The Taxonomy of Australian Elapid Snakes: a Review

Total Page:16

File Type:pdf, Size:1020Kb

The Taxonomy of Australian Elapid Snakes: a Review AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Mengden, G. A., 1983. The taxonomy of Australian elapid snakes: a review. Records of the Australian Museum 35(5): 195–222. [30 December 1983]. doi:10.3853/j.0067-1975.35.1983.318 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1983) Vol. 35: 195-222. ISSN-0067-1975 195 The Taxonomy of Australian Elapid Snakes: A Review GREGORY A. MENGDEN Population Biology, Research School of Biological Sciences, The Australian National University, Canberra, A.C.T. 2600* ABSTRACT. Published data on Australian elapid snake taxonomy are reviewed. Both classical morphological studies and relevant ecological, chromosomal and biochemical data are summarized. Attention is focused on two major areas: (1) the phylogenetic relationships between Australian terrestrial elapids and other protero­ glyphs; and (2) the interrelationships among the Australian terrestrial elapids. From this review four key questions are identified: (1) Are the continentally endemic groups of terrestrial elapids confamilial? (2) Do the Australian elapids represent a distinct familial group? (3) Are the Australian elapids monophyletic or have the extant forms been derived from distinct lineages which may represent more than one invasion of the continent? (4) What is the precise relationship between laticaudine and hydrophiine sea snakes and the Australian elapids? There is considerable disagreement concerning generic allocations and suprageneric relationships within the Australian proteroglyphs. Ecological, cytological and biochemical studies currently under way may be useful adjuncts to morphological information in resolving these questions. MENGDEN, GREGORY A., 1983. The taxonomy of Australian elapid snakes: a review. Records of the Australian Museum 35(5): 195-222. CONTENTS Abstract .................................................... 0 • • • • • •• 195 Introduction ........................................................ 196 I. A BACKGROUND TO ELAPID CLASSIFICATION ................. 196 1. The Origins and Affinities of Terrestrial Proteroglyphs ............. 196 l(a) The morphological data .................................... 0 196 l(b) The biochemical data .................................... 0" 197 l(c) Dendroaspis-A distinctive elapid? ........................... 198 2. The Origins and Affinities of the Marine Proteroglyphs ......... 0 ••• 198 2(a) The morphological data ..................................... 198 2(b) The biochemical data ....................................... 199 2(c) The chromosomal data ............................... 0 •••••• 199 3. A Summary of Proteroglyph Relationships ........................ 200 *Present Address: Herpetoiogy Department, Australian Museum, P.O. Box A285, Sydney South, N.S.W. 2000. 196 Records of the Australian Museum (1983), Vol. 35 n. TAXONOMIC RELATIONSHIPS WITHIN THE AUSTRALIAN TERRESTRIAL ELAPIDS ........................................ 200 1. The Classifications since Giinther (1858) .......................... 200 2. The Morphological Data ........................................ 201 2(a) Taxonomic changes to Boulenger's Denisonia .................. 201 2(b) Taxonomic changes to Boulenger's Diemenia (Demansia) ....... 202 2(c) Taxonomic changes to Pseudelaps, Furina and G/yphodon ...... 202 2(d) Taxonomic changes to Vermicella and Simoselaps .............. 203 2(e) Additional taxonomic changes to Australian elapids ............ 203 2(D The intergeneric relationships proposed by McDowell ........... 204 3. The Biochemical Data .......................................... 204 4. A Summary of the Taxonomic Relationships of Australian Terrestrial Elapids ............................................ 205 5. Concluding Remarks ............................................ 205 Acknowledgements .................................................. 205 The combined proteroglyphous or fixed-front-fanged 1973), the incomplete nature of most of the fossil forms, snakes are represented world-wide by approximately 63 and consequent difficulty of recognizing primitive and genera and 245 species (Elapidae, Laticaudidae and derived character states in them (Dowling & Duellman, Hydrophiidae of some authors). Of these, 16 genera and 1978; see also Schwaner & Dessauer, 1982). 53 species are marine forms. This group contains a large Storr (1964) pointed out that the Elapidae (pre­ percentage of those venomous snake species dangerous sumably referring to all terrestrial proteroglyphs) give to man. the appearance of an "old declining group". He also This report summarizes the published classifications commented that, with the exception of Naja (true on the Australian elapids, including those based on cobras), all the forty or so then recognized genera morphological criteria as well as the recent biochemical formed distinct geographic groups endemic to particular and cytological work that has obvious taxonomic continents. implications. The aim of this review is to clarify the The terrestrial elapids are generally considered to problems still to be resolved in elapid taxonomy and have been derived from a colubrid ancestor. The marine provide a taxonomic baseline for future contributions. proteroglyphs are assumed either to have been derived This paper provides a summary of previous taxonomic directly from terrestrial elapid snakes or else to share studies, but does not suggest any new taxonomic a common ancestral stock with them (see Cogger, 1975a designations. Nor do I wish to offer a reassessment of for summary). Indeed their close affinities were characters. Consequently, I have avoided weighting indicated by Underwood (1967), who gave them characters or biasing the presentation toward anyone con familial status with a single division between all of the classifications that have been published. The terrestrial (subfamily Elapinae) and marine (subfamily paper deals first with the question of relationships Hydrophiinae) forms (Table 1). This was subsequently among proteroglyphous snakes world-wide, and then supported by Hardaway & Williams (1976) following focuses on relationships among the Australian terrestrial an analysis of the costal cartilages of the ribs and proteroglyphs. modified by Underwood (1979) to include subfamily Laticaudinae. Dowling (1967) also placed all proteroglyphs in the family Elapidae but divided the family into four subfamilies: Apisthocalaminae ("stem elapids"), Elapinae ("terrestrial elapids"), Laticaudinae I. A BACKGROUND TO "ELAPID" ("recent sea snakes"), and Hydrophiinae ("advanced CLASSIFICATION sea snakes"). Table 1 lists all genera of proteroglyphs, their 1. The Origins and Affinities of the common names and some relevant taxonomic comments Terrestrial Proteroglyphs from the literature. The sparse fossil record of elapids commences in the l(a). The Morphological Data upper Miocene in France and Morocco (Hoffstetter, Doubt was cast on the monophyletic origin of the 1962). This rccord, however, has been of little help in proteroglyph condition by the work of Bourgeois (1965) determining precise categories of snake taxa owing to on the African Mole Viper (Atractaspis) and that of the lack of critical fossils (Dowling, 1959; Marx & Rabb, McDowell (1968) on the African elapid snake Elaps ( = MENGDEN: Taxonomy of Australian elapid snakes 197 Homorelaps sensu Boulenger 1896 = Homoroselaps as Maticora and the sea kraits Laticauda. McDowell's per opinion 1201 of Int. Comm. Zoo!. Nomenclature, classification was adopted by Smith et al. (1977) and 1982). Both authors attempted to demonstrate that the three tribes within the subfamily Elapinae were erected: closest affinities of their respective forms lay with the the Elapini (= American and North Asian coral snakes), same group of rear-fanged (opisthoglyphous) African the Maticorini (= South Asiatic coral snakes) and colubrids. This would mean that the two separate venom Laticaudini (= sea kraits). delivery systems of the Viperidae (solenoglyphous [movable-front-fanged] snakes), to which Atractaspis l(b). The Biochemical Data (Terrestrial Proteroglyphs) then belonged, and the Elapidae (proteroglyphous Turning to the chemotaxonomic data, the immuno­ [fixed-front-fanged] snakes), to which Elaps then logical study of Cadle & Sarich (1981) refuted the belonged, would have arisen in parallel from a classification proposed by Savitsky (1978) and Duellman somewhat similar ancestral stock. In the most recent (1979). Using micro complement fixation analysis summaries of snake classification (Smith et al., 1977; (M C' F) Cadle and Sarich (1981) demonstrated a closer Underwood, 1979; Harding & Welch, 1980), which relationship between the micrurines, the Asian elapids relied heavily on the morphological work of McDowell, Ophiophagus and Bungarus, the Australian elapid Atractaspis has been accorded the status of a separate Austrelaps and the sea kraits Laticauda, on the one subfamily (Atractaspinae) within the family Colubridae, hand, than between the micrurines and any of the though Branch (1981) suggested that tribal designation xenodontine colubrids or hydrophiine sea snakes on the within the subfamily Aparallactinae may more other. They claimed that their data unequivocally placed
Recommended publications
  • THE UNDERCROFT We Must Expire in Hope{ of Resurrection to Life Again
    THE UNDERCROFT We must Expire in hope{ of Resurrection to Life Again 1 Editorial Illu{tration{ Daniel Sell Matthew Adams - 43 Jeremy Duncan - 51, 63 Anxious P. - 16 2 Skinned Moon Daughter Cedric Plante - Cover, 3, 6, 8, 9 Benjamin Baugh Sean Poppe - 28 10 101 Uses of a Hanged Man Barry Blatt Layout Editing & De{ign Daniel Sell 15 The Doctor Patrick Stuart 23 Everyone is an Adventurer E{teemed Con{ultant{ Daniel Sell James Maliszewski 25 The Sickness Luke Gearing 29 Dead Inside Edward Lockhart 41 Cockdicktastrophe Chris Lawson 47 Nine Summits and the Matter of Birth Ezra Claverie M de in elson Ma ia S t y a it mp ic of Authent Editorial Authors live! Hitler writes a children’s book, scratches his name off and hides it among the others. Now children grow up blue and blond, unable to control their minds, the hidden taint in friendly balloons and curious caterpillars wormed itself inside and reprogrammed them into literary sleeper agents ready to steal our freedom. The swine! We never saw it coming. If only authors were dead. But if authors were dead you wouldn’t be able to find them, to sit at their side and learn all they had to say on art and beautiful things, on who is wrong and who is right, on what is allowed and what is ugly and what should be done about this and that. We would have only words and pictures on a page, if we can’t fill in the periphery with context then how will we understand anything? If they don’t tell us what to enjoy, how to correctly enjoy it, then how will we know? Who is right and who is mad? Whose ideas are poisonous and wrong? Call to arms! Stop that! Help me! We must slather ourselves in their selfish juices.
    [Show full text]
  • Federal Register/Vol. 85, No. 130/Tuesday, July 7, 2020/Notices
    40622 Federal Register / Vol. 85, No. 130 / Tuesday, July 7, 2020 / Notices Amendment and the Bluefish Allocation Tuesday, July 21, 2020; 9 a.m.–5 p.m. The meeting will be broadcast via and Rebuilding Amendment. In The meeting will begin with webinar. You may register for the addition, the SSC may take up any other Introductions, Adoption of Agenda, webinar by visiting www.gulfcouncil.org business as necessary. Approval of Minutes from the June 29 and clicking on the SSC meeting on the A detailed agenda and background and July 8–9, 2020 webinar meetings. calendar. documents will be made available on Council staff will review the Scope of The Agenda is subject to change, and the Council’s website (www.mafmc.org) Work; and, the Committees will select a the latest version along with other prior to the meeting. SSC Representative for the August 24– meeting materials will be posted on www.gulfcouncil.org as they become Special Accommodations 27, 2020 Gulf Council meeting. Florida Fish and Wildlife Conservation available. The meeting is physically accessible Commission (FWC) staff will review Although other non-emergency issues to people with disabilities. Requests for Southeast Data, Assessment, and not on the agenda may come before the sign language interpretation or other Review (SEDAR) 64—Southeastern US Scientific and Statistical Committees for auxiliary aid should be directed to M. Yellowtail Snapper Stock Assessment; discussion, in accordance with the Jan Saunders, (302) 526–5251, at least 5 with Current and Marine Recreational Magnuson-Stevens Fishery days prior to the meeting date. Information Program (MRIP)-adjusted Conservation and Management Act, those issues may not be the subject of Authority: 16 U.S.C.
    [Show full text]
  • Cairns Regional Council Water and Waste Report for Mulgrave River Aquifer Feasibility Study Flora and Fauna Report
    Cairns Regional Council Water and Waste Report for Mulgrave River Aquifer Feasibility Study Flora and Fauna Report November 2009 Contents 1. Introduction 1 1.1 Background 1 1.2 Scope 1 1.3 Project Study Area 2 2. Methodology 4 2.1 Background and Approach 4 2.2 Demarcation of the Aquifer Study Area 4 2.3 Field Investigation of Proposed Bore Hole Sites 5 2.4 Overview of Ecological Values Descriptions 5 2.5 PER Guidelines 5 2.6 Desktop and Database Assessments 7 3. Database Searches and Survey Results 11 3.1 Information Sources 11 3.2 Species of National Environmental Significance 11 3.3 Queensland Species of Conservation Significance 18 3.4 Pest Species 22 3.5 Vegetation Communities 24 3.6 Regional Ecosystem Types and Integrity 28 3.7 Aquatic Values 31 3.8 World Heritage Values 53 3.9 Results of Field Investigation of Proposed Bore Hole Sites 54 4. References 61 Table Index Table 1: Summary of NES Matters Protected under Part 3 of the EPBC Act 5 Table 2 Summary of World Heritage Values within/adjacent Aquifer Area of Influence 6 Table 3: Species of NES Identified as Occurring within the Study Area 11 Table 4: Summary of Regional Ecosystems and Groundwater Dependencies 26 42/15610/100421 Mulgrave River Aquifer Feasibility Study Flora and Fauna Report Table 5: Freshwater Fish Species in the Mulgrave River 36 Table 6: Estuarine Fish Species in the Mulgrave River 50 Table 7: Description of potential borehole field in Aloomba as of 20th August, 2009. 55 Figure Index Figure 1: Regional Ecosystem Conservation Status and Protected Species Observation 21 Figure 2: Vegetation Communities and Groundwater Dependencies 30 Figure 3: Locations of Study Sites 54 Appendices A Database Searches 42/15610/100421 Mulgrave River Aquifer Feasibility Study Flora and Fauna Report 1.
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • Cobra Risk Assessment
    Invasive animal risk assessment Biosecurity Queensland Agriculture Fisheries and Department of Cobra (all species) Steve Csurhes and Paul Fisher First published 2010 Updated 2016 Pest animal risk assessment © State of Queensland, 2016. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence visit http://creativecommons.org/licenses/ by/3.0/au/deed.en" http://creativecommons.org/licenses/by/3.0/au/deed.en Photo: Image from Wikimedia Commons (this image is reproduced under the terms of a GNU Free Documentation License) Invasive animal risk assessment: Cobra 2 Contents Summary 4 Introduction 5 Identity and taxonomy 5 Taxonomy 3 Description 5 Diet 5 Reproduction 6 Predators and diseases 6 Origin and distribution 7 Status in Australia and Queensland 8 Preferred habitat 9 History as a pest elsewhere 9 Uses 9 Pest potential in Queensland 10 Climate match 10 Habitat suitability 10 Broad natural geographic range 11 Generalist diet 11 Venom production 11 Disease 11 Numerical risk analysis 11 References 12 Attachment 1 13 Invasive animal risk assessment: Cobra 3 Summary The common name ‘cobra’ applies to 30 species in 7 genera within the family Elapidae, all of which can produce a hood when threatened. All cobra species are venomous. As a group, cobras have an extensive distribution over large parts of Africa, Asia, Malaysia and Indonesia.
    [Show full text]
  • Herpetological Notes. No.5
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Kinghorn, J. Roy, 1955. Herpetological notes. No. 5. Records of the Australian Museum 23(5): 283–286, plate xiv. [1 September 1955]. doi:10.3853/j.0067-1975.23.1955.638 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia HERPETOLOGICAL NOTES No. 5. By J. R. KINGHORN. (Plate xiv; two Text-figures.) 1. TAXONOMIC OHANGES IN THE GENUS RHYNOHOELAPS. Recent investigation shows that Rhynchoelaps bertholdi belongs to an entirely different genus of snakes from other species generally placed in the same genus. R. b61,tholdi has what may be described as typical elapine type head scalation, whilst other members of the group have a shovel-shaped snout, with a more or less oblique arrangement of head shields, naturally conforming to the disposition of the bones of the skull. Only one member of the shovel-snouted group has a more or less normal type arrangement of shields, but it is quite distinct from bertholdi. This species is fasciolata, originally named Rhinelaps fasciolatus Gunther, but in this the nasal is widely separated from the preocular: J an, in Rev. et ];Jag. Zool., p. 5UI, Dec. 1858, first mentioned E. bertholdi with Rhynchoelap8 proposed as a subgenus, but there was no description. In the same magazine, 1859, 2, ii, p. 123 he uses the name Simoselaps, genotype E. bertholdi and gave a fairly full description; so it would appear that Simoselaps should be used; but bec,wse of common usage I propose a~ present to refer it to Rhynchoelaps bertholdi.
    [Show full text]
  • Journal.Pone.0115679
    Architecture, Design and Conservation Danish Portal for Artistic and Scientific Research Aarhus School of Architecture // Design School Kolding // Royal Danish Academy Molecules and morphology reveal overlooked populations of two presumed extinct Australian sea snakes (Aipysurus: Hydrophiinae) Sanders, Kate Laura; Schroeder, Tina; Guinea, Michael L.; Redsted Rasmussen, Arne Published in: P L o S One Publication date: 2015 Document Version: Publisher's PDF, also known as Version of record Link to publication Citation for pulished version (APA): Sanders, K. L., Schroeder, T., Guinea, M. L., & Redsted Rasmussen, A. (2015). Molecules and morphology reveal overlooked populations of two presumed extinct Australian sea snakes (Aipysurus: Hydrophiinae). P L o S One, 10(2), 1-13. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115679 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 11. Oct. 2021 RESEARCH ARTICLE Molecules and Morphology Reveal Overlooked Populations of Two Presumed Extinct Australian Sea Snakes (Aipysurus: Hydrophiinae) Kate L.
    [Show full text]
  • NHBSS 061 1G Hikida Fieldg
    Book Review N$7+IST. BULL. S,$0 SOC. 61(1): 41–51, 2015 A Field Guide to the Reptiles of Thailand by Tanya Chan-ard, John W. K. Parr and Jarujin Nabhitabhata. Oxford University Press, New York, 2015. 344 pp. paper. ISBN: 9780199736492. 7KDLUHSWLOHVZHUHÀUVWH[WHQVLYHO\VWXGLHGE\WZRJUHDWKHUSHWRORJLVWV0DOFROP$UWKXU 6PLWKDQG(GZDUG+DUULVRQ7D\ORU7KHLUFRQWULEXWLRQVZHUHSXEOLVKHGDV6MITH (1931, 1935, 1943) and TAYLOR 5HFHQWO\RWKHUERRNVDERXWUHSWLOHVDQGDPSKLELDQV LQ7KDLODQGZHUHSXEOLVKHG HJ&HAN-ARD ET AL., 1999: COX ET AL DVZHOODVPDQ\ SDSHUV+RZHYHUWKHVHERRNVZHUHWD[RQRPLFVWXGLHVDQGQRWJXLGHVIRURUGLQDU\SHRSOH7ZR DGGLWLRQDOÀHOGJXLGHERRNVRQUHSWLOHVRUDPSKLELDQVDQGUHSWLOHVKDYHDOVREHHQSXEOLVKHG 0ANTHEY & GROSSMANN, 1997; DAS EXWWKHVHERRNVFRYHURQO\DSDUWRIWKHIDXQD The book under review is very well prepared and will help us know Thai reptiles better. 2QHRIWKHDXWKRUV-DUXMLQ1DEKLWDEKDWDZDVP\ROGIULHQGIRUPHUO\WKH'LUHFWRURI1DWXUDO +LVWRU\0XVHXPWKH1DWLRQDO6FLHQFH0XVHXP7KDLODQG+HZDVDQH[FHOOHQWQDWXUDOLVW DQGKDGH[WHQVLYHNQRZOHGJHDERXW7KDLDQLPDOVHVSHFLDOO\DPSKLELDQVDQGUHSWLOHV,Q ZHYLVLWHG.KDR6RL'DR:LOGOLIH6DQFWXDU\WRVXUYH\KHUSHWRIDXQD+HDGYLVHGXV WRGLJTXLFNO\DURXQGWKHUH:HFROOHFWHGIRXUVSHFLPHQVRIDibamusZKLFKZHGHVFULEHG DVDQHZVSHFLHVDibamus somsaki +ONDA ET AL 1RZ,DPYHU\JODGWRNQRZWKDW WKLVERRNZDVSXEOLVKHGE\KLPDQGKLVFROOHDJXHV8QIRUWXQDWHO\KHSDVVHGDZD\LQ +LVXQWLPHO\GHDWKPD\KDYHGHOD\HGWKHSXEOLFDWLRQRIWKLVERRN7KHERRNLQFOXGHVQHDUO\ DOOQDWLYHUHSWLOHV PRUHWKDQVSHFLHV LQ7KDLODQGDQGPRVWSLFWXUHVZHUHGUDZQZLWK H[FHOOHQWGHWDLO,WLVDYHU\JRRGÀHOGJXLGHIRULGHQWLÀFDWLRQRI7KDLUHSWLOHVIRUVWXGHQWV
    [Show full text]
  • Phylogenetic Relationships of Terrestrial Australo-Papuan Elapid Snakes (Subfamily Hydrophiinae) Based on Cytochrome B and 16S Rrna Sequences J
    MOLECULAR PHYLOGENETICS AND EVOLUTION Vol. 10, No. 1, August, pp. 67–81, 1998 ARTICLE NO. FY970471 Phylogenetic Relationships of Terrestrial Australo-Papuan Elapid Snakes (Subfamily Hydrophiinae) Based on Cytochrome b and 16S rRNA Sequences J. Scott Keogh,*,†,1 Richard Shine,* and Steve Donnellan† *School of Biological Sciences A08, University of Sydney, Sydney, New South Wales 2006, Australia; and †Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia Received April 24, 1997; revised September 4, 1997 quence data support many of the conclusions reached Phylogenetic relationships among the venomous Aus- by earlier studies using other types of data, but addi- tralo-Papuan elapid snake radiation remain poorly tional information will be needed before the phylog- resolved, despite the application of diverse data sets. eny of the Australian elapids can be fully resolved. To examine phylogenetic relationships among this ௠ 1998 Academic Press enigmatic group, portions of the cytochrome b and 16S Key Words: mitochondrial DNA; cytochrome b; 16S rRNA mitochondrial DNA genes were sequenced from rRNA; reptile; snake; elapid; sea snake; Australia; New 19 of the 20 terrestrial Australian genera and 6 of the 7 Guinea; Pacific; Asia; biogeography. terrestrial Melanesian genera, plus a sea krait (Lati- cauda) and a true sea snake (Hydrelaps). These data clarify several significant issues in elapid phylogeny. First, Melanesian elapids form sister groups to Austra- INTRODUCTION lian species, indicating that the ancestors of the Austra- lian radiation came via Asia, rather than representing The diverse, cosmopolitan, and medically important a relict Gondwanan radiation. Second, the two major elapid snakes are a monophyletic clade of approxi- groups of sea snakes (sea kraits and true sea snakes) mately 300 species and 61 genera (Golay et al., 1993) represent independent invasions of the marine envi- primarily defined by their unique venom delivery sys- ronment.
    [Show full text]
  • Pirra Jungku Project Species Guide
    The Pirra Jungku Project is a collaboration between the Karajarri Rangers, Environs Kimberley Pirra Jungku Project and the Threatened Species Recovery Hub with funding from the Australian Government’s National Environmental Science Program and the species guide Western Australian Government’s NRM Program. Reptiles * Asterix means the animal can be tricky to ID. Take a good photo, or bring it back to camp for checking, but do this as a last resort. Don’t bring back any snakes, in case they are poisonous. Dragons Upright posture (stick their heads up), have small, rough scales, each leg has 5 clawed fingers/toes. MATT FROM MELBOURNE, AUSTRALIA CC BY 2.0 WIKIMEDIA COMMONS JESSSARAH MILLER LEGGE Slater’s ring-tailed dragon Central military dragon (Ctenophorus slaterii) (Ctenophorus isolepis) Rocky country. Reddish colour with black Sandy country. Very fast on ground. spots on back and dark rings on the tail. Reddish colour with white spots and stripes. JESSCHRISTOPHER MILLER WATSON CC BY SA 3.0 WIKIMEDIA COMMONS ARTHUR CHAPMAN NICOLAS RAKOTOPARE Pindan dragon Horner’s dragon Northern Pilbara tree dragon (Diporiphora pindan) (Lophognathus horneri) (Diporiphora vescus) Thin, slender body. Two long white stripes Ta-ta lizard. White stripe from lip to back legs. Lives in spinifex. Plain colour, sometimes down back that cross over black and orange Tiny white spot in ear. with orange tail, and long white and grey tiger stripes.* stripes down body.* CHRISTOPHERSARAH LEGGE WATSON CC BY SA 3.0 WIKIMEDIA COMMONS Dwarf bearded dragon (Pogona minor) Grey with flat body with spiny edges. Has small spines on either side of the jaw and on the back of the head.
    [Show full text]
  • Marine Reptiles Arne R
    Virginia Commonwealth University VCU Scholars Compass Study of Biological Complexity Publications Center for the Study of Biological Complexity 2011 Marine Reptiles Arne R. Rasmessen The Royal Danish Academy of Fine Arts John D. Murphy Field Museum of Natural History Medy Ompi Sam Ratulangi University J. Whitfield iG bbons University of Georgia Peter Uetz Virginia Commonwealth University, [email protected] Follow this and additional works at: http://scholarscompass.vcu.edu/csbc_pubs Part of the Life Sciences Commons Copyright: © 2011 Rasmussen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Downloaded from http://scholarscompass.vcu.edu/csbc_pubs/20 This Article is brought to you for free and open access by the Center for the Study of Biological Complexity at VCU Scholars Compass. It has been accepted for inclusion in Study of Biological Complexity Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Review Marine Reptiles Arne Redsted Rasmussen1, John C. Murphy2, Medy Ompi3, J. Whitfield Gibbons4, Peter Uetz5* 1 School of Conservation, The Royal Danish Academy of Fine Arts, Copenhagen, Denmark, 2 Division of Amphibians and Reptiles, Field Museum of Natural History, Chicago, Illinois, United States of America, 3 Marine Biology Laboratory, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia, 4 Savannah River Ecology Lab, University of Georgia, Aiken, South Carolina, United States of America, 5 Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America Of the more than 12,000 species and subspecies of extant Caribbean, although some species occasionally travel as far north reptiles, about 100 have re-entered the ocean.
    [Show full text]
  • Surveys of the Sea Snakes and Sea Turtles on Reefs of the Sahul Shelf
    Surveys of the Sea Snakes and Sea Turtles on Reefs of the Sahul Shelf Monitoring Program for the Montara Well Release Timor Sea MONITORING STUDY S6 SEA SNAKES / TURTLES Dr Michael L Guinea School of Environment Faculty of Engineering, Health, Science and the Environment Charles Darwin University Darwin 0909 Northern Territory Draft Final Report 2012-2013 Acknowledgements: Two survey by teams of ten and eleven people respectively housed on one boat and operating out of three tenders for most of the daylight hours for 20 days and covering over 2500 km of ocean can only succeed with enthusiastic members, competent and obliging crew and good organisation. I am indebted to my team members whose names appear in the personnel list. I thank Drs Arne Rasmussen and Kate Sanders who gave their time and shared their knowledge and experiences. I thank the staff at Pearl Sea Coastal Cruises for their organisation and forethought. In particular I thank Alice Ralston who kept us on track and informed. The captains Ben and Jeff and Engineer Josh and the coxswains Riley, Cam, Blade and Brad; the Chef Stephen and hostesses Sunny and Ellen made the trips productive, safe and enjoyable. I thank the Department of Environment and Conservation WA for scientific permits to enter the reserves of Sandy Islet, Scott Reef and Browse Island. I am grateful to the staff at DSEWPaC, for facilitating and providing the permits to survey sea snakes and marine turtles at Ashmore Reef and Cartier Island. Activities were conducted under Animal Ethics Approval A11028 from Charles Darwin University. Olive Seasnake, Aipysurus laevis, on Seringapatam Reef.
    [Show full text]