Interactive Processes in a Lanice Conchilega (Annelida: Polychaeta) Dominated Intertidal Community

Total Page:16

File Type:pdf, Size:1020Kb

Interactive Processes in a Lanice Conchilega (Annelida: Polychaeta) Dominated Intertidal Community University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON INTERACTIVE PROCESSES IN ALANICE CONCHILEGA (ANNELIDA: POLYCHAETA) DOMINATED INTERTEDAL COMMUNITY by GRANT A. ROWE Submitted for the Qualification of PhD SCHOOL OF OCEAN AND EARTH SCIENCE September 1999 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF SCIENCE SCHOOL OF OCEAN AND EARTH SCIENCE Doctor of Philosophy INTERACTIVE PROCESSES IN ALANICE CONCHILEGA (ANNELIDA: POLYCHAETA) DOMINATED INTERTIDAL COMMUNITY by Grant A. Rowe An investigation was conducted into the factors influencing a soft-sediment intertidal benthic community dominated by the large tube building polychaete Lanice conchilega (Pallas, 1766). The environmental and biological characteristics of a mid-shore sampling site on a sheltered relatively sandflat were monitored over a two period. A total of 115 year taxa were recorded. Temporal variability in the community is discussed in relation to the sporadic occurrence of macroalgae, harsh winter conditions and physical disturbance to the sedimentary environment. Lanice conchilega had a significantly contagious distribution on the shore. The population was analysed using width measurements of both worms and tubes. Recruiting Lanice conchilega juveniles observed the first during year of the study were initially randomly distributed, but as these individuals developed the overall distribution of the population returned to being contagious. The presence of excess tubes towards the end of the sampling period indicated that individual Lanice conchilega were dying, being removed by predation or emigrating. Further sampling was designed to investigate the macrofauna and meiofauna in areas of sediment containing different densities of Lanice conchilega tubes. A consistently significant positive correlation existed between tube density and macrofaunal abundance, which was attributed to sediment-mediated interactions. At higher tube densities, an increase in the depth of sediment above the underlying clay equated to an increase in the volume of available infaunal space. In addition, Lanice conchilega-derived mucus and its associated microbes potentially enhanced levels of food resources available to feeders. deposit Species living at or near the sediment-water interface would also have been positively influenced by any sediment stabilisation in high tube density areas. Possible causes of a positive correlation observed between tube and density Exogone hebes abundance are discussed. No significant relationship existed between tube density and the abundance of macrofaunal juveniles, indicating that any inhibitory or facilitatory Lanice conchilega-juvenile interactions either were insignificant or acting in opposition to to produce an overall neutral effect. Details of the developmental morphology of several polychaete species are described. Meiofaunal abundance (in particular nematode and harpacticoid abundance) was consistently in greater samples taken from areas of high tube density. Potential mechanisms responsible for this relationship include the provision of habitat and heterogeneity areas of refuge by tubes, and the enhancement of sediment stability and food resources by mucus. Particle accumulation in high tube density areas also potentially influenced meiofaunal settlement and resettlement patterns. CONTENTS Abstract ............ i Contents ............ ii List of Tables v List of Figures ........... vi Acknowledgements .......... xiv CHAPTER 1 Introduction 1 1.1 Background . ',; . .1 . 1.2 The Site Study 6 1.3 Lanice conchilega (Pallas, 1766) ....... 8 1.4 Aims 10 CHAPTER 2 The Physico-Chemical Environment at Solent Breezes 12 2.1 Introduction 12 2.2 Meteorological and Hydrological Data . .12 . 2.2.1 Meteorological data 12 2.2.2 Seawater temperature and salinity measurements 13 2.3 Sediment Analysis . .18 . 2.3.1 Methods 19 2.3.2 Results 23 2.4 Discussion ........... 37 2.4.1 Meteorological and Hydrological Parameters 37 2.4.2 Sediment Parameters 38 CHAPTER 3 The Macrofaunal Sampling Transect 44 3.1 Introduction 44 3.2 Field Work and Laboratory Methods ....... 44 3.3 Data Analysis. .......... 46 3.3.1 Univariate analyses 46 3.3.2 Multivariate analyses 47 3.3.3 The Infaunal Trophic Index 50 3.4 Results 52 3.4.1 Univariate analyses 5 2 3.4.2 Multivariate analyses 5 5 3.4.3 The Infaunal Trophic Index 61 3.4.4 Summary 63 3.5 Discussion . ......... 64 CHAPTER 4 The Macrofaunal Monitoring Programme. .73 . 4.1 Introduction ........... 73 4.2 Field Work and Laboratory Methods ....... 73 4.3 Data Analysis........... 74 4.3.1 Univariate analyses 74 4.3.2 Multivariate analyses 75 4.3.3 The Infaunal Trophic Index 75 4.4 Results 76 4.4.1 Univariate analyses 76 4.4.2 The dominant species 81 4.4.3 Multivariate analyses 100 4.4.4 The Infaunal Trophic Index 112 4.4.5 Summary 115 4.5 Discussion . .117 . CHAPTER 5 The Lattice conchilega Population . .138 . 5.1 Introduction ........... 138 5.2 Methods 138 5.3 Results 140 5.3.1 Size-frequency analysis ofLanice conchilega and its tubes .141 . 5.3.2 Growth curves 146 5.3.3 Temporal variability in abundance . .148 . 5.4 Discussion ........... 152 ni CHAPTER 6 Lattice conchilega Tube Density Experiments .161 . 6.1 Introduction ........... 161 6.2 Field Work and Laboratory Methods . .161 . 6.2.1 Lanice and its conchilega tubes 161 6.2.2 Lanice tubes conchilega and the other infauna 162 6.3 Results 163 6.3.1 Lanice and its conchilega tubes 163 6.3.2 Lanice tubes conchilega and the other infauna 165 6.3.3 Lanice tubes conchilega and Exogone hebes 171 6.4 Discussion ........... 173 CHAPTER 7 The Meiofauna . 186 7.1 Introduction 186 7.2 Field Work and Laboratory Methods 186 7.2.1 The meiofauna permanent 187 7.2.2 The meiofauna temporary (juvenile macrofauna) 188 7.3 Results .190 . 7.3.1 The meiofauna permanent 190 7.3.2 The meiofauna temporary (juvenile macrofauna) 198 7.4 Discussion 227 CHAPTER 8 Summary and Conclusions 251 APPENDIX 1 261 APPENDIX 2 . 266 REFERENCES 267 IV LIST OF TABLES Page Table 3.1 The taxonomic literature used to identify the macrobenthic fauna. 45 Table 3.2 Values of the F-statistic calculated for Transect Sites 1 to 5. 54 Table 3.3 Results of the BIO-ENV procedure for the sampling transect. Combinations of the five sediment parameters giving the best matches between the faunal and abiotic matrices. Correlations were measured using weighted Spearman rank correlation (pw). 60 Table 3.4 Values of the Infaunal Trophic Index for Transect Sites 1-5. 61 Table 4.1 The dominant species at Solent Breezes. 81 Table 4.2 Combinations of the nine environmental parameters giving the best matches between the faunal and abiotic similarity matrices. Correlations were measured using weighted Spearman rank correlation (pw). 106 Table 6.1 Correlation coefficients (r) and p values calculated using linear regression analysis for the number of tube heads per sample (T) against the number of individuals (N), the number of species (s) and the diversity (//*). 166 Table 6.2 Correlation coefficients and p values calculated using Spearman rank order correlation for tube head density against the first two principal components. 170 Table 6.3 The correlation coefficients (r) and p values calculated for the relationship between Lanice conchilega tube heads and Exogone hebes. Ill LIST OF FIGURES Page Figure 1.1 The geographical position of the sampling site. 7 Figure 2.1 Meteorological data from the nearby Solent MRSC station (November 1990 - October 1992). Values shown for each sampling date refer to mean values calculated for the "between-sampling period" leading up to that date. 14 Figure 2.2 Meteorological data from the nearby Solent MRSC station (February 1993 - March 1994). Values shown for each sampling date refer to mean values calculated for the "between-sampling period" leading up to that date. 15 Figure 2.3 The temperature and salinity of the seawater adjacent to the site sampling at Solent Breezes - measurements made during each of the macrofaunal visits monthly sampling (November 1990 - October 1992). 16 Figure 2.4 The temperature and salinity of the seawater adjacent to the sampling site at Solent Breezes - measurements made during each of the meiofaunal visits monthly sampling (February 1993 - March 1994). 17 Figure 2.5 The total organic content of surface sediment samples taken during monthly macrofaunal sampling visits (upper graph) and monthly meiofaunal sampling visits (lower graph). Mean values ( S.D.) shown. 24 Figure 2.6 The total organic content of surface sediment samples from different densities of Lanice conchilega tubes (upper graph) and from five transect sites extending from high tide (Site 1) to low tide (Site 5) (lower graph). Mean values ( S.D.) shown. 25 Figure 2.7 Fluctuations in the five
Recommended publications
  • Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
    http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum
    [Show full text]
  • Impact of Windfarm OWEZ on the Local Macrobenthos Communiy
    Impact of windfarm OWEZ on the local macrobenthos community report OWEZ_R_261_T1_20090305 R. Daan, M. Mulder, M.J.N. Bergman Koninklijk Nederlands Instituut voor Zeeonderzoek (NIOZ) This project is carried out on behalf of NoordzeeWind, through a sub contract with Wageningen-Imares Contents Summary and conclusions 3 Introduction 5 Methods 6 Results boxcore 11 Results Triple-D dredge 13 Discussion 16 References 19 Tables 21 Figures 33 Appendix 1 44 Appendix 2 69 Appendix 3 72 Photo’s by Hendricus Kooi 2 Summary and conclusions In this report the results are presented of a study on possible short‐term effects of the construction of Offshore Windfarm Egmond aan Zee (OWEZ) on the composition of the local benthic fauna living in or on top of the sediment. The study is based on a benthic survey carried out in spring 2007, a few months after completion of the wind farm. During this survey the benthic fauna was sampled within the wind farm itself and in 6 reference areas lying north and south of it. Sampling took place mainly with a boxcorer, but there was also a limited programme with a Triple‐D dredge. The occurrence of possible effects was analyzed by comparing characteristics of the macrobenthos within the wind farm with those in the reference areas. A quantitative comparison of these characteristics with those observed during a baseline survey carried out 4 years before was hampered by a difference in sampling design and methodological differences. The conclusions of this study can be summarized as follows: 1. Based on the Bray‐Curtis index for percentage similarity there appeared to be great to very great similarity in the fauna composition of OWEZ and the majority of the reference areas.
    [Show full text]
  • Invert10 2 217 243 Jirkov for Inet.P65
    Invertebrate Zoology, 2013, 10(2): 217243 © INVERTEBRATE ZOOLOGY, 2013 Identification keys for Terebellomorpha (Polychaeta) of the eastern Atlantic and the North Polar Basin I.A. Jirkov1, M.K. Leontovich2 Department of Hydrobiology, Moscow Lomonosov State University, 119899, Moscow, Russia. e-mail: [email protected]; [email protected] ABSTRACT. New user-friendly identification keys for 117 species of Pectinariidae, Ampharetidae, and Terebellidae from the eastern Atlantic and the North Polar Basin are presented. A new species Auchenoplax worsfoldi sp.n. is described. Three names Amphi- trite affinis, Pista malmgreni, and Terebellides irinae are proposed as junior synonyms to other species. How to cite this article: Jirkov I.A., Leontovich M.K. 2013. Identification keys for Terebellomorpha (Polychaeta) of the eastern Atlantic and the North Polar Basin // Invert. Zool. Vol.10. No.2. P.217243. KEY WORDS: identification key, Polychaeta, Pectinariidae, Ampharetidae, Terebellidae, Eastern Atlantic, North Polar Basin. Êëþ÷è äëÿ îïðåäåëåíèÿ Terebellomorpha (Polychaeta) Âîñòî÷íîé Àòëàíòèêè è Ñåâåðíîãî Ëåäîâèòîãî îêåàíà È.A. Æèðêîâ1, M.K. Ëåîíòîâè÷2 Êàôåäðà ãèäðîáèîëîãèè, Áèîëîãè÷åñêèé ôàêóëüòåò, Ìîñêîâñêèé ãîñóäàðñòâåííûé óíèâåð- ñèòåò èì. Ì.Â. Ëîìîíîñîâà, 119899, Ìîñêâà, Ðîññèÿ. e-mail: [email protected]; [email protected] ÐÅÇÞÌÅ. Ñîñòàâëåíû íîâûå êëþ÷è äëÿ îïðåäåëåíèÿ 117 âèäîâ Pectinariidae, Ampharetidae è Terebellidae Âîñòî÷íîé Àòëàíòèêè è Ñåâåðíîãî Ëåäîâèòîãî îêåàíà. Ïðè ñîñòàâëåíèè êëþ÷åé îñîáîå âíèìàíèå áûëî îáðàùåíî íà ë¸ãêîñòü èõ èñïîëüçî- âàíèÿ. Îïèñàí íîâûé âèä Auchenoplax worsfoldi. Òðè íàçâàíèÿ: Amphitrite affinis, Pista malmgreni, è Terebellides irinae ïðåäëîæåíî ðàññìàòðèâàòü êàê ìëàäøèå ñèíîíèìû äðóãèõ íàçâàíèé. Êàê öèòèðîâàòü ýòó ñòàòüþ: Jirkov I.A., Leontovich M.K. 2013. Identification keys for Terebellomorpha (Polychaeta) of the eastern Atlantic and the North Polar Basin // Invert.
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • Tube Epifaum of the Polychaete Phyllopchaetopterus Socialis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository Open Access to Scientific Information from Embrapa Estuarine, Coastal and Shelf Science (1995) 41, 91–100 Tube epifauna of the Polychaete Phyllochaetopterus socialis Claparède Rosebel Cunha Nalessoa, Luíz Francisco L. Duarteb, Ivo Pierozzi Jrc and Eloisa Fiorim Enumod aDepartamento de Zoologia, CCB, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil, bDepartamento de Zoologia, Instituto Biologia, C.P. 6109, Universidade Estadual de Campinas, 13.081-970, Campinas, SP, Brazil, cEmbrapa, NMA, Av. Dr. Julio Soares de Arruda, 803 CEP 13.085, Campinas, SP, Brazil and dProtebras, Rua Turmalina, 79 CEP 13.088, Campinas, SP, Brazil Received 8 October 1992 and in revised form 22 June 1994 Keywords: Polychaeta; tubes; faunal association; epifauna; São Sebastião Channel; Brazil Animals greater than 1 mm, found among tangled tubes of Phyllochaetopterus socialis (Chaetopteridae) from Araçá Beach, São Sebastião district, Brazil, were studied for 1 year, with four samples in each of four seasons. They comprised 10 338 individuals in 1722·7 g dry weight of polychaete tubes, with Echino- dermata, Polychaeta (not identified to species) and Crustacea as the dominant taxa. The Shannon–Wiener diversity index did not vary seasonally, only two species (a holothurian and a pycnogonid) showing seasonal variation. Ophiactis savignyi was the dominant species, providing 45·5% of individuals. Three other ophiuroids, the holothurian Synaptula hidriformis, the crustaceans Leptochelia savignyi, Megalobrachium soriatum and Synalpheus fritzmuelleri, the sipunculan Themiste alutacea and the bivalve Hiatella arctica were all abundant, but most of the 68 species recorded occurred sparsely.
    [Show full text]
  • 2016 Ribeiro Fishing for a Feeding Frenzy
    UNIVERSITY OF GHENT- FACULTY OF SCIENCES RESEARCH GROUP MARINE BIOLOGY ACADEMIC YEAR 2015-2016 FISHING FOR A FEEDING FRENZY Effect of Shrimp Beam Trawling on the diet of Dab and Plaice in Lanice conchilega habitats Submitted by MARIA INÊS COELHO MEIRELES RIBEIRO PROMOTER: Prof. Dr. Ann Vanreusel SUPERVISORS: Jochen Depestele and Jozefien Derweduwen Master thesis submitted for the partial fulfilment of the title of MASTER OF SCIENCE IN MARINE BIODIVERSITY AND CONSERVATION Within the International Master of Science in Marine Biodiversity and Conservation EMBC+ No data can be taken out of this work without prior approval of the thesis promoter Prof. Dr. Ann Vanreusel ([email protected]) and supervisors Jochen Depestele ([email protected]) and Jozefien Derweduwen ([email protected]) TABLE OF CONTENS LIST OF FIGURES............................................................................................................................. 3 LIST OF TABLES .............................................................................................................................. 4 EXECUTIVE SUMMARY ...................................................................................................................5 ABSTRACT....................................................................................................................................... 6 1. INTRODUCTION …..........................................................................................................................
    [Show full text]
  • I. Türkiye Derin Deniz Ekosistemi Çaliştayi Bildiriler Kitabi 19 Haziran 2017
    I. TÜRKİYE DERİN DENİZ EKOSİSTEMİ ÇALIŞTAYI BİLDİRİLER KİTABI 19 HAZİRAN 2017 İstanbul Üniversitesi, Su Bilimleri Fakültesi, Gökçeada Deniz Araştırmaları Birimi, Çanakkale, Gökçeada EDİTÖRLER ONUR GÖNÜLAL BAYRAM ÖZTÜRK NURİ BAŞUSTA Bu kitabın bütün hakları Türk Deniz Araştırmaları Vakfı’na aittir. İzinsiz basılamaz, çoğaltılamaz. Kitapta bulunan makalelerin bilimsel sorumluluğu yazarlarına aittir. All rights are reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior permission from the Turkish Marine Research Foundation. Copyright © Türk Deniz Araştırmaları Vakfı ISBN-978-975-8825-37-0 Kapak fotoğrafları: Mustafa YÜCEL, Bülent TOPALOĞLU, Onur GÖNÜLAL Kaynak Gösterme: GÖNÜLAL O., ÖZTÜRK B., BAŞUSTA N., (Ed.) 2017. I. Türkiye Derin Deniz Ekosistemi Çalıştayı Bildiriler Kitabı, Türk Deniz Araştırmaları Vakfı, İstanbul, Türkiye, TÜDAV Yayın no: 45 Türk Deniz Araştırmaları Vakfı (TÜDAV) P. K: 10, Beykoz / İstanbul, TÜRKİYE Tel: 0 216 424 07 72, Belgegeçer: 0 216 424 07 71 Eposta: [email protected] www.tudav.org ÖNSÖZ Dünya denizlerinde 200 metre derinlikten sonra başlayan bölgeler ‘Derin Deniz’ veya ‘Deep Sea’ olarak bilinir. Son 50 yılda sualtı teknolojisindeki gelişmelere bağlı olarak birçok ulus bu bilinmeyen deniz ortamlarını keşfetmek için yarışırken yeni cihazlar denemekte ayrıca yeni türler keşfetmektedirler. Özellikle Amerika, İngiltere, Kanada, Japonya başta olmak üzere birçok ülke derin denizlerin keşfi yanında derin deniz madenciliğine de ilgi göstermektedirler. Daha şimdiden Yeni Gine izin ve ruhsatlandırma işlemlerine başladı bile. Bütün bunlar olurken ülkemizde bu konuda çalışan uzmanları bir araya getirerek sinerji oluşturma görevini yine TÜDAV üstlendi. Memnuniyetle belirtmek gerekir ki bu çalıştay amacına ulaşmış 17 değişik kurumdan 30 uzman değişik konularda bildiriler sunarak konuya katkı sunmuşlardır.
    [Show full text]
  • Role of Reef-Building, Ecosystem Engineering Polychaetes in Shallow Water Ecosystems
    diversity Review Role of Reef-Building, Ecosystem Engineering Polychaetes in Shallow Water Ecosystems Martín Bruschetti 1,2 1 Instituto de Investigaciones Marinas y Costeras (IIMyC)-CONICET, Mar del Plata 7600, Argentina; [email protected] 2 Laboratorio de Ecología, Universidad Nacional de Mar del Plata, FCEyN, Laboratorio de Ecología 7600, Argentina Received: 15 June 2019; Accepted: 15 September 2019; Published: 17 September 2019 Abstract: Although the effect of ecosystem engineers in structuring communities is common in several systems, it is seldom as evident as in shallow marine soft-bottoms. These systems lack abiotic three-dimensional structures but host biogenic structures that play critical roles in controlling abiotic conditions and resources. Here I review how reef-building polychaetes (RBP) engineer their environment and affect habitat quality, thus regulating community structure, ecosystem functioning, and the provision of ecosystem services in shallow waters. The analysis focuses on different engineering mechanisms, such as hard substrate production, effects on hydrodynamics, and sediment transport, and impacts mediated by filter feeding and biodeposition. Finally, I deal with landscape-level topographic alteration by RBP. In conclusion, RBP have positive impacts on diversity and abundance of many species mediated by the structure of the reef. Additionally, by feeding on phytoplankton and decreasing water turbidity, RBP can control primary production, increase light penetration, and might alleviate the effects of eutrophication
    [Show full text]
  • RECON: Reef Effect Structures in the North Sea, Islands Or Connections?
    RECON: Reef effect structures in the North Sea, islands or connections? Summary Report Authors: Coolen, J.W.P. & R.G. Jak (eds.). Wageningen University & Research Report C074/17A RECON: Reef effect structures in the North Sea, islands or connections? Summary Report Revised Author(s): Coolen, J.W.P. & R.G. Jak (eds.). With contributions from J.W.P. Coolen, B.E. van der Weide, J. Cuperus, P. Luttikhuizen, M. Schutter, M. Dorenbosch, F. Driessen, W. Lengkeek, M. Blomberg, G. van Moorsel, M.A. Faasse, O.G. Bos, I.M. Dias, M. Spierings, S.G. Glorius, L.E. Becking, T. Schol, R. Crooijmans, A.R. Boon, H. van Pelt, F. Kleissen, D. Gerla, R.G. Jak, S. Degraer, H.J. Lindeboom Publication date: January 2018 Wageningen Marine Research Den Helder, January 2018 Wageningen Marine Research report C074/17A Coolen, J.W.P. & R.G. Jak (eds.) 2017. RECON: Reef effect structures in the North Sea, islands or connections? Summary Report Wageningen, Wageningen Marine Research, Wageningen Marine Research report C074/17A. 33 pp. Client: INSITE joint industry project Attn.: Richard Heard 6th Floor East, Portland House, Bressenden Place London SW1E 5BH, United Kingdom This report can be downloaded for free from https://doi.org/10.18174/424244 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified. Photo cover: Udo van Dongen. © 2017 Wageningen Marine Research Wageningen UR Wageningen Marine Research The Management of Wageningen Marine Research is not responsible for resulting institute of Stichting Wageningen damage, as well as for damage resulting from the application of results or Research is registered in the Dutch research obtained by Wageningen Marine Research, its clients or any claims traderecord nr.
    [Show full text]
  • A Bioturbation Classification of European Marine Infaunal
    A bioturbation classification of European marine infaunal invertebrates Ana M. Queiros 1, Silvana N. R. Birchenough2, Julie Bremner2, Jasmin A. Godbold3, Ruth E. Parker2, Alicia Romero-Ramirez4, Henning Reiss5,6, Martin Solan3, Paul J. Somerfield1, Carl Van Colen7, Gert Van Hoey8 & Stephen Widdicombe1 1Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, U.K. 2The Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, NR33 OHT, U.K. 3Department of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, U.K. 4EPOC – UMR5805, Universite Bordeaux 1- CNRS, Station Marine d’Arcachon, 2 Rue du Professeur Jolyet, Arcachon 33120, France 5Faculty of Biosciences and Aquaculture, University of Nordland, Postboks 1490, Bodø 8049, Norway 6Department for Marine Research, Senckenberg Gesellschaft fu¨ r Naturforschung, Su¨ dstrand 40, Wilhelmshaven 26382, Germany 7Marine Biology Research Group, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium 8Bio-Environmental Research Group, Institute for Agriculture and Fisheries Research (ILVO-Fisheries), Ankerstraat 1, Ostend 8400, Belgium Keywords Abstract Biodiversity, biogeochemical, ecosystem function, functional group, good Bioturbation, the biogenic modification of sediments through particle rework- environmental status, Marine Strategy ing and burrow ventilation, is a key mediator of many important geochemical Framework Directive, process, trait. processes in marine systems. In situ quantification of bioturbation can be achieved in a myriad of ways, requiring expert knowledge, technology, and Correspondence resources not always available, and not feasible in some settings. Where dedi- Ana M. Queiros, Plymouth Marine cated research programmes do not exist, a practical alternative is the adoption Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, U.K.
    [Show full text]
  • Thelepus Crispus Class: Polychaeta, Sedentaria, Canalipalpata
    Phylum: Annelida Thelepus crispus Class: Polychaeta, Sedentaria, Canalipalpata Order: Terebellida, Terebellomorpha A terebellid worm Family: Terebellidae, Theleponinae Description (Hartman 1969). Notosetae present from Size: Individuals range in size from 70–280 second branchial segment (third body mm in length (Hartman 1969). The greatest segment) and continue almost to the worm body width at segments 10–16 is 13 mm (88 posterior (to 14th segment from end in mature –147 segments). The dissected individual specimens) (Hutchings and Glasby 1986). All on which this description is based was 120 neurosetae short handled, avicular (bird-like) mm in length (from Coos Bay, Fig. 1). uncini, imbedded in a single row on oval- Color: Pinkish orange and cream with bright shaped tori (Figs. 3, 5) where the single row red branchiae, dark pink prostomium and curves into a hook, then a ring in latter gray tentacles and peristomium. segments (Fig. 3). Each uncinus bears a General Morphology: Worm rather stout thick, short fang surmounted by 4–5 small and cigar-shaped. teeth (Hartman 1969) (two in this specimen) Body: Two distinct body regions consisting (Fig. 4). Uncini begin on the fifth body of a broad thorax with neuro- and notopodia segment (third setiger), however, Johnson and a tapering abdomen with only neuropo- (1901) and Hartman (1969) have uncini dia. beginning on setiger two. Anterior: Prostomium reduced, with Eyes/Eyespots: None. ample dorsal flap transversely corrugated Anterior Appendages: Feeding tentacles are dorsally (Fig. 5). Peristomium with circlet of long (Fig. 1), filamentous, white and mucus strongly grooved, unbranched tentacles (Fig. covered. 5), which cannot be retracted fully (as in Am- Branchiae: Branchiae present (subfamily pharctidae).
    [Show full text]
  • A Taxonomic Review of the Leucothoidae (Crustacea: Amphipoda)
    Zootaxa 3078: 1–113 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 3078 A taxonomic review of the Leucothoidae (Crustacea: Amphipoda) KRISTINE N. WHITE Rising Star Program, Trans-disciplinary Organization for Subtropical Island Studies (TRO-SIS) University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa JAPAN 903–0213. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by J. Lowry: 26 Aug. 2011; published: 28 Oct. 2011 KRISTINE N. WHITE A taxonomic review of the Leucothoidae (Crustacea: Amphipoda) (Zootaxa 3078) 113 pp.; 30 cm. 28 Oct. 2011 ISBN 978-1-86977-791-3 (paperback) ISBN 978-1-86977-792-0 (Online edition) FIRST PUBLISHED IN 2011 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2011 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3078 © 2011 Magnolia Press WHITE Table of contents Abstract . 5 Introduction . 6 Materials and methods. 12 Revised systematics of the Leucothoidae . 12 Leucothoidae Dana, 1852 . 13 Key to genera of Leucothoidae . 13 Anamixid clade .
    [Show full text]