Fundamentals of Signal Processing for Phased Array Radar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microwave Communications and Radar
2/26 6.014 Lecture 14: Microwave Communications and Radar A. Overview Microwave communications and radar systems have similar architectures. They typically process the signals before and after they are transmitted through space, as suggested in Figure L14-1. Conversion of the signals to electromagnetic waves occurs at the output of a power amplifier, and conversion back to signals occurs at the detector, after reception. Guiding-wave structures connect to the transmitting or receiving antenna, which are generally one and the same in monostatic radar systems. We have discussed antennas and multipath propagation earlier, so the principal novel mechanisms we need to understand now are the coupling of these electromagnetic signals between antennas and circuits, and the intervening propagating structures. Issues we must yet address include transmission lines and waveguides, impedance transformations, matching, and resonance. These same issues also arise in many related systems, such as lidar systems that are like radar but use light beams instead, passive sensing systems that receive signals emitted by the environment either naturally (like thermal radiation) or by artifacts (like motors or computers), and data recording systems like DVD’s or magnetic disks. The performance of many systems of interest is often limited in part by our ability to couple energy efficiently from one port to another, and our ability to filter out deleterious signals. Understanding these issues is therefore an important part of such design effors. The same issues often occur in any system utilizing high-frequency signals, whether or not they are transmitted externally. B. Radar, Lidar, and Passive Systems Figure L14-2 illustrates a standard radar or lidar configuration where the transmitted power Pt is focused toward a target using an antenna with gain Gt. -
Array Designs for Long-Distance Wireless Power Transmission: State
INVITED PAPER Array Designs for Long-Distance Wireless Power Transmission: State-of-the-Art and Innovative Solutions A review of long-range WPT array techniques is provided with recent advances and future trends. Design techniques for transmitting antennas are developed for optimized array architectures, and synthesis issues of rectenna arrays are detailed with examples and discussions. By Andrea Massa, Member IEEE, Giacomo Oliveri, Member IEEE, Federico Viani, Member IEEE,andPaoloRocca,Member IEEE ABSTRACT | The concept of long-range wireless power trans- the state of the art for long-range wireless power transmis- mission (WPT) has been formulated shortly after the invention sion, highlighting the latest advances and innovative solutions of high power microwave amplifiers. The promise of WPT, as well as envisaging possible future trends of the research in energy transfer over large distances without the need to deploy this area. a wired electrical network, led to the development of landmark successful experiments, and provided the incentive for further KEYWORDS | Array antennas; solar power satellites; wireless research to increase the performances, efficiency, and robust- power transmission (WPT) ness of these technological solutions. In this framework, the key-role and challenges in designing transmitting and receiving antenna arrays able to guarantee high-efficiency power trans- I. INTRODUCTION fer and cost-effective deployment for the WPT system has been Long-range wireless power transmission (WPT) systems soon acknowledged. Nevertheless, owing to its intrinsic com- working in the radio-frequency (RF) range [1]–[5] are plexity, the design of WPT arrays is still an open research field currently gathering a considerable interest (Fig. -
Radar, Without Tears
Radar, without tears François Le Chevalier1 May 2017 Originally invented to facilitate maritime navigation and avoid icebergs, at the beginning of the last century, radar took off during the Second World War, especially for aerial surveillance and guidance from the ground or from aircraft. Since then, it has continued to expand its field of employment. 1 What is it, what is it for? Radar is used in the military field for surveillance, guidance and combat, and in the civilian area for navigation, obstacle avoidance, security, meteorology, and remote sensing. For some missions, it is irreplaceable: detecting flying objects or satellites, several hundred kilometers away, monitoring vehicles and convoys more than 100 kilometers round, making a complete picture of a planet through its atmosphere, measuring precipitations, marine currents and winds at long ranges, detecting buried objects or observing through walls – as many functions that no other sensor can provide, and whose utility is not questionable. Without radar, an aerial or terrestrial attack could remain hidden until the last minute, and the rain would come without warning to Roland–Garros and Wimbledon ... Curiously, to do this, the radar uses a physical phenomenon that nature hardly uses: radio waves, which are electromagnetic waves using frequencies between 1 MHz and 100 GHz – most radars operating with wavelength ( = c / f, being the wavelength, c the speed of light, 3.108 m/s, and f the frequency) between 300 m and 3 mm (actually, for most of them, between 1m and 1cm): wavelengths on a human scale ... Indeed, while the optical domain of electromagnetic waves, or even the ultraviolet and infrared domains, are widely used by animals, while the acoustic waves are also widely used by marine or terrestrial animals, there is practically no example of animal use of this vast part, known as "radioelectric", of the electromagnetic spectrum (some fish, Eigenmannia, are an exception to this rule, but they use frequencies on the order of 300 Hz, and therefore very much lower than the "radar" frequencies). -
1- Consider an Array of Six Elements with Element Spacing D = 3Λ/8. A
1- Consider an array of six elements with element spacing d = 3 λ/8. a) Assuming all elements are driven uniformly (same phase and amplitude), calculate the null beamwidth. b) If the direction of maximum radiation is desired to be at 30 o from the array broadside direction, specify the phase distribution. c) Specify the phase distribution for achieving an end-fire radiation and calculate the null beamwidth in this case. 5- Four isotropic sources are placed along the z-axis as shown below. Assuming that the amplitudes of elements #1 and #2 are +1, and the amplitudes of #3 and #4 are -1, find: a) the array factor in simplified form b) the nulls when d = λ 2 . a) b) 1- Give the array factor for the following identical isotropic antennas with N and d. 3- Design a 7-element array along the x-axis. Specifically, determine the interelement phase shift α and the element center-to-center spacing d to point the main beam at θ =25 ° , φ =10 ° and provide the widest possible beamwidth. Ψ=x kdsincosθφα +⇒= 0 kd sin25cos10 ° °+⇒=− αα 0.4162 kd nulls at 7Ψ nnπ2 nn π 2 =±, = 1,2, ⋅⋅⋅⇒Ψnull =±7 , = 1,2,3,4,5,6 α kd2π n kd d λ α −=−7 ( =⇒= 1) 0.634 ⇒= 0.1 ⇒=− 0.264 2- Two-element uniform array of isotropic sources, positioned along the z-axis λ 4 apart is seen in the figure below. Give the array factor for this array. Find the interelement phase shift, α , so that the maximum of the array factor occurs along θ =0 ° (end-fire array). -
Band Radar Models FR-2115-B/2125-B/2155-B*/2135S-B
R BlackBox type (with custom monitor) X/S – band Radar Models FR-2115-B/2125-B/2155-B*/2135S-B I 12, 25 and 50* kW T/R up X-band, 30 kW I Dual-radar/full function remote S-band inter-switching I SXGA PC monitor either CRT or color I New powerful processor with LCD high-speed, high-density gate array and I Optional ARP-26 Automatic Radar sophisticated software Plotting Aid (ARPA) on 40 targets I New cast aluminum scanner gearbox I Furuno's exclusive chart/radar overlay and new series of streamlined radiators technique by optional RP-26 VideoPlotter I Shared monitor utilization of Radar and I Easy to create radar maps PC systems with custom PC monitor switching system The BlackBox radar system FR-2115-B, FR-2125-B, FR-2155-B* and FR-2135S-B are custom configured by adding a user’s favorite display to the blackbox radar package. The package is based on a Furuno standard radar used in the FR-21x5-B series with (FURUNO) monitor which is designed to comply with IMO Res MSC.64(67) Annex 4 for shipborne radar and A.823 (19) for ARPA performance. The display unit may be selected from virtually any size of multi-sync PC monitor, either a CRT screen or flat panel LCD display. The blackbox radar system is suitable for various ships which require no specific type approval as a SOLAS compliant radar. The radar is available in a variety of configurations: 12, 25, 30 and 50* kW output, short or long antenna radiator, 24 or 42 rpm scanner, with standard Electronic Plotting Aid (EPA) and optional Automatic Radar Plotting Aid (ARPA). -
Antenna Arrays
ANTENNA ARRAYS Antennas with a given radiation pattern may be arranged in a pattern line, circle, plane, etc.) to yield a different radiation pattern. Antenna array - a configuration of multiple antennas (elements) arranged to achieve a given radiation pattern. Simple antennas can be combined to achieve desired directional effects. Individual antennas are called elements and the combination is an array Types of Arrays 1. Linear array - antenna elements arranged along a straight line. 2. Circular array - antenna elements arranged around a circular ring. 3. Planar array - antenna elements arranged over some planar surface (example - rectangular array). 4. Conformal array - antenna elements arranged to conform two some non-planar surface (such as an aircraft skin). Design Principles of Arrays There are several array design var iables which can be changed to achieve the overall array pattern design. Array Design Variables 1. General array shape (linear, circular,planar) 2. Element spacing. 3. Element excitation amplitude. 4. Element excitation phase. 5. Patterns of array elements. Types of Arrays: • Broadside: maximum radiation at right angles to main axis of antenna • End-fire: maximum radiation along the main axis of ant enna • Phased: all elements connected to source • Parasitic: some elements not connected to source: They re-radiate power from other elements. Yagi-Uda Array • Often called Yagi array • Parasitic, end-fire, unidirectional • One driven element: dipole or folded dipole • One reflector behind driven element and slightly longer -
Army Phased Array RADAR Overview MPAR Symposium II 17-19 November 2009 National Weather Center, Oklahoma University, Norman, OK
UNCLASSIFIED Presented by: Larry Bovino Senior Engineer RADAR and Combat ID Division Army Phased Array RADAR Overview MPAR Symposium II 17-19 November 2009 National Weather Center, Oklahoma University, Norman, OK UNCLASSIFIED UNCLASSIFIED THE OVERALL CLASSIFICATION OF THIS BRIEFING IS UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED RADAR at CERDEC § Ground Based § Counterfire § Air Surveillance § Ground Surveillance § Force Protection § Airborne § SAR § GMTI/AMTI UNCLASSIFIED UNCLASSIFIED RADAR Technology at CERDEC § Phased Arrays § Digital Arrays § Data Exploitation § Advanced Signal Processing (e.g. STAP, MIMO) § Advanced Signal Processors § VHF to THz UNCLASSIFIED UNCLASSIFIED Design Drivers and Constraints § Requirements § Operational Needs flow down to System Specifications § Platform or Mobility/Transportability § Size, Weight and Power (SWaP) § Reliability/Maintainability § Modularity, Minimize Single Point Failures § Cost/Affordability § Unit and Life Cycle UNCLASSIFIED UNCLASSIFIED RADAR Antenna Technology at Army Research Laboratory § Computational electromagnetics § In-situ antenna design & analysis § Application Examples: § Body worn antennas § Rotman lens § Wafer level antenna § Phased arrays with integrated MEMS devices § Collision avoidance radar § Metamaterials UNCLASSIFIED UNCLASSIFIED Antenna Modeling § CEM “Toolkit” requires expert users § EM Picasso (MoM 2.5D) – modeling of planar antennas (e.g., patch arrays) § XFDTD (FDTD) – broadband modeling of 3-D structures (e.g., spiral) § HFSS (FEM) – modeling of 3-D structures (e.g., -
Agile 3-D Beam-Steering for 60 Ghz Wireless Networks Anfu Zhou∗, Leilei Wu∗, Shaoqing Xu∗, Huadong Ma∗, Teng Wei†, Xinyu Zhang‡ ∗ Beijing Key Lab of Intell
Following the Shadow: Agile 3-D Beam-Steering for 60 GHz Wireless Networks Anfu Zhou∗, Leilei Wu∗, Shaoqing Xu∗, Huadong Ma∗, Teng Weiy, Xinyu Zhangz ∗ Beijing Key Lab of Intell. Telecomm. Software and Multimedia, Beijing University of Posts and Telecomm. y Department of Electrical and Computer Engineering, University of Wisconsin-Madison z Department of Electrical and Computer Engineering, University of California San Diego Email: fzhouanfu,layla,donggua,[email protected], [email protected], [email protected] Abstract—60 GHz networks, with multi-Gbps bitrate, are Much effort has been devoted to design agile beam-steering, considered as the enabling technology for emerging applications from the hierarchical beam scanning defined in standards [1], such as wireless Virtual Reality (VR) and 4K/8K real-time [9], to heuristic-based shortcuts [10], [11] or sensing-inspired Miracast. However, user motion, and even orientation change, can cause mis-alignment between 60 GHz transceivers’ directional solutions [12], [13]. However, these methods mainly focus on beams, thus causing severe link outage. Within the practical 3D two dimensional (2D) beam-steering, e.g., assuming a phased- spaces, the combination of location and orientation dynamics array that can steer the main beam among different angles leads to exponential growth of beam searching complexity, which within a 2D plane. In practice, the users and radios move in 3D substantially exacerbates the outage and hinders fast recovery. space; and a 60 GHz array can comprise a planar “matrix” of In this paper, we first conduct an extensive measurement to analyze the impact of 3D motion on 60 GHz link performance, antenna elements, steering the beams towards different angles in the context of VR and Miracast applications. -
Microwave Radar/Radiometer for Arctic Clouds (Mirac): First Insights from the ACLOUD Campaign
Atmos. Meas. Tech., 12, 5019–5037, 2019 https://doi.org/10.5194/amt-12-5019-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Microwave Radar/radiometer for Arctic Clouds (MiRAC): first insights from the ACLOUD campaign Mario Mech1, Leif-Leonard Kliesch1, Andreas Anhäuser1, Thomas Rose2, Pavlos Kollias1,3, and Susanne Crewell1 1Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany 2Radiometer-Physics GmbH, Meckenheim, Germany 3School of Marine and Atmospheric Sciences, Stony Brook University, NY, USA Correspondence: Mario Mech ([email protected]) Received: 12 April 2019 – Discussion started: 23 April 2019 Revised: 26 July 2019 – Accepted: 11 August 2019 – Published: 18 September 2019 Abstract. The Microwave Radar/radiometer for Arctic vertical resolution down to about 150 m above the surface Clouds (MiRAC) is a novel instrument package developed is able to show to some extent what is missed by Cloud- to study the vertical structure and characteristics of clouds Sat when observing low-level clouds. This is especially im- and precipitation on board the Polar 5 research aircraft. portant for the Arctic as about 40 % of the clouds during MiRAC combines a frequency-modulated continuous wave ACLOUD showed cloud tops below 1000 m, i.e., the blind (FMCW) radar at 94 GHz including a 89 GHz passive chan- zone of CloudSat. In addition, with MiRAC-A 89 GHz it is nel (MiRAC-A) and an eight-channel radiometer with fre- possible to get an estimate of the sea ice concentration with a quencies between 175 and 340 GHz (MiRAC-P). -
Introduction
c01.qxd 12/1/2005 3:06 PM Page 1 1 INTRODUCTION 1.1 THE DEFINITION OF A CONFORMAL ANTENNA A conformal antenna is an antenna that conforms to something; in our case, it conforms to a prescribed shape. The shape can be some part of an airplane, high-speed train, or other vehicle. The purpose is to build the antenna so that it becomes integrated with the struc- ture and does not cause extra drag. The purpose can also be that the antenna integration makes the antenna less disturbing, less visible to the human eye; for instance, in an urban environment. A typical additional requirement in modern defense systems is that the an- tenna not backscatter microwave radiation when illuminated by, for example, an enemy radar transmitter (i.e., it has stealth properties). The IEEE Standard Definition of Terms for Antennas (IEEE Std 145-1993) gives the following definition: 2.74 conformal antenna [conformal array]. An antenna [an array] that conforms to a sur- face whose shape is determined by considerations other than electromagnetic; for example, aerodynamic or hydrodynamic. 2.75 conformal array. See: conformal antenna. Strictly speaking, the definition includes also planar arrays if the planar “shape is deter- mined by considerations other than electromagnetic.” This is, however, not common practice. Usually, a conformal antenna is cylindrical, spherical, or some other shape, with the radiating elements mounted on or integrated into the smoothly curved surface. Many Conformal Array Antenna Theory and Design. By Lars Josefsson and Patrik Persson 1 © 2006 Institute of Electrical and Electronics Engineers, Inc. c01.qxd 12/1/2005 3:06 PM Page 2 2 INTRODUCTION variations exist, though, like approximating the smooth surface by several planar facets. -
Integrated Optical Phased Arrays for Beam Forming and Steering
applied sciences Review Integrated Optical Phased Arrays for Beam Forming and Steering Yongjun Guo 1,2, Yuhao Guo 1,2, Chunshu Li 1,2, Hao Zhang 1,2, Xiaoyan Zhou 1,2 and Lin Zhang 1,2,* 1 Key Laboratory of Opto-Electronics Information Technology of Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; [email protected] (Y.G.); [email protected] (Y.G.); [email protected] (C.L.); [email protected] (H.Z.); [email protected] (X.Z.) 2 Key Laboratory of Integrated Opto-Electronic Technologies and Devices in Tianjin, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China * Correspondence: [email protected] Abstract: Integrated optical phased arrays can be used for beam shaping and steering with a small footprint, lightweight, high mechanical stability, low price, and high-yield, benefiting from the mature CMOS-compatible fabrication. This paper reviews the development of integrated optical phased arrays in recent years. The principles, building blocks, and configurations of integrated optical phased arrays for beam forming and steering are presented. Various material platforms can be used to build integrated optical phased arrays, e.g., silicon photonics platforms, III/V platforms, and III–V/silicon hybrid platforms. Integrated optical phased arrays can be implemented in the visible, near-infrared, and mid-infrared spectral ranges. The main performance parameters, such as field of view, beamwidth, sidelobe suppression, modulation speed, power consumption, scalability, and so on, are discussed in detail. Some of the typical applications of integrated optical phased arrays, such as free-space communication, light detection and ranging, imaging, and biological sensing, are shown, with future perspectives provided at the end. -
Planar Pattern Reconfigurable Antenna Integrated with a Wifi System for Multipath Mitigation and Sustained High Definition Video
Planar Pattern Reconfigurable Antenna Integrated With a WiFi System for Multipath Mitigation and Sustained High Definition Video Networking in a Complex EM Environment Amit Mehta1, Shivam Gautam1, Hasanga Goonesinghe1, Arpan Pal1, Rob Lewis2 and Nathan Clow3 1College of Engineering, Swansea University, Swansea, U.K. [email protected] 2BAE Systems, Chelmsford, UK 3DSTL, Fort Halstead, UK Abstract—A planer pattern reconfigurable square loop antenna integrated in a complete wireless system is presented. II. ANTENNA CONFIGURATION The antenna is designed to operate at 5 GHz WiFi band of Fig. 1 shows the top and side view of the SLA designed IEEE 802.11 ac. The antenna under electronic switching for 5 GHz WiFi band. The Antenna structure is inspired generates four tilted beams in the four space quadrants. These four beams are moved intelligently and automatically in space from [4]. The SLA has four conducting arms, each of length using a C# program for achieving and sustaining maximum 32 mm and a track width of 1.5 mm. The square loop is possible throughput. This auto beam steering is advantageous etched on top of a Rogers 4350B (ɛr=3.66, tanδ=0.009) for scenarios where a mobile user suffers from multipath substrate having a thickness of 9.6 mm and an area of 60 fading in a complex electromagnetic environment. mm × 60 mm. The entire structure is backed by a metal ground plane. The SLA is excited at the center point of each I. INTRODUCTION arm (A, B, C and D) by four vertical probes of diameter 1.3 Indoor wireless communication in 5 the GHz WiFi band of mm which are connected to the four SMA ports (A0, B0, C0 IEEE 802.11 ac is becoming popular today due to the and D0) at the bottom of the antenna.