The Metamathematical World of Model Theory

Total Page:16

File Type:pdf, Size:1020Kb

The Metamathematical World of Model Theory W!orldof Mxodel T heory This relatively new theory, ripe for potential research and application, may be a powerful new mathematical tool for analyzing many kinds of scientific problems by Lynn Arthur Steen Georg Cantor's theory of infinite for example, satisfy this sentence as sets introduced into early 20th-century well, while still others, such as binary mathematics certain devastating para- arithmetic, do not. doxes that posed serious challenges to Axioms, the logical bedrock of the logical foundations of mathematics. mathematics, are nothing but particu- One consequence of this upheaval was lar sentences in a particular language. the development of a mathematical A central question in all mathematics, theory of mathematics itself-a new one which assumes special urgency in discipline called metamathematics, Cantor's paradoxical theory of infinite akin to metaphysics but far more rig- sets, is whether in fact there exist mod- orous and technical in its methodology. els that satisfy particular collections Now, nearly half a century after its of axioms. Collections of axioms that creation, aspects of metamathematics are logically contradictory or that en- are beginning to move beyond the tail logical falsehoods surely cannot analysis of existing mathematics to the be satisfied by any model, for such a creation of surprising new conceptual model would have to contain an in- models. These models give promise of ternal contradiction. Collections of well representing certain large-scale axioms with this failing are called in- scientific problems and may even yield I - 01' consistent and are purged from mathe- a new perspective on the nature of matics whenever they are discovered. time. ,.A rfa"N S Mathematics deals only with consistent Details of this relatively new theory, collections of axioms, in two essentially known as "model theory," were out- W E~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~tdifferent but closely related ways: a lined by H. Jerome Keisler of the Uni- syntactical process in which certain versity of Wisconsin in four Colloquium sentences (called theorems) are de- Lectures at the annual meeting of the rived from consistent collections of American Mathematical Society in axioms, and a semantical process in Washington in January. According to which models for consistent collec- society President Lipman Bers of Co- tions of axioms are constructed, ana- lumbia University, an invitation to de- standard models for many current sci- lyzed and utilized. liver the Colloquium Lectures is one entific problems. The first major result of model theo- of the highest honors in mathematics. The models provided by model ry a result which provided the pri- Rarely has the subject of these lectures theory come, of course, from within mary tool for 40 years of subsequent been so rich in history and so ripe for mathematics itself. Mathematics is research-is the so-called Compactness potential research and application. comprised of a langucage of symbols in Theorem first proved by the German Model theory has developed rapidly which sentences may be formed that logician Kurt Godel in 1930. (Godel is during the past two decades as a tool describe properties of certain abstract now a fellow of the Institute for Ad- for classifying and constructing models objects called models. For instance, vanced Study in Princeton.) This theo- that arise in diverse parts of matlhe- by using symbols such as +, =, 0, 1, rem establishes certain very general matics. The subject of its study is 2, we may express sentences ( e.g., " 1 grounds under which the existence of mathematics itself, and the tools are + 1 = 2") about a particular model. a model can be guaranteed even with- highly exotic methods of mathematical What a sentence says about a particu- out knowing what it looks like or how logic, particularly various techniques lar model may be true, or it may be to construct it. Specifically, it says that for constructing, enlarging or modify- false, or it may be meaningless. A mod- if every finite subcollection of an in- ing mathematical models to serve new el is said to satisfy a particular sen- finite collection of axioms has a model, requirements. As 19th-century models tence if the sentence is true in that par- then so must the whole infinite collec- for non-Euclidean geometry and non- ticular model. For example, because tion. commutative arithmetic later proved "1-I 1 = 2" is a true statement about The power of this theorem lies in useful (indeed, indispensable) in rela- integers, we say that the integers form its ability to leap logically from evi- tivity theory and in atomic physics, so a model which satisfies the sentence dence based on finite collections to a advocates of model theory foresee "I + 1 = 2." Of course other models, conclusion that holds for an infinite model theory providing valuable non- the model of ordinary real numbers, collection: It is a mathematical bridge 108 Science News, Vol. 107 This content downloaded on Thu, 14 Mar 2013 16:59:48 PM All use subject to JSTOR Terms and Conditions "This is the essence of meta- " . Robinson's solution of mathematics-to study the lan- the problem of infinitesimal guage of mathematics as distinct numbers is as significant and from the objects of mathematics, revolutionary as the 19th- like studying linguistics as opposed century discovery of non- to writing a novel." Euclidian geometries." into the transfinite. Mathematicians chevski and Riemann. Moreover, his employ infinite collections of axioms method-an application of basic prin- quite frequently, even for such simple ciples of model theory-may be even things as a rigorous treatment of arith- more important than his result. In- metic. The Compactness Theorem pro- Cs stead of studying details of existing vides a powerful means for inferring models, he studied as a distinct mathe- the existence of a model for such an matical entity the language which one infinite collection of axioms. It is es- uses to describe these models. This is pecially useful in enlarging existing the essence of metamathematics-to models to meet new conditions: The "Newton's and Leibniz's intuition about study the language of mathematics as presence of the existing model makes infinitesimals was not only quite pro- distinct from the objects of mathe- it possible to verify the hypothesis of found but also, in the proper context, matics, like studying linguistics as op- the Compactness Theorem, thus en- capable of rigorous verification." M. C. posed to writing a novel. Model theory suring the truth of its conclusion. Escher's "Smaller and Smaller" ex- provides the translation from the lan- A second major event in the classical presses the mystery concerning what guage in which mathematics is ex- development of model theory occurred happens when things, or numbers, be- pressed to the models of which it is in 1935 when the Norwegian logician come infinitely small. comprised. Thoralf Skolem showed that the theory Part of the reason that Robinson's of ordinary arithmetic must have mod- cians, especially Augustin Cauchy and work had greater impact than Skolem's els other than the intended one-in Karl Weierstrass, developed many dif- was that he had available more com- particular, models containing infinitely ferent arguments designed to show that pelling techniques. In 1955 the Polish large numbers. This idea lay fallow, the entire concept of an infinitesimal mathematician Jerzy Los extended one however, until about 10 years ago was absurd, and they succeeded in of Skolem's ideas to actually construct when the late Abraham Robinson of banishing it from mathematics as a bit (in an abstract sort of way) models Yale University refined it to create a of clever but misguided intuition. Rob- of the type whose existence is guaran- new model for calculus-called "non- inson's nonstandard model, however, teed by the Compactness Theorem. standard" analysis-which incorporated has reaffirmed the early heroes. It Los's model is called an ultraproduct. both infinitely large and infinitely shows, in fact, that Newton's and It is formed by complex algebraic op- small (infinitesimal) numbers. Leibniz's intuition was not only quite erations (similar to simple products Isaac Newton and Gottfried Leibniz, profound but also, in the proper con- but of infinite extent; hence the name the co-inventors of calculus, both em- text, capable of rigorous verification. ultraproduct) performed on the ele- ployed infinitesimals in their work. But Many mathematicians feel that Rob- ments of more basic models. subsequent generations of mathemati- inson's solution of the problem of in- The introduction of ultraproducts as cians, despite strenuous effort, were finitesimal numbers is as significant a relatively concrete realization of the unable to find a logically coherent ex- and revolutionary as, for instance, the heretofore totally existential models planation for the behavior of infinitesi- 19th-century discovery of non-Euclidean guaranteed by the Compactness Theo- mals. Nineteenth-century mathemati- geometries by Bolyai, Gauss, Loba- rem generated a major resurgence of INFINITESIMAL MICKOSCOPE MONAD OF - I MONAD OF I NEGAIVE - -2- -_ 0 1 2 POSITIVE INFINITEG INFINITE GAL,AXIES NITVE. GALAXY LXE INFINITF TELE-5C0PE hikk NONSTANDARD MODFELOF THE REAL NOM6EP$l On a macroscopic level, the nonstandard universe of real which is the ordinary real line. On a microscopic level, ex- numbers contains, in addition to the ordinary real number amination of any point in a galaxy through an "infinitesimal line, many "galaxies" just like it which extend on both sides microscope" reveals that it is not just a point, but an in- of it. These galaxies appear, when viewed through an "in- finitely small copy of the entire real line called, after Leib- finite telescope," to be exact replicas of the finite galaxy niz, a monad. February 15, 1975 109 This content downloaded on Thu, 14 Mar 2013 16:59:48 PM All use subject to JSTOR Terms and Conditions interest in model theory.
Recommended publications
  • The Metamathematics of Putnam's Model-Theoretic Arguments
    The Metamathematics of Putnam's Model-Theoretic Arguments Tim Button Abstract. Putnam famously attempted to use model theory to draw metaphysical conclusions. His Skolemisation argument sought to show metaphysical realists that their favourite theories have countable models. His permutation argument sought to show that they have permuted mod- els. His constructivisation argument sought to show that any empirical evidence is compatible with the Axiom of Constructibility. Here, I exam- ine the metamathematics of all three model-theoretic arguments, and I argue against Bays (2001, 2007) that Putnam is largely immune to meta- mathematical challenges. Copyright notice. This paper is due to appear in Erkenntnis. This is a pre-print, and may be subject to minor changes. The authoritative version should be obtained from Erkenntnis, once it has been published. Hilary Putnam famously attempted to use model theory to draw metaphys- ical conclusions. Specifically, he attacked metaphysical realism, a position characterised by the following credo: [T]he world consists of a fixed totality of mind-independent objects. (Putnam 1981, p. 49; cf. 1978, p. 125). Truth involves some sort of correspondence relation between words or thought-signs and external things and sets of things. (1981, p. 49; cf. 1989, p. 214) [W]hat is epistemically most justifiable to believe may nonetheless be false. (1980, p. 473; cf. 1978, p. 125) To sum up these claims, Putnam characterised metaphysical realism as an \externalist perspective" whose \favorite point of view is a God's Eye point of view" (1981, p. 49). Putnam sought to show that this externalist perspective is deeply untenable. To this end, he treated correspondence in terms of model-theoretic satisfaction.
    [Show full text]
  • Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
    Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness .
    [Show full text]
  • FOUNDATIONS of RECURSIVE MODEL THEORY Mathematics Department, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Drive
    Annals of Mathematical Logic 13 (1978) 45-72 © North-H011and Publishing Company FOUNDATIONS OF RECURSIVE MODEL THEORY Terrence S. MILLAR Mathematics Department, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706, U.S.A. Received 6 July 1976 A model is decidable if it has a decidable satisfaction predicate. To be more precise, let T be a decidable theory, let {0, I n < to} be an effective enumeration of all formula3 in L(T), and let 92 be a countable model of T. For any indexing E={a~ I i<to} of I~1, and any formula ~eL(T), let '~z' denote the result of substituting 'a{ for every free occurrence of 'x~' in q~, ~<o,. Then 92 is decidable just in case, for some indexing E of 192[, {n 192~0~ is a recursive set of integers. It is easy, to show that the decidability of a model does not depend on the choice of the effective enumeration of the formulas in L(T); we omit details. By a simple 'effectivizaton' of Henkin's proof of the completeness theorem [2] we have Fact 1. Every decidable theory has a decidable model. Assume next that T is a complete decidable theory and {On ln<to} is an effective enumeration of all formulas of L(T). A type F of T is recursive just in case {nlO, ~ F} is a recursive set of integers. Again, it is easy to see that the recursiveness of F does not depend .on which effective enumeration of L(T) is used.
    [Show full text]
  • Model Theory, Arithmetic & Algebraic Geometry
    MODEL THEORY, ARITHMETIC & ALGEBRAIC GEOMETRY JOEL TORRES DEL VALLE 1. LANGUAGES AND STRUCTURES. 1.1. What is Model Theory? Model Theory is the study of the relationship between theories and mathematical struc- tures which satisfies them [11]. Model Theory introduces Mathematical Logic in the prac- tice of Universal Algebra, so we can think it like Model Theory = Universal Algebra + Mathematical Logic. I started this pages with the same question Chang-Keisler started their celebrated book [3]: ‘What is Model Theory?’ They also summarize the answer to the equation above. In this pages I summarize the relationship between Model Theory, Arithmetic and Algebraic Geometry. The topics will be the basic ones in the area, so this is just an invitation, in the presentation of topics I mainly follow the philosophy of the references, my basic reference is [9]. The early pioneers in Model Theory were Leopold L¨owenheim in 1915, in his work ‘Uber¨ M¨oglichkeiten im Relativkalk¨ul’1 there he proved that if a first order theory T that has an infinite model then has a countable model. Thoralf Skolem in 1920 proved a second version of L¨owenheim result, in his work ‘Logisch-kombinatorische Untersuchungen ¨uber die Erf¨ullbarkeit oder Beweisbarkeit mathematischer S¨atze nebst einem Theoreme ¨uber dichte Mengen’2. Kurt G¨odel in 1930 proved his Completeness and Compactness Theorems for countable languages in his Doctoral dissertation at the University of Viena titled ‘Die Vollst¨andigkeit der Axiome des logischen Funktionenkalk¨uls’3. Alfred Tarski in 1931
    [Show full text]
  • Henkin's Method and the Completeness Theorem
    Henkin's Method and the Completeness Theorem Guram Bezhanishvili∗ 1 Introduction Let L be a first-order logic. For a sentence ' of L, we will use the standard notation \` '" for ' is provable in L (that is, ' is derivable from the axioms of L by the use of the inference rules of L); and \j= '" for ' is valid (that is, ' is satisfied in every interpretation of L). The soundness theorem for L states that if ` ', then j= '; and the completeness theorem for L states that if j= ', then ` '. Put together, the soundness and completeness theorems yield the correctness theorem for L: a sentence is derivable in L iff it is valid. Thus, they establish a crucial feature of L; namely, that syntax and semantics of L go hand-in-hand: every theorem of L is a logical law (can not be refuted in any interpretation of L), and every logical law can actually be derived in L. In fact, a stronger version of this result is also true. For each first-order theory T and a sentence ' (in the language of T ), we have that T ` ' iff T j= '. Thus, each first-order theory T (pick your favorite one!) is sound and complete in the sense that everything that we can derive from T is true in all models of T , and everything that is true in all models of T is in fact derivable from T . This is a very strong result indeed. One possible reading of it is that the first-order formalization of a given mathematical theory is adequate in the sense that every true statement about T that can be formalized in the first-order language of T is derivable from the axioms of T .
    [Show full text]
  • Arxiv:1205.6044V1 [Math.HO] 28 May 2012 Prescriptive/Prohibitive Context
    FOUNDATIONS AS SUPERSTRUCTURE1 (Reflections of a practicing mathematician) Yuri I. Manin Max–Planck–Institut f¨ur Mathematik, Bonn, Germany, ABSTRACT. This talk presents foundations of mathematics as a historically variable set of principles appealing to various modes of human intuition and de- void of any prescriptive/prohibitive power. At each turn of history, foundations crystallize the accepted norms of interpersonal and intergenerational transfer and justification of mathematical knowledge. Introduction Foundations vs Metamathematics. In this talk, I will interpret the idea of Foundations in the wide sense. For me, Foundations at each turn of history embody currently recognized, but historically variable, principles of organization of mathematical knowledge and of the interpersonal/transgenerational transferral of this knowledge. When these principles are studied using the tools of mathematics itself, we get a new chapter of mathematics, metamathematics. Modern philosophy of mathematics is often preoccupied with informal interpre- tations of theorems, proved in metamathematics of the XX–th century, of which the most influential was probably G¨odel’s incompleteness theorem that aroused considerable existential anxiety. In metamathematics, G¨odel’s theorem is a discovery that a certain class of finitely arXiv:1205.6044v1 [math.HO] 28 May 2012 generated structures (statements in a formal language) contains substructures that are not finitely generated (those statements that are true in a standard interpreta- tion). It is no big deal for an algebraist, but certainly interesting thanks to a new context. Existential anxiety can be alleviated if one strips “Foundations” from their rigid prescriptive/prohibitive, or normative functions and considers various foundational 1Talk at the international interdisciplinary conference “Philosophy, Mathematics, Linguistics: Aspects of Interaction” , Euler Mathematical Institute, May 22–25, 2012.
    [Show full text]
  • Mechanism, Mentalism, and Metamathematics Synthese Library
    MECHANISM, MENTALISM, AND METAMATHEMATICS SYNTHESE LIBRARY STUDIES IN EPISTEMOLOGY, LOGIC, METHODOLOGY, AND PHILOSOPHY OF SCIENCE Managing Editor: JAAKKO HINTIKKA, Florida State University Editors: ROBER T S. COHEN, Boston University DONALD DAVIDSON, University o/Chicago GABRIEL NUCHELMANS, University 0/ Leyden WESLEY C. SALMON, University 0/ Arizona VOLUME 137 JUDSON CHAMBERS WEBB Boston University. Dept. 0/ Philosophy. Boston. Mass .• U.S.A. MECHANISM, MENT ALISM, AND MET AMA THEMA TICS An Essay on Finitism i Springer-Science+Business Media, B.V. Library of Congress Cataloging in Publication Data Webb, Judson Chambers, 1936- CII:J Mechanism, mentalism, and metamathematics. (Synthese library; v. 137) Bibliography: p. Includes indexes. 1. Metamathematics. I. Title. QA9.8.w4 510: 1 79-27819 ISBN 978-90-481-8357-9 ISBN 978-94-015-7653-6 (eBook) DOl 10.1007/978-94-015-7653-6 All Rights Reserved Copyright © 1980 by Springer Science+Business Media Dordrecht Originally published by D. Reidel Publishing Company, Dordrecht, Holland in 1980. Softcover reprint of the hardcover 1st edition 1980 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any informational storage and retrieval system, without written permission from the copyright owner TABLE OF CONTENTS PREFACE vii INTRODUCTION ix CHAPTER I / MECHANISM: SOME HISTORICAL NOTES I. Machines and Demons 2. Machines and Men 17 3. Machines, Arithmetic, and Logic 22 CHAPTER II / MIND, NUMBER, AND THE INFINITE 33 I. The Obligations of Infinity 33 2. Mind and Philosophy of Number 40 3. Dedekind's Theory of Arithmetic 46 4.
    [Show full text]
  • The Z of ZF and ZFC and ZF¬C
    From SIAM News , Volume 41, Number 1, January/February 2008 The Z of ZF and ZFC and ZF ¬C Ernst Zermelo: An Approach to His Life and Work. By Heinz-Dieter Ebbinghaus, Springer, New York, 2007, 356 pages, $64.95. The Z, of course, is Ernst Zermelo (1871–1953). The F, in case you had forgotten, is Abraham Fraenkel (1891–1965), and the C is the notorious Axiom of Choice. The book under review, by a prominent logician at the University of Freiburg, is a splendid in-depth biography of a complex man, a treatment that shies away neither from personal details nor from the mathematical details of Zermelo’s creations. BOOK R EV IEW Zermelo was a Berliner whose early scientific work was in applied By Philip J. Davis mathematics: His PhD thesis (1894) was in the calculus of variations. He had thought about this topic for at least ten additional years when, in 1904, in collaboration with Hans Hahn, he wrote an article on the subject for the famous Enzyclopedia der Mathematische Wissenschaften . In point of fact, though he is remembered today primarily for his axiomatization of set theory, he never really gave up applications. In his Habilitation thesis (1899), Zermelo was arguing with Ludwig Boltzmann about the foun - dations of the kinetic theory of heat. Around 1929, he was working on the problem of the path of an airplane going in minimal time from A to B at constant speed but against a distribution of winds. This was a problem that engaged Levi-Civita, von Mises, Carathéodory, Philipp Frank, and even more recent investigators.
    [Show full text]
  • Model Theory
    Class Notes for Mathematics 571 Spring 2010 Model Theory written by C. Ward Henson Mathematics Department University of Illinois 1409 West Green Street Urbana, Illinois 61801 email: [email protected] www: http://www.math.uiuc.edu/~henson/ c Copyright by C. Ward Henson 2010; all rights reserved. Introduction The purpose of Math 571 is to give a thorough introduction to the methods of model theory for first order logic. Model theory is the branch of logic that deals with mathematical structures and the formal languages they interpret. First order logic is the most important formal language and its model theory is a rich and interesting subject with significant applications to the main body of mathematics. Model theory began as a serious subject in the 1950s with the work of Abraham Robinson and Alfred Tarski, and since then it has been an active and successful area of research. Beyond the core techniques and results of model theory, Math 571 places a lot of emphasis on examples and applications, in order to show clearly the variety of ways in which model theory can be useful in mathematics. For example, we give a thorough treatment of the model theory of the field of real numbers (real closed fields) and show how this can be used to obtain the characterization of positive semi-definite rational functions that gives a solution to Hilbert’s 17th Problem. A highlight of Math 571 is a proof of Morley’s Theorem: if T is a complete theory in a countable language, and T is κ-categorical for some uncountable κ, then T is categorical for all uncountable κ.
    [Show full text]
  • The History of Logic
    c Peter King & Stewart Shapiro, The Oxford Companion to Philosophy (OUP 1995), 496–500. THE HISTORY OF LOGIC Aristotle was the first thinker to devise a logical system. He drew upon the emphasis on universal definition found in Socrates, the use of reductio ad absurdum in Zeno of Elea, claims about propositional structure and nega- tion in Parmenides and Plato, and the body of argumentative techniques found in legal reasoning and geometrical proof. Yet the theory presented in Aristotle’s five treatises known as the Organon—the Categories, the De interpretatione, the Prior Analytics, the Posterior Analytics, and the Sophistical Refutations—goes far beyond any of these. Aristotle holds that a proposition is a complex involving two terms, a subject and a predicate, each of which is represented grammatically with a noun. The logical form of a proposition is determined by its quantity (uni- versal or particular) and by its quality (affirmative or negative). Aristotle investigates the relation between two propositions containing the same terms in his theories of opposition and conversion. The former describes relations of contradictoriness and contrariety, the latter equipollences and entailments. The analysis of logical form, opposition, and conversion are combined in syllogistic, Aristotle’s greatest invention in logic. A syllogism consists of three propositions. The first two, the premisses, share exactly one term, and they logically entail the third proposition, the conclusion, which contains the two non-shared terms of the premisses. The term common to the two premisses may occur as subject in one and predicate in the other (called the ‘first figure’), predicate in both (‘second figure’), or subject in both (‘third figure’).
    [Show full text]
  • Axiomatic Foundations of Mathematics Ryan Melton Dr
    Axiomatic Foundations of Mathematics Ryan Melton Dr. Clint Richardson, Faculty Advisor Stephen F. Austin State University As Bertrand Russell once said, Gödel's Method Pure mathematics is the subject in which we Consider the expression First, Gödel assigned a unique natural number to do not know what we are talking about, or each of the logical symbols and numbers. 2 + 3 = 5 whether what we are saying is true. Russell’s statement begs from us one major This expression is mathematical; it belongs to the field For example: if the symbol '0' corresponds to we call arithmetic and is composed of basic arithmetic question: the natural number 1, '+' to 2, and '=' to 3, then symbols. '0 = 0' '0 + 0 = 0' What is Mathematics founded on? On the other hand, the sentence and '2 + 3 = 5' is an arithmetical formula. 1 3 1 1 2 1 3 1 so each expression corresponds to a sequence. Axioms and Axiom Systems is metamathematical; it is constructed outside of mathematics and labels the expression above as a Then, for this new sequence x1x2x3…xn of formula in arithmetic. An axiom is a belief taken without proof, and positive integers, we associate a Gödel number thus an axiom system is a set of beliefs as follows: x1 x2 x3 xn taken without proof. enc( x1x2x3...xn ) = 2 3 5 ... pn Since Principia Mathematica was such a bold where the encoding is the product of n factors, Consistent? Complete? leap in the right direction--although proving each of which is found by raising the j-th prime nothing about consistency--several attempts at to the xj power.
    [Show full text]
  • Warren Goldfarb, Notes on Metamathematics
    Notes on Metamathematics Warren Goldfarb W.B. Pearson Professor of Modern Mathematics and Mathematical Logic Department of Philosophy Harvard University DRAFT: January 1, 2018 In Memory of Burton Dreben (1927{1999), whose spirited teaching on G¨odeliantopics provided the original inspiration for these Notes. Contents 1 Axiomatics 1 1.1 Formal languages . 1 1.2 Axioms and rules of inference . 5 1.3 Natural numbers: the successor function . 9 1.4 General notions . 13 1.5 Peano Arithmetic. 15 1.6 Basic laws of arithmetic . 18 2 G¨odel'sProof 23 2.1 G¨odelnumbering . 23 2.2 Primitive recursive functions and relations . 25 2.3 Arithmetization of syntax . 30 2.4 Numeralwise representability . 35 2.5 Proof of incompleteness . 37 2.6 `I am not derivable' . 40 3 Formalized Metamathematics 43 3.1 The Fixed Point Lemma . 43 3.2 G¨odel'sSecond Incompleteness Theorem . 47 3.3 The First Incompleteness Theorem Sharpened . 52 3.4 L¨ob'sTheorem . 55 4 Formalizing Primitive Recursion 59 4.1 ∆0,Σ1, and Π1 formulas . 59 4.2 Σ1-completeness and Σ1-soundness . 61 4.3 Proof of Representability . 63 3 5 Formalized Semantics 69 5.1 Tarski's Theorem . 69 5.2 Defining truth for LPA .......................... 72 5.3 Uses of the truth-definition . 74 5.4 Second-order Arithmetic . 76 5.5 Partial truth predicates . 79 5.6 Truth for other languages . 81 6 Computability 85 6.1 Computability . 85 6.2 Recursive and partial recursive functions . 87 6.3 The Normal Form Theorem and the Halting Problem . 91 6.4 Turing Machines .
    [Show full text]