Technology Watch on Robotics and Autonomous Systems (S199)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2016 Buick Lacrosse Owner Manual
2k16_CS6_Buick_Lacrosse_23180150C.ai 1 2/9/2016 9:49:19 AM C M Y CM MY CY CMY K 23180150 C Buick LaCrosse Owner Manual (GMNA-Localizing-U.S./Canada/Mexico- 9159288) - 2016 - CRC - 10/5/15 Contents Introduction . 2 In Brief . 5 Keys, Doors, and Windows . 26 Seats and Restraints . 49 Storage . 97 Instruments and Controls . 100 Lighting . 148 Infotainment System . 156 Climate Controls . 157 Driving and Operating . 163 Vehicle Care . 226 Service and Maintenance . 313 Technical Data . 326 Customer Information . 330 Reporting Safety Defects . 341 OnStar . 345 Index . 355 Buick LaCrosse Owner Manual (GMNA-Localizing-U.S./Canada/Mexico- 9159288) - 2016 - CRC - 2/3/16 2 Introduction Introduction This manual describes features that Helm, Incorporated may or may not be on the vehicle Attention: Customer Service because of optional equipment that 47911 Halyard Drive was not purchased on the vehicle, Plymouth, MI 48170 model variants, country USA specifications, features/applications that may not be available in your Using this Manual region, or changes subsequent to the printing of this owner manual. To quickly locate information about the vehicle, use the Index in the The names, logos, emblems, Refer to the purchase back of the manual. It is an slogans, vehicle model names, and documentation relating to your alphabetical list of what is in the vehicle body designs appearing in specific vehicle to confirm the manual and the page number where this manual including, but not limited features. it can be found. to, GM, the GM logo, BUICK, the BUICK Emblem, and LACROSSE Keep this manual in the vehicle for are trademarks and/or service quick reference. -
Pioneering the Application of High Speed Rail Express Trainsets in the United States
Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 136763_Cover.indd 1 3/22/13 7:38 AM 136763_Cover.indd 1 3/22/13 7:38 AM Parsons Brinckerhoff 2010 William Barclay Parsons Fellowship Monograph 26 Pioneering the Application of High Speed Rail Express Trainsets in the United States Fellow: Francis P. Banko Professional Associate Principal Project Manager Lead Investigator: Jackson H. Xue Rail Vehicle Engineer December 2012 First Printing 2013 Copyright © 2013, Parsons Brinckerhoff Group Inc. All rights reserved. No part of this work may be reproduced or used in any form or by any means—graphic, electronic, mechanical (including photocopying), recording, taping, or information or retrieval systems—without permission of the pub- lisher. Published by: Parsons Brinckerhoff Group Inc. One Penn Plaza New York, New York 10119 Graphics Database: V212 CONTENTS FOREWORD XV PREFACE XVII PART 1: INTRODUCTION 1 CHAPTER 1 INTRODUCTION TO THE RESEARCH 3 1.1 Unprecedented Support for High Speed Rail in the U.S. ....................3 1.2 Pioneering the Application of High Speed Rail Express Trainsets in the U.S. .....4 1.3 Research Objectives . 6 1.4 William Barclay Parsons Fellowship Participants ...........................6 1.5 Host Manufacturers and Operators......................................7 1.6 A Snapshot in Time .................................................10 CHAPTER 2 HOST MANUFACTURERS AND OPERATORS, THEIR PRODUCTS AND SERVICES 11 2.1 Overview . 11 2.2 Introduction to Host HSR Manufacturers . 11 2.3 Introduction to Host HSR Operators and Regulatory Agencies . -
Interaction of Lifecycle Properties in High Speed Rail Systems Operation
Interaction of Lifecycle Properties in High Speed Rail Systems Operation by Tatsuya Doi M.E., Aeronautics and Astronautics, University of Tokyo, 2011 B.E., Aeronautics and Astronautics, University of Tokyo, 2009 Submitted to the Institute for Data, Systems, and Society in partial fulfillment of the requirements for the degree of Master of Science in Engineering Systems at the Massachusetts Institute of Technology June 2016 © 2016 Tatsuya Doi. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: ____________________________________________________________________ Institute for Data, Systems, and Society May 6, 2016 Certified by: __________________________________________________________________________ Joseph M. Sussman JR East Professor of Civil and Environmental Engineering and Engineering Systems Thesis Supervisor Certified by: __________________________________________________________________________ Olivier L. de Weck Professor of Aeronautics and Astronautics and Engineering Systems Thesis Supervisor Accepted by: _________________________________________________________________________ John N. Tsitsiklis Clarence J. Lebel Professor of Electrical Engineering IDSS Graduate Officer 1 2 Interaction of Lifecycle Properties In High Speed Rail Systems Operation by Tatsuya Doi Submitted to the Institute for Data, Systems, and Society on May 6, 2016 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering Systems ABSTRACT High-Speed Rail (HSR) has been expanding throughout the world, providing various nations with alternative solutions for the infrastructure design of intercity passenger travel. HSR is a capital-intensive infrastructure, in which multiple subsystems are closely integrated. Also, HSR operation lasts for a long period, and its performance indicators are continuously altered by incremental updates. -
2004 Freight Rail Component of the Florida Rail Plan
final report 2004 Freight Rail Component of the Florida Rail Plan prepared for Florida Department of Transportation prepared by Cambridge Systematics, Inc. 4445 Willard Avenue, Suite 300 Chevy Chase, Maryland 20815 with Charles River Associates June 2005 final report 2004 Freight Rail Component of the Florida Rail Plan prepared for Florida Department of Transportation prepared by Cambridge Systematics, Inc. 4445 Willard Avenue, Suite 300 Chevy Chase, Maryland 20815 with Charles River Associates Inc. June 2005 2004 Freight Rail Component of the Florida Rail Plan Table of Contents Executive Summary .............................................................................................................. ES-1 Purpose........................................................................................................................... ES-1 Florida’s Rail System.................................................................................................... ES-2 Freight Rail and the Florida Economy ....................................................................... ES-7 Trends and Issues.......................................................................................................... ES-15 Future Rail Investment Needs .................................................................................... ES-17 Strategies and Funding Opportunities ...................................................................... ES-19 Recommendations........................................................................................................ -
Seltrac® CBTC Communications- Based Train Control for Urban Rail
www.thalesgroup.com GROUND TRANSPORTATION SelTrac® CBTC communications- based train control for urban rail World-leading THE BUSINESS CASE FOR SelTrac CBTC ® SelTrac CBTC Solutions Optimising capital investment Capacity enhancement • Shorter platforms due to shorter, more frequent trains • Aging metro infrastructures can be modernized HIGH PERFORMANCE • SOUND INVESTMENT – MTR West Rail saved 384 million USD for nine and operational capacity increased with SelTrac: stations – San Francisco MUNI SelTrac system solutions readily meet your needs to move more • Avoidance of building new tunnels (re-signalling) • London Underground, one of the world’s oldest & people more quickly and increase revenue potential. – San Francisco MUNI doubled their existing tunnel largest metros: capacity from 23 to 48 trains per hour with – Jubilee (2011): 35 km, 63 trains installation of SelTrac saving 1.3 billion USD – Northern (2014): 57 km, 106 trains – Piccadilly (2014): 71 km, 92 trains 20% capacity Equipment minimisation improvement due to signaling; Minimum impact to • No traditional ancillary equipment required if mixed- ongoing revenue operations mode is not part of normal operation – No need for new “fallback” system Energy Savings • Less equipment • Energy-optimized driving profiles (e.g. coasting, reduced – On the track speeds, and reduced acceleration curves) can be based – Due to integration of functions on time of day • Schedule synchronization for regenerative power saving Ease of expansion – Hong Kong saves an estimated 2 Million USD per • Once -
Integrating CBTC Green Field and Re-Signalling Experience IRSTE/ IRSE International Convention, New Delhi April 27 Th & 28 Th 2012
www.thalesgroup.com/canada Integrating CBTC Green Field and Re-signalling Experience IRSTE/ IRSE International Convention, New Delhi April 27 th & 28 th 2012 Hugo Ramos Transportation Systems - Signalling for Urban Rail 2 / Agenda Communication Based-Train Control Market requirements & implementation challenges Sharing experiences – project challenges & achievements Transportation Systems - Signalling for Urban Rail 3 / Thales signalling solutions for urban rail A complete portfolio of systems and related services enabling urban rail operators to take full advantage of the most advanced signalling solutions Centralise & automate the operation of Rail network the rail network management Operation & Control Centre (OCC) Route control Train control Set dedicated routes within the rail network to Supervise & control safely train movement and ensure train movement speed with on-board & trackside equipment Electronic interlocking Communications Based Train Control (CBTC) Rail field equipment Trackside equipment installed in the rail network Axle counter, point machine, signal Transportation Systems - Signalling for Urban Rail 4 / Communications Based Train Control (CBTC) The most advanced signalling solution available today for metros and people movers CBTC as defined in IEEE 1474.1 Train location determination to a high precision, independent of track circuits Continuous , bi-directional Radio Frequency (RF) communications between train and wayside, to permit the transfer of significantly more control and status data than is possible -