing protoporphyrin, also known as heme, is one of Here, we introduce a completely different approach to the the most important molecules in nature, participating in nu- BIOPHYSICS AND COMPUTATIONAL BIOLOGY I study of very-long-range ET across proteins. We achieve this by merous biological processes, including the binding of gas mole- creating an artificial protein-based fibrillar platform, in which we cules (as O ) to its iron ion. The proper activity of heme 2 can control the number of ET-mediating cofactors inside the pro- molecules is dependent on the ability of specific proteins, which tein, as well as their chemical nature. Inspired by the extraordinary are referred to as hemeproteins, to bind them. The natural ac- tivity of heme is owed to its exceptional heme-iron coordination with gas molecules or specific amino acids. In fact, an iron-free Significance porphyrin or a degraded product of heme, bilirubin, can result in certain diseases, such as porphyria or jaundice, respectively. Other Electron transfer (ET) across proteins is fundamental in many metal-containing protoporphyrins are far from being as ubiquitous biological processes, such as photosynthesis and aerobic res- as the iron-containing one. Although there are many kinds of piration. Recent discoveries from the bacterial world have hemeproteins with different functionalities, such as hemoglobins, shown that proteins can support long-range ET pathways on myoglobins, cytochromes, and peroxidases, we will focus here on the order of micrometers. Here, we introduce a protein plat- their ability to mediate electrons (1). Hemeproteins participate in form that allows us to explore how proteins can support long- all major electron transfer (ET) chain reactions in nature, the range ET, and what are the important molecular features and most noteworthy being the aerobic respiration system in our mi- ET mechanisms that enable it. We focus on the role of the metal ion within heme molecules in long-range ET and find tochondria and the photosynthetic system in chloroplasts. In ET that the molecular ring surrounding the metal ion is the ET reactions, electrons are shuttled by the redox of the Fe ion within mediator, and not the metal ion. We suggest a coherence- the heme (Fe2+ ⇌ Fe3+), whose redox potential is highly de- assisted ET mechanism as a possible explanation for our high pendent on the heme-binding site within the protein (2, 3). measured ET efficiency. Until recently, all of the natural ET pathways studied were on the nanometer scale (usually below 10 nm), and the heme was Author contributions: N.A. designed research; Y.A. and R.N. performed research; A.K. and located at the correct place along the electrochemical gradient, U.P. contributed new theoretical/analytic tools; Y.A., R.N., A.K., U.P., and N.A. analyzed with other cofactors (such as quinones or FeS clusters) that data; and Y.A., U.P., and N.A. wrote the paper. participate in the ET chain reaction as well. Recent examples The authors declare no competing interest. from the bacteria world have shown, however, that specific bacteria This article is a PNAS Direct Submission. (namely, Geobacter sulfurreducens and Shewanella oneidensis MR- Published under the PNAS license. 1) can mediate ET with very high efficiency over very long distances 1To whom correspondence may be addressed. Email: [email protected]. in the order of micrometers, and even up to millimeters, from This article contains supporting information online at https://www.pnas.org/lookup/suppl/ the bacteria’s body to nearby metal-oxide rocks across a bacte- doi:10.1073/pnas.2008741117/-/DCSupplemental. rial nanowire (4–18). Extremely long ET, over centimeter-scale www.pnas.org/cgi/doi/10.1073/pnas.2008741117 PNAS Latest Articles | 1of7 Downloaded by guest on September 27, 2021 extracellular ET observed with OmcS nanowire, we chose here only S3). This result clearly implies that the observed long-range ET protoporphyrin as the electron-mediating cofactors across our across our protein platform is not mediated by the metal ion protein-based platform, although other macromolecules are known within the PPIX and that charge-carrier mobility is enhanced by to participate in various biological pathways. Using our platform, the conjugated π-system of the porphyrin rings themselves. To we can now change the metal ion inside the porphyrin, remove the establish this assumption, we also examined bilirubin as a dop- metal ion altogether, or even use bilirubin (the open form of the ring) ant, since its molecular structure has the same conjugated tet- as ET mediators. We used electrochemical impedance measure- rapyrrole motif as PPIX, albeit linear rather than cyclic. We ments, as well as three-terminal transistor measurements, to explore found that bilirubin indeed exhibited similar improvements in the role of the porphyrin variant in mediating ET. Our results allow conductivity, as was observed for the other porphyrin dopants us to discuss possible mechanisms of ET across our protein platform, (Fig. 2A). To further explore the ET mechanism across the dif- involving either incoherent or coherence-assisted ET. ferent mats, we measured the temperature dependence of the EIS response, displayed in the form of a Nyquist plot (the im- Results pedance imaginary part as a function of the impedance real part) The protein-based macroscopic platform that we use here is (SI Appendix, Fig. S4). The plot shows a semicircle in the high- based on electrospun bovine serum albumin (BSA) mats, which frequency area, corresponding to bulk conductivity, and a curved were shown to be able to bind heme molecules, resulting in long- tail in the low-frequency area, attributed to double-layer capac- range ET across this artificial platform (27). As stated, here, we itance at the electrolyte and blocking-electrode interface, inter- aim to understand how protoporphyrins mediate ET. Accord- rupted by the ionic diffusion process. In these temperature- ingly, we molecularly doped the BSA mats with different vari- dependence studies, we found that all of the doped mats had a ants: metal-free protoporphyrin IX (PPIX), the common Fe- similar activation energy in the order of 0.2 ± 0.03 eV (SI Ap- containing PPIX (heme), PPIX with three other transition pendix, Table S1). The similar activation energy values imply that metals (Co, Cu, and Zn), and bilirubin. The successful doping of all of the mats we used, some of which contained a metal ion the BSA mat is easily observed by a distinct color change of the within the PPIX and some of which did not, share a similar ET mat in accordance with the porphyrin color (Fig. 1). Moreover, mechanism (as discussed below). the doping level, i.e., the number of dopants per volume within After establishing that the conductivity of the doped mats is the mat, can be easily modulated by the duration of the doping determined only by the amount of porphyrin bound to the BSA process and can be verified by using ultraviolet-visible (UV-Vis) mat, regardless of the metallic element (in analogy to semicon- “ ” spectroscopy.
Recommended publications
  • Spectroscopy of Porphyrins
    BORIS F. KIM and JOSEPH BOHANDY SPECTROSCOPY OF PORPHYRINS Porphyrins are an important class of compounds that are of interest in molecular biology because of the important roles they play in vital biochemical systems such as biochemical energy conversion in animals, oxygen transport in blood, and photosynthetic energy conversion in plants. We are studying the physical properties of the energy states of porphyrins using the techniques of ex­ perimental and theoretical spectroscopy with the aim of contributing to a basic understanding of their biochemical behavior. INTRODUCTION Metalloporphin Porphyrins are a class of complex organic chemical compounds found in such diverse places as crude oil, plants, and human beings. They are, in most cases, tailored to carry out vital chemical transformations in intricate biochemical or biophysical systems. They are the key constituents of chlorophyll in plants and of hemoglobin in animals. Without them, life would y be impossible. t Free base porphin These molecules display a wide range of chemical and physical properties that depend on the structural details of the particular porphyrin molecule. All por­ ~x phyrins are vividly colored and absorb light in the visible and ultraviolet regions of the spectrum. Some exhibit luminescence, paramagnetism, photoconduc­ tion, or semiconduction. Spme are photosensitizers Wavelength (nanometers) or catalysts. Scientists from several disciplines have been interested in unraveling the principles that cause Fig. 1-The chemical structures for the two forms of por· this diversity of properties. phin are shown on the left. A carbon atom and a hydrogen The simplest compound of all porphyrins is por­ atom are understood to be at each apex not attached to a nitrogen atom.
    [Show full text]
  • Electronic Spectroscopy of Free Base Porphyrins and Metalloporphyrins
    Absorption and Fluorescence Spectroscopy of Tetraphenylporphyrin§ and Metallo-Tetraphenylporphyrin Introduction The word porphyrin is derived from the Greek porphura meaning purple, and all porphyrins are intensely coloured1. Porphyrins comprise an important class of molecules that serve nature in a variety of ways. The Metalloporphyrin ring is found in a variety of important biological system where it is the active component of the system or in some ways intimately connected with the activity of the system. Many of these porphyrins synthesized are the basic structure of biological porphyrins which are the active sites of numerous proteins, whose functions range from oxygen transfer and storage (hemoglobin and myoglobin) to electron transfer (cytochrome c, cytochrome oxidase) to energy conversion (chlorophyll). They also have been proven to be efficient sensitizers and catalyst in a number of chemical and photochemical processes especially photodynamic therapy (PDT). The diversity of their functions is due in part to the variety of metals that bind in the “pocket” of the porphyrin ring system (Fig. 1). Figure 1. Metallated Tetraphenylporphyrin Upon metalation the porphyrin ring system deprotonates, forming a dianionic ligand (Fig. 2). The metal ions behave as Lewis acids, accepting lone pairs of electrons ________________________________ § We all need to thank Jay Stephens for synthesizing the H2TPP 2 from the dianionic porphyrin ligand. Unlike most transition metal complexes, their color is due to absorption(s) within the porphyrin ligand involving the excitation of electrons from π to π* porphyrin ring orbitals. Figure 2. Synthesis of Zn(TPP) The electronic absorption spectrum of a typical porphyrin consists of a strong transition to the second excited state (S0 S2) at about 400 nm (the Soret or B band) and a weak transition to the first excited state (S0 S1) at about 550 nm (the Q band).
    [Show full text]
  • Porphyrins & Bile Pigments
    Bio. 2. ASPU. Lectu.6. Prof. Dr. F. ALQuobaili Porphyrins & Bile Pigments • Biomedical Importance These topics are closely related, because heme is synthesized from porphyrins and iron, and the products of degradation of heme are the bile pigments and iron. Knowledge of the biochemistry of the porphyrins and of heme is basic to understanding the varied functions of hemoproteins in the body. The porphyrias are a group of diseases caused by abnormalities in the pathway of biosynthesis of the various porphyrins. A much more prevalent clinical condition is jaundice, due to elevation of bilirubin in the plasma, due to overproduction of bilirubin or to failure of its excretion and is seen in numerous diseases ranging from hemolytic anemias to viral hepatitis and to cancer of the pancreas. • Metalloporphyrins & Hemoproteins Are Important in Nature Porphyrins are cyclic compounds formed by the linkage of four pyrrole rings through methyne (==HC—) bridges. A characteristic property of the porphyrins is the formation of complexes with metal ions bound to the nitrogen atom of the pyrrole rings. Examples are the iron porphyrins such as heme of hemoglobin and the magnesium‐containing porphyrin chlorophyll, the photosynthetic pigment of plants. • Natural Porphyrins Have Substituent Side Chains on the Porphin Nucleus The porphyrins found in nature are compounds in which various side chains are substituted for the eight hydrogen atoms numbered in the porphyrin nucleus. As a simple means of showing these substitutions, Fischer proposed a shorthand formula in which the methyne bridges are omitted and a porphyrin with this type of asymmetric substitution is classified as a type III porphyrin.
    [Show full text]
  • Emerging Applications of Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging
    biosensors Review Emerging Applications of Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging Muhammad Imran 1,*, Muhammad Ramzan 2,*, Ahmad Kaleem Qureshi 1, Muhammad Azhar Khan 2 and Muhammad Tariq 3 1 Department of Chemistry, Baghdad-Ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; [email protected] 2 Department of Physics, Baghdad-Ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; [email protected] 3 Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan; [email protected] * Correspondence: [email protected] (M.I.); [email protected] (M.R.) Received: 26 September 2018; Accepted: 17 October 2018; Published: 19 October 2018 Abstract: In recent years, scientific advancements have constantly increased at a significant rate in the field of biomedical science. Keeping this in view, the application of porphyrins and metalloporphyrins in the field of biomedical science is gaining substantial importance. Porphyrins are the most widely studied tetrapyrrole-based compounds because of their important roles in vital biological processes. The cavity of porphyrins containing four pyrrolic nitrogens is well suited for the binding majority of metal ions to form metalloporphyrins. Porphyrins and metalloporphyrins possess peculiar photochemical, photophysical, and photoredox properties which are tunable through structural modifications. Their beneficial photophysical properties, such as the long wavelength of emission and absorption, high singlet oxygen quantum yield, and low in vivo toxicity, have drawn scientists’ interest to discover new dimensions in the biomedical field. Applications of porphyrins and metalloporphyrins have been pursued in the perspective of contrast agents for magnetic resonance imaging (MRI), photodynamic therapy (PDT) of cancer, bio-imaging, and other biomedical applications.
    [Show full text]
  • Vitamin B12 Promotes Porphyrin Production in Acne-Associated P
    UCLA UCLA Electronic Theses and Dissertations Title Porphyrin production and regulation in different Propionibacterium acnes lineages contribute to acne vulgaris pathogenesis Permalink https://escholarship.org/uc/item/9g02d15m Author Johnson, Tremylla Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Porphyrin production and regulation in different Propionibacterium acnes lineages contribute to acne vulgaris pathogenesis A dissertation submitted in partial satisfaction of the requirement for the degree Doctor of Philosophy in Molecular and Medical Pharmacology by Tremylla A. Johnson 2017 © Copyright by Tremylla A. Johnson 2017 ABSTRACT OF THE DISSERTATION Porphyrin production and regulation in different Propionibacterium acnes lineages contribute to acne vulgaris pathogenesis by Tremylla A. Johnson Doctor of Philosophy in Molecular & Medical Pharmacology University of California, Los Angeles, 2017 Professor Huiying Li, Chair Propionibacterium acnes is a dominant human skin commensal. It has been implicated in acne pathogenesis, but its role remains unclear. Recent metagenomic studies have revealed that certain P. acnes strains are highly associated with acne, while some others are associated with healthy skin. Little information exists about P. acnes strain-level differences beyond the genomic differences. In this study, I revealed that acne-associated type IA P. acnes strains produced significantly higher levels of porphyrins (a metabolite important in acne development) than health-associated strains (type II). Strains of type IA-1 and type IA-2 produced similar levels of porphyrins. Moreover, porphyrin production in these P. acnes strains is modulated by vitamin B12. On the other hand, health-associated type II strains produced low levels of ii porphyrins and did not respond to vitamin B12.
    [Show full text]
  • Expanding the Eggshell Colour Gamut: Uroerythrin and Bilirubin from Tinamou (Tinamidae) Eggshells Randy Hamchand1, Daniel Hanley2, Richard O
    www.nature.com/scientificreports OPEN Expanding the eggshell colour gamut: uroerythrin and bilirubin from tinamou (Tinamidae) eggshells Randy Hamchand1, Daniel Hanley2, Richard O. Prum3 & Christian Brückner1* To date, only two pigments have been identifed in avian eggshells: rusty-brown protoporphyrin IX and blue-green biliverdin IXα. Most avian eggshell colours can be produced by a mixture of these two tetrapyrrolic pigments. However, tinamou (Tinamidae) eggshells display colours not easily rationalised by combination of these two pigments alone, suggesting the presence of other pigments. Here, through extraction, derivatization, spectroscopy, chromatography, and mass spectrometry, we identify two novel eggshell pigments: yellow–brown tetrapyrrolic bilirubin from the guacamole- green eggshells of Eudromia elegans, and red–orange tripyrrolic uroerythrin from the purplish-brown eggshells of Nothura maculosa. Both pigments are known porphyrin catabolites and are found in the eggshells in conjunction with biliverdin IXα. A colour mixing model using the new pigments and biliverdin reproduces the respective eggshell colours. These discoveries expand our understanding of how eggshell colour diversity is achieved. We suggest that the ability of these pigments to photo- degrade may have an adaptive value for the tinamous. Birds’ eggs are found in an expansive variety of shapes, sizes, and colourings 1. Te diverse array of appearances found across Aves is achieved—in large part—through a combination of structural features, solid or patterned colorations, the use of two diferent dyes, and diferential pigment deposition. Eggshell pigments are embedded within the white calcium carbonate matrix of the egg and within a thin outer proteinaceous layer called the cuticle2–4. Tese pigments are believed to play a key role in crypsis5,6, although other, possibly dynamic 7,8, roles in inter- and intra-species signalling5,9–12 are also possible.
    [Show full text]
  • To a Protoporphyrin. Thus, Type I Porphyrinogens Or Their Respective Porphyrins Reduced Production Oftype III Porphyrin and Hemo
    A SUGGESTED CONTROL GENE MECHANISM FOR THE EXCESSIVE PRODUCTION OF TYPES I AND III PORPHYRINS IN CONGENJ TAL ERYTHROPOIETIC PORPHYRIA* BY C. J. WATSON, W. RUNGE, L. TADDEINI, IRENE BOSSENMAIER, AND RUTH CARDINAL DEPARTMENT OF MEDICINE, UNIVERSITY OF MINNESOTA, MINNEAPOLIS Communicated June 19, 1964 The curious phenotype of erythropoietic porphyria, both human and bovine, is directly related to the large amounts of type I porphyrins produced by the develop- ing red cells of the bone marrow. The excessive uroporphyrin (URO-) I is respon- sible for the photocutaneous manifestations, as well as the red urine, teeth, and bones. The spleen enlarges and is at least partly responsible for the increased destruction of circulating red cells so often observed. This stimulates erythro- poiesis and heightened formation of porphyrins, as described elsewhere.1-3 It has been proposed4-7 that the genetic error is a deficiency of uroporphyrinogen (UPG) isomerase. This enzyme directs cyclization to UPG III, of the polypyrryl methane first formed from porphobilinogen (PBG) by PBG deaminase. UPG III is preferentially converted by a decarboxylase to coproporphyrinogen (CPG) III and this by virtue of a coproporphyrinogenase (CPGase), to the corresponding protoporphyrin (PROTO-) and heme. In the absence or relative paucity of isomerase the polypyrryl methane from PBG cyclizes to UPG I, and is decarboxyl- ated in varying proportion to CPG I. With possible rare and minor exceptions,8 the specificity of CPGase for type III is maintained, and CPG-I is not converted to a protoporphyrin. Thus, type I porphyrinogens or their respective porphyrins are excreted or accumulated. This has been discussed in recent reviews.4-7 If the inborn error were an isomerase deficiency, a markedly reduced production of type III porphyrin and hemoglobin might be anticipated.
    [Show full text]
  • Biliverdin Reductase: a Major Physiologic Cytoprotectant
    Biliverdin reductase: A major physiologic cytoprotectant David E. Baran˜ ano*, Mahil Rao*, Christopher D. Ferris†, and Solomon H. Snyder*‡§¶ Departments of *Neuroscience, ‡Pharmacology and Molecular Sciences, and §Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; and †Department of Medicine, Division of Gastroenterology, C-2104 Medical Center North, Vanderbilt University Medical Center, Nashville, TN 37232-2279 Contributed by Solomon H. Snyder, October 16, 2002 Bilirubin, an abundant pigment that causes jaundice, has long hypothesize that bilirubin acts in a catalytic fashion whereby lacked any clear physiologic role. It arises from enzymatic reduction bilirubin oxidized to biliverdin is rapidly reduced back to bili- by biliverdin reductase of biliverdin, a product of heme oxygenase rubin, a process that could readily afford 10,000-fold amplifica- activity. Bilirubin is a potent antioxidant that we show can protect tion (13). Here we establish that a redox cycle based on BVRA cells from a 10,000-fold excess of H2O2. We report that bilirubin is activity provides physiologic cytoprotection as BVRA depletion a major physiologic antioxidant cytoprotectant. Thus, cellular de- exacerbates the formation of reactive oxygen species (ROS) and pletion of bilirubin by RNA interference markedly augments tissue augments cell death. levels of reactive oxygen species and causes apoptotic cell death. Depletion of glutathione, generally regarded as a physiologic Methods antioxidant cytoprotectant, elicits lesser increases in reactive ox- All chemicals were obtained from Sigma unless otherwise ygen species and cell death. The potent physiologic antioxidant indicated. actions of bilirubin reflect an amplification cycle whereby bilirubin, acting as an antioxidant, is itself oxidized to biliverdin and then Cell Culture and Viability Measurements.
    [Show full text]
  • The Porphyrin Handbook
    ThePorphyrinHandbook Editors KarlM.Kadish DepartmentofChemistry UniversityofHouston Houston,Texas KevinM.Smith DepartmentofChemistry UniversityofCalifornia,Davis Davis,California RogerGuilard FaculteÂdesSciencesGabriel UniversiteÂdeBourgogne Dijon,France SANDIEGOSANFRANCISCO NEWYORKBOSTON LONDONSYDNEY TORONTO Preface The broadly de®ned porphyrin research area is one of the this is a data-intensive ®eld, and we believe that compilation most exciting, stimulating and rewarding for scientists in the of relevant data should be useful to investigators. We have ®elds of chemistry, physics, biology and medicine. The attempted to ensure that every chapter was written by the beautifully constructed porphyrinoid ligand, perfected over currently acknowledged expert in the ®eld, and very early on the course of evolution, provides the chromophore for a we had in our hands no less than sixty-nine signed contracts multitude of iron, magnesium, cobalt and nickel complexes for chapters. With the fullness of time, and as deadlines for which are primary metabolites and without which life itself Handbook chapter submission and other essential activities could not be maintained. (e.g., research proposal renewals) converged, some of our Falk's book, Porphyrins and Metalloporphyrins, pub- authors had to withdraw. On occasion we were able to lished in 1962, was a fairly thin volume which represented recruit new authors who, with only a month or less of lead the ®rst attempt to apply the principles of modern chemistry time, were able to ®ll these gaps and come
    [Show full text]
  • Hereditary Coproporphyria: Incidence in a Large English Family *
    J Med Genet: first published as 10.1136/jmg.21.5.341 on 1 October 1984. Downloaded from Journal ofMedical Genetics, 1984, 21, 341-349 Hereditary coproporphyria: incidence in a large English family * J ANDREWSt, H ERDJUMENT+, AND D C NICHOLSON+ From the tDepartment of Geriatric Medicine, West Middlesex University Hospital, Isleworth, Middlesex; and ithe Department of Chemical Pathology, King's College Hospital Medical School, London SE5. SUMMARY In a family inheiiting the hereditary coproporphyria (HCP) gene, where 414 descendants have been traced through six generations and 135 members screened for faecal porphyrins, 27 subjects were found to have inherited the gene as well as the proband. Seven (six female and one male) in retrospect had probably previously suffered from a clinical attack of porphyria. Enzy- mological studies were carried out on 15 members and two unaffected parents and these results in general agreed with the faecal coproporphyrin readings. Symptomatic illness is low in HCP and is almost always precipitated by drugs known to have an adverse effect on the condition. If the gene is inherited, an attack can occur at any time between puberty and old age, such as in the proband at 84 years. We have detected abnormal faecal copro- porphyrin levels in members of this pedigree as young as 12 years and as old as 87 years. Recommendations are given concerning the necessity of tracing relatives who may have inherited the gene and arranging for their biochemical screening and genetic counselling if indicated. copyright. Dobriner1 first described the presence of excessive drug history was taken. Porphyrin estimations on the amounts of coproporphyrin isomer III in certain faeces were then carried out on the oldest surviving patients and the first clinical description was members ofeach branch of the family and, ifpositive, recorded in 1949.2 Smaller family series have been all the next generation and their progeny, if indi- reported by Haeger-Aronsen et al,3 Dean and cated, were tested.
    [Show full text]
  • Physiological Roles of Animal Succinate Thiokinases
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Volume 230, number 1,2, 6-8 FEB 05670 March 1988 Physiological roles of animal succinate thiokinases Specific association of the guanine nucleotide-linked enzyme with haem biosynthesis T.M. Jenkins and P.D.J. Weitzrnan Department of Biochemistry, University of Bath, Bath BA2 7AY, England Received 25 January 1988 The discovery of two distinct succinate thiokinases in mammalian tissues, one (G-STK) specific for GDP/GTP and the other (A-STK) for ADP/ATP, poses the question of their differential metabolic roles. Evidence has suggested that the A-STK functions in the citric acid cycle in the direction of succinyl-CoA breakdown (and ATP formation) whereas one role of the G-STK appears to be the re-cycling of succinate to succinyl-CoA (at the expense of GTP) for the purpose of ketone body activation. A third metabolic participation of succinyl-CoA is in haem biosynthesis. This communication shows that in chemically induced hepatic porphyria, when the demand for succinyl-CoA is increased, it is the level of G-STK only which is elevated, that of A-STK being unatlected. The results implicate G-STK in the provision of succinyl- CoA for haem biosynthesis, a conclusion which is further supported by the observation of a high G-STK/A-STK ratio in bone marrow. Succinate thiokinase; Guanine nucleotide; Heme synthesis; Porphyrin synthesis; Porphyria; Mitochondrial metabolism 1. INTRODUCTION tion. In mammalian brain G-STK shows a marked elevation in activity with increased ketone body Mammalian succinate thiokinase (succinyl-CoA utilization [2], thus supporting the proposal that synthetase) (STK) catalyses the following reversi- the recycling of succinate to succinyl-CoA, re- ble reaction: quired for ketone body activation, is achieved directly by the action of G-STK.
    [Show full text]
  • Continuous Chlorophyll Degradation Accompanied by Chlorophyllide and Phytol Reutilization for Chlorophyll Synthesis in Synechocystis Sp
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1767 (2007) 920–929 www.elsevier.com/locate/bbabio Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803 ⁎ Dmitrii Vavilin, Wim Vermaas School of Life Sciences and Center for the Study of Early Events in Photosynthesis, Arizona State University, Box 874501, Tempe, AZ 85287, USA Received 3 January 2007; received in revised form 23 March 2007; accepted 27 March 2007 Available online 3 April 2007 Abstract Chlorophyll synthesis and degradation were analyzed in the cyanobacterium Synechocystis sp. PCC 6803 by incubating cells in the presence of 13C-labeled glucose or 15N-containing salts. Upon mass spectral analysis of chlorophyll isolated from cells grown in the presence of 13C-glucose for different time periods, four chlorophyll pools were detected that differed markedly in the amount of 13C incorporated into the porphyrin (Por) and phytol (Phy) moieties of the molecule. These four pools represent (i) unlabeled chlorophyll (12Por12Phy), (ii) 13C-labeled chlorophyll (13Por13Phy), and (iii, iv) chlorophyll, in which either the porphyrin or the phytol moiety was 13C-labeled, whereas the other constituent of the molecule remained unlabeled (13Por12Phy and 12Por13Phy). The kinetics of 12Por12Phy disappearance, presumably due to chlorophyll de- esterification, and of 13Por12Phy, 12Por13Phy, and 13Por13Phy accumulation due to chlorophyll synthesis provided evidence for continuous chlorophyll turnover in Synechocystis cells. The loss of 12Por12Phy was three-fold faster in a photosystem I-less strain than in a photosystem II- less strain and was accelerated in wild-type cells upon exposure to strong light.
    [Show full text]