Competition and Synergy Between Prochlorococcus and Synechococcus Under Ocean
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Biogeographic Variations of Picophytoplankton in Three Contrasting Seas: the Bay of Bengal, South China Sea and Western Pacific Ocean
Vol. 84: 91–103, 2020 AQUATIC MICROBIAL ECOLOGY Published online April 9 https://doi.org/10.3354/ame01928 Aquat Microb Ecol OPENPEN ACCESSCCESS Biogeographic variations of picophytoplankton in three contrasting seas: the Bay of Bengal, South China Sea and Western Pacific Ocean Yuqiu Wei1, Danyue Huang1, Guicheng Zhang2,3, Yuying Zhao2,3, Jun Sun2,3,* 1Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266200, PR China 2Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, PR China 3Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin 300457, PR China ABSTRACT: Marine picophytoplankton are abundant in many oligotrophic oceans, but the known geographical patterns of picophytoplankton are primarily based on small-scale cruises or time- series observations. Here, we conducted a wider survey (5 cruises) in the Bay of Bengal (BOB), South China Sea (SCS) and Western Pacific Ocean (WPO) to better understand the biogeographic variations of picophytoplankton. Prochlorococcus (Pro) were the most abundant picophytoplank- ton (averaging [1.9−3.6] × 104 cells ml−1) across the 3 seas, while average abundances of Syne- chococcus (Syn) and picoeukaryotes (PEuks) were generally 1−2 orders of magnitude lower than Pro. Average abundances of total picophytoplankton were similar between the BOB and SCS (4.7 × 104 cells ml−1), but were close to 2-fold less abundant in the WPO (2.5 × 104 cells ml−1). Pro and Syn accounted for a substantial fraction of total picophytoplankton biomass (70−83%) in the 3 con- trasting seas, indicating the ecological importance of Pro and Syn as primary producers. -
Directed Isolation of Prochlorococcus
Directed isolation of Prochlorococcus Selected tools for the Prochlorococcus model system Berube PM*, Becker JW*, Biller SJ, Coe AC, Cubillos-Ruiz A, Ding H, Kelly L, Thompson JW, Chisholm SW Sampling within the euphotic * co-presenters Massachusetts Institute of Technology, Cambridge, MA zone of oligotrophic ocean regions • Depth specific targeting of Prochlorococcus ecotypes Isolation and characterization of vesicles from marine bacteria • Utilization of ecotype abundance data from time-series Density measurements when available 0.2 µm TFF Pellet by Obtain final gradient Tips for optimal vesicle preparations filter concentration ultracentrifugation sample purification Keep TFF feed pressure < 10 psi at all times Low-light adapted Prochlorococcus populations when concentrating samples. are underrepresented in culture collections Total Prochlorococcus (Flow Cytometry) Ecotype Counts / Flow Cytometry Counts Vesicle pellets are usually colorless, but don’t 0 6 0 6 5 4 worry, it’ll be there! 50 50 100 4 100 2 3 0 150 150 Depth [m] 2 Depth [m] -2 Resuspension of vesicles by gentle manual 200 log cells/mL 200 1 -4 Prochlorococcus Vesicle Other media components 250 250 pipetting works best; keep resuspension 0 -6 log2 ratio (ecotype/FCM) volumes to an absolute minimum. 100 W 90 W 80 W 70W 100 W 90 W 80 W 70W Pre-filtration of Tangential Flow Filtration (TFF) TEM of purified Prochlorococcus Culture Prochlorococcus vesicles Field samples require careful collection of Targeting of low-light adapted Prochlorococcus smaller density gradient fractions -
Characteristic Microbiomes Correlate with Polyphosphate Accumulation of Marine Sponges in South China Sea Areas
microorganisms Article Characteristic Microbiomes Correlate with Polyphosphate Accumulation of Marine Sponges in South China Sea Areas 1 1, 1 1 2, 1,3, Huilong Ou , Mingyu Li y, Shufei Wu , Linli Jia , Russell T. Hill * and Jing Zhao * 1 College of Ocean and Earth Science of Xiamen University, Xiamen 361005, China; [email protected] (H.O.); [email protected] (M.L.); [email protected] (S.W.); [email protected] (L.J.) 2 Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA 3 Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361005, China * Correspondence: [email protected] (J.Z.); [email protected] (R.T.H.); Tel.: +86-592-288-0811 (J.Z.); Tel.: +(410)-234-8802 (R.T.H.) The author contributed equally to the work as co-first author. y Received: 24 September 2019; Accepted: 25 December 2019; Published: 30 December 2019 Abstract: Some sponges have been shown to accumulate abundant phosphorus in the form of polyphosphate (polyP) granules even in waters where phosphorus is present at low concentrations. But the polyP accumulation occurring in sponges and their symbiotic bacteria have been little studied. The amounts of polyP exhibited significant differences in twelve sponges from marine environments with high or low dissolved inorganic phosphorus (DIP) concentrations which were quantified by spectral analysis, even though in the same sponge genus, e.g., Mycale sp. or Callyspongia sp. PolyP enrichment rates of sponges in oligotrophic environments were far higher than those in eutrophic environments. -
Slow-Onset Processes and Resulting Loss and Damage
Publication Series ADDRESSING LOSS AND DAMAGE FROM SLOW-ONSET PROCESSES Slow-onset Processes and Resulting Loss and Damage – An introduction Table of contents L 4 22 ist of a bbre Summary of Loss and damage via tio key facts and due to slow-onset ns definitions processes AR4 IPCC Fourth Assessment Report 6 22 What is loss and damage? Introduction AR5 IPCC Fifth Assessment Report COP Conference of the Parties to the 23 United Nations Framework Convention on 9 What losses and damages IMPRINT Climate Change can result from slow-onset Slow-onset ENDA Environment Development Action Energy, processes? Authors Environment and Development Programme processes and their Laura Schäfer, Pia Jorks, Emmanuel Seck, Energy key characteristics 26 Oumou Koulibaly, Aliou Diouf ESL Extreme Sea Level What losses and damages Contributors GDP Gross Domestic Product 9 can result from sea level rise? Idy Niang, Bounama Dieye, Omar Sow, Vera GMSL Global mean sea level What is a slow-onset process? Künzel, Rixa Schwarz, Erin Roberts, Roxana 31 Baldrich, Nathalie Koffi Nguessan GMSLR Global mean sea level rise 10 IOM International Organization on Migration What are key characteristics Loss and damage Editing Adam Goulston – Scize Group LLC of slow-onset processes? in Senegal due to IPCC Intergovernmental Panel on Climate Change sea level rise Layout and graphics LECZ Low-elevation coastal zone 14 Karin Roth – Wissen in Worten OCHA Office for the Coordination of Humanitarian Affairs What are other relevant January 2021 terms for the terminology on 35 RCP Representative -
Present and Future Global Distributions of the Marine Cyanobacteria Prochlorococcus and Synechococcus
Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus Pedro Flombauma,b, José L. Gallegosa, Rodolfo A. Gordilloa, José Rincóna, Lina L. Zabalab, Nianzhi Jiaoc, David M. Karld,1, William K. W. Lie, Michael W. Lomasf, Daniele Venezianog, Carolina S. Verab, Jasper A. Vrugta,h, and Adam C. Martinya,i,1 Departments of aEarth System Science, hCivil Engineering, and iEcology and Evolutionary Biology, University of California, Irvine, CA 92697; bCentro de Investigaciones del Mar y la Atmósfera, Departamento de Ciencias de la Atmósfera y los Océanos, and Instituto Franco Argentino sobre Estudios del Clima y sus Impactos, Consejo Nacional de Investigaciones Científica y Tecnológicas and Universidad de Buenos Aires, 1428 Buenos Aires, Argentina; cInstitute of Microbes and Ecosphere, State Key Lab for Marine Environmental Sciences, Xiamen University, Xiamen 361005, People’s Republic of China; dCenter for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI 96822; eFisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada B2Y 4A2; fBigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544; and gDepartment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Contributed by David M. Karl, April 25, 2013 (sent for review January 22, 2013) The Cyanobacteria Prochlorococcus and Synechococcus account for outcompeted by other phytoplankton in high-nutrient waters (12, a substantial fraction of marine primary production. Here, we pres- 13). Synechococcus does not extend as deep in the water column as ent quantitative niche models for these lineages that assess present Prochlorococcus, but it has a wider geographical distribution that and future global abundances and distributions. -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Nanosims Single Cell Analyses Reveal the Contrasting Nitrogen Sources for Small Phytoplankton
The ISME Journal (2019) 13:651–662 https://doi.org/10.1038/s41396-018-0285-8 ARTICLE NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton 1 2 1 1 3 Hugo Berthelot ● Solange Duhamel ● Stéphane L’Helguen ● Jean-Francois Maguer ● Seaver Wang ● 4,5 1,3 Ivona Cetinić ● Nicolas Cassar Received: 14 April 2018 / Revised: 9 July 2018 / Accepted: 8 September 2018 / Published online: 15 October 2018 © International Society for Microbial Ecology 2018 Abstract Nitrogen (N) is a limiting nutrient in vast regions of the world’s oceans, yet the sources of N available to various phytoplankton groups remain poorly understood. In this study, we investigated inorganic carbon (C) fixation rates and nitrate − + (NO3 ), ammonium (NH4 ) and urea uptake rates at the single cell level in photosynthetic pico-eukaryotes (PPE) and the cyanobacteria Prochlorococcus and Synechococcus. To that end, we used dual 15N and 13C-labeled incubation assays coupled to flow cytometry cell sorting and nanoSIMS analysis on samples collected in the North Pacific Subtropical Gyre (NPSG) and in the California Current System (CCS). Based on these analyses, we found that photosynthetic growth rates fi 1234567890();,: 1234567890();,: (based on C xation) of PPE were higher in the CCS than in the NSPG, while the opposite was observed for + Prochlorococcus. Reduced forms of N (NH4 and urea) accounted for the majority of N acquisition for all the groups − studied. NO3 represented a reduced fraction of total N uptake in all groups but was higher in PPE (17.4 ± 11.2% on average) than in Prochlorococcus and Synechococcus (4.5 ± 6.5 and 2.9 ± 2.1% on average, respectively). -
Ocean Acidification in Washington State
University of Washington • Washington Sea Grant Ocean Acidification in Washington State What is Ocean Acidification? OA in Washington State cean Acidification (or ‘OA’) is a long-term decrease ur region is experiencing ocean acidification sooner Oin seawater pH that is primarily caused by the Oand more severely than expected, due to a combina- ocean’s uptake of carbon dioxide (CO2 ) from the atmo- tion of human and natural causes. In the spring and sum- sphere. CO2 generated by humans’ use of fossil fuels and mer, acidification along our coast is compounded by up- deforestation has been accumulating in the atmosphere welling, which mixes deep, naturally low-pH seawater into since the industrial revolution. About one quarter of this the already acidified surface layer. In Puget Sound, nutri- CO2 is absorbed by the oceans, pH describes the acidity of a liquid ents generated by human activities (mostly where it reacts with water to form nitrogen and phosphorus from sewage, carbonic acid. As a result, the aver- fertilizers and manure) fuel processes that age pH of seawater at the ocean add even more CO2 to this ‘doubly-acidified’ surface has already dropped by ~0.1 seawater. The combination can be deadly units, a 30% increase in acidity. If to vulnerable organisms. pH levels as low atmospheric CO2 levels continue as 7.4 have been recorded in Hood Canal, to climb at the present rate, ocean an important shellfish-growing region. acidity will double by the end of this State and federal agencies, scientists, tribes, century. shellfish growers and NGOs are working together to address OA in our region. -
Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide
Ocean acidification due to increasing atmospheric carbon dioxide Policy document 12/05 June 2005 ISBN 0 85403 617 2 This report can be found at www.royalsoc.ac.uk ISBN 0 85403 617 2 © The Royal Society 2005 Requests to reproduce all or part of this document should be submitted to: Science Policy Section The Royal Society 6-9 Carlton House Terrace London SW1Y 5AG email [email protected] Copy edited and typeset by The Clyvedon Press Ltd, Cardiff, UK ii | June 2005 | The Royal Society Ocean acidification due to increasing atmospheric carbon dioxide Ocean acidification due to increasing atmospheric carbon dioxide Contents Page Summary vi 1 Introduction 1 1.1 Background to the report 1 1.2 The oceans and carbon dioxide: acidification 1 1.3 Acidification and the surface oceans 2 1.4 Ocean life and acidification 2 1.5 Interaction with the Earth systems 2 1.6 Adaptation to and mitigation of ocean acidification 2 1.7 Artificial deep ocean storage of carbon dioxide 3 1.8 Conduct of the study 3 2 Effects of atmospheric CO2 enhancement on ocean chemistry 5 2.1 Introduction 5 2.2 The impact of increasing CO2 on the chemistry of ocean waters 5 2.2.1 The oceans and the carbon cycle 5 2.2.2 The oceans and carbon dioxide 6 2.2.3 The oceans as a carbonate buffer 6 2.3 Natural variation in pH of the oceans 6 2.4 Factors affecting CO2 uptake by the oceans 7 2.5 How oceans have responded to changes in atmospheric CO2 in the past 7 2.6 Change in ocean chemistry due to increases in atmospheric CO2 from human activities 9 2.6.1 Change to the oceans -
A Genomic Journey Through a Genus of Large DNA Viruses
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Virology Papers Virology, Nebraska Center for 2013 Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses Adrien Jeanniard Aix-Marseille Université David D. Dunigan University of Nebraska-Lincoln, [email protected] James Gurnon University of Nebraska-Lincoln, [email protected] Irina V. Agarkova University of Nebraska-Lincoln, [email protected] Ming Kang University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/virologypub Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell and Developmental Biology Commons, Genetics and Genomics Commons, Infectious Disease Commons, Medical Immunology Commons, Medical Pathology Commons, and the Virology Commons Jeanniard, Adrien; Dunigan, David D.; Gurnon, James; Agarkova, Irina V.; Kang, Ming; Vitek, Jason; Duncan, Garry; McClung, O William; Larsen, Megan; Claverie, Jean-Michel; Van Etten, James L.; and Blanc, Guillaume, "Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses" (2013). Virology Papers. 245. https://digitalcommons.unl.edu/virologypub/245 This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Adrien Jeanniard, David D. Dunigan, James Gurnon, Irina V. Agarkova, Ming Kang, Jason Vitek, Garry Duncan, O William McClung, Megan Larsen, Jean-Michel Claverie, James L. Van Etten, and Guillaume Blanc This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ virologypub/245 Jeanniard, Dunigan, Gurnon, Agarkova, Kang, Vitek, Duncan, McClung, Larsen, Claverie, Van Etten & Blanc in BMC Genomics (2013) 14. -
Targeted Metagenomics and Ecology of Globally Important Uncultured Eukaryotic Phytoplankton
Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton Marie L. Cuveliera,b, Andrew E. Allenc,1, Adam Moniera,1, John P. McCrowc, Monique Messiéa, Susannah G. Tringed, Tanja Woyked, Rory M. Welsha, Thomas Ishoeyc, Jae-Hyeok Leee, Brian J. Binderf, Chris L. DuPontc, Mikel Latasag, Cédric Guigandb, Kurt R. Bucka, Jason Hiltonb, Mathangi Thiagarajanc, Elisabet Calerc, Betsy Readh, Roger S. Laskenc, Francisco P. Chaveza, and Alexandra Z. Wordena,b,2 aMonterey Bay Aquarium Research Institute, Moss Landing, CA 95039; bRosenstiel School of Marine and Atmospheric Science, Miami, FL 33149; cJ. Craig Venter Institute, San Diego, CA 92121; dUS Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; eDepartment of Biology, Washington University, St. Louis, MO 63130; fDepartment of Marine Sciences, University of Georgia, Athens, GA 36072; gInstitut de Ciències del Mar (CSIC), E-08003 Barcelona, Spain; and hDepartment of Biological Sciences, California State University, San Marcos, CA 92096 Edited by David Karl, University of Hawaii, Honolulu, HI, and approved June 21, 2010 (received for review February 18, 2010) Among eukaryotes, four major phytoplankton lineages are respon- Oceanic prymnesiophytes are thought to be small owing to high sible for marine photosynthesis; prymnesiophytes, alveolates, stra- levels of prymnesiophyte-indicative pigments in regions where menopiles, and prasinophytes. Contributions by individual taxa, most Chl a (representing all phytoplankton combined) is in the however, are not well known, and genomes have been analyzed <2-μm size fraction (6, 12). Six picoplanktonic prymnesiophytes from only the latter two lineages. Tiny “picoplanktonic” members of exist in culture (6, 7) but prymnesiophyte 18S rDNA sequences the prymnesiophyte lineage have long been inferred to be ecolog- from <2–3-μm size-fractioned environmental samples typically ically important but remain poorly characterized.