Module 1: Science As Culture Demarcation, Autonomy and Cognitive Authority of Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ATINER's Conference Paper Series PHI2012-0090 Demarcation
ATINER CONFERENCE PAPER SERIES No: PHI2012-0090 Athens Institute for Education and Research ATINER ATINER's Conference Paper Series PHI2012-0090 Demarcation, Definition, Art Thomas Adajian Assistant Professor of Philosophy James Madison University USA 1 ATINER CONFERENCE PAPER SERIES No: PHI2012-0090 Athens Institute for Education and Research 8 Valaoritou Street, Kolonaki, 10671 Athens, Greece Tel: + 30 210 3634210 Fax: + 30 210 3634209 Email: [email protected] URL: www.atiner.gr URL Conference Papers Series: www.atiner.gr/papers.htm Printed in Athens, Greece by the Athens Institute for Education and Research. All rights reserved. Reproduction is allowed for non-commercial purposes if the source is fully acknowledged. ISSN 2241-2891 4/09/2012 2 ATINER CONFERENCE PAPER SERIES No: PHI2012-0090 An Introduction to ATINER's Conference Paper Series ATINER started to publish this conference papers series in 2012. It includes only the papers submitted for publication after they were presented at one of the conferences organized by our Institute every year. The papers published in the series have not been refereed and are published as they were submitted by the author. The series serves two purposes. First, we want to disseminate the information as fast as possible. Second, by doing so, the authors can receive comments useful to revise their papers before they are considered for publication in one of ATINER's books, following our standard procedures of a blind review. Dr. Gregory T. Papanikos President Athens Institute for Education and Research 3 ATINER CONFERENCE PAPER SERIES No: PHI2012-0090 This paper should be cited as follows: Adajian, T. -
The Demarcation Problem
Part I The Demarcation Problem 25 Chapter 1 Popper’s Falsifiability Criterion 1.1 Popper’s Falsifiability Popper’s Problem : To distinguish between science and pseudo-science (astronomy vs astrology) - Important distinction: truth is not the issue – some theories are sci- entific and false, and some may be unscientific but true. - Traditional but unsatisfactory answers: empirical method - Popper’s targets: Marx, Freud, Adler Popper’s thesis : Falsifiability – the theory contains claims which could be proved to be false. Characteristics of Pseudo-Science : unfalsifiable - Any phenomenon can be interpreted in terms of the pseudo-scientific theory “Whatever happened always confirmed it” (5) - Example: man drowning vs saving a child Characteristics of Science : falsifiability - A scientific theory is always takes risks concerning the empirical ob- servations. It contains the possibility of being falsified. There is con- firmation only when there is failure to refute. 27 28 CHAPTER 1. POPPER’S FALSIFIABILITY CRITERION “The theory is incompatible with certain possible results of observation” (6) - Example: Einstein 1919 1.2 Kuhn’s criticism of Popper Kuhn’s Criticism of Popper : Popper’s falsifiability criterion fails to char- acterize science as it is actually practiced. His criticism at best applies to revolutionary periods of the history of science. Another criterion must be given for normal science. Kuhn’s argument : - Kuhn’s distinction between normal science and revolutionary science - A lesson from the history of science: most science is normal science. Accordingly, philosophy of science should focus on normal science. And any satisfactory demarcation criterion must apply to normal science. - Popper’s falsifiability criterion at best only applies to revolutionary science, not to normal science. -
Using the Scientific Method
Using the Scientific Method 2002 and 2014 GED Content Area: Science Focus: Scientific Method (2002) and Scientific Hypothesis and Investigation(2014) Activity Type: Graphic Organizer and GED Practice Objectives Students will be able to: Appreciate the purpose of the Scientific Method Understand key terms related to the Scientific Method: observation, hypothesis, test, experiment, result, conclusion Relate the Scientific Method to an experiment Answer GED questions based on the Scientific Method Directions 1. Print the handout “Using the Scientific Method” (next page). Pass out the handout to the class. 2. Explain that the scientific method is the way scientists learn about the world around us. This involves several steps, often in the form of experiments. Discuss the 5 steps in the chart on the handout and define the highlighted words. 3. Have a student or students read the first passage out loud. Ask the class to fill in the chart. They can fill in the chart individually or in pairs (discussing these concepts can help students develop their thinking skills). 4. Discuss the students’ answers. Samples: 1. Observation: Where there was Penicillium mold, there were also dead bacteria. 2. Hypothesis: The mold must produce a chemical that kills the bacteria. 3. Test: Grow more of the mold separately and then return it to the bacteria. 4. Result: When the material is returned to the mold, the bacteria died. 5. Conclusion: Penicillium kills bacteria. 5. Have students read the passage at the bottom of the page and answer the GED practice question. Choice (4) is correct because the doctor saw that when the chickens ate whole‐grain rice with thiamine, they did not have the disease. -
Sacred Rhetorical Invention in the String Theory Movement
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public. -
The Naturalization of Natural Philosophy
philosophies Article The Naturalization of Natural Philosophy Joseph E. Brenner International Center for the Philosophy of Information, Xi’an Jiaotong University, Xi’An 710049, China; [email protected] Received: 29 August 2018; Accepted: 4 October 2018; Published: 24 November 2018 Abstract: A new demarcation is proposed between Natural Philosophy and non-Natural Philosophy—philosophy tout court—based on whether or not they follow a non-standard logic of real processes. This non-propositional logic, Logic in Reality (LIR), is based on the original work of the Franco-Romanian thinker Stéphane Lupasco (Bucharest, 1900–Paris, 1988). Many Natural Philosophies remain bounded by dependence on binary linguistic concepts of logic. I claim that LIR can naturalize—bring into science—part of such philosophies. Against the potential objection that my approach blurs the distinction between science and philosophy, I reply that there is no problem in differentiating experimental physical science and philosophy; any complete distinction between philosophy, including the philosophy of science(s) and the other sciences is invidious. It was historically unnecessary and is unnecessary today. The convergence of science and philosophy, proposed by Wu Kun based on implications of the philosophy of information, supports this position. LIR provides a rigorous basis for giving equivalent ontological value to diversity and identity, what is contradictory, inconsistent, absent, missing or past, unconscious, incomplete, and fuzzy as to their positive counterparts. The naturalized Natural Philosophy resulting from the application of these principles is a candidate for the ‘new synthesis’ called for by the editors. Keywords: common good; contradiction; ethics; information; logic; naturalization; realism; science; synthesis 1. -
An Introduction to Philosophy
An Introduction to Philosophy W. Russ Payne Bellevue College Copyright (cc by nc 4.0) 2015 W. Russ Payne Permission is granted to copy, distribute and/or modify this document with attribution under the terms of Creative Commons: Attribution Noncommercial 4.0 International or any later version of this license. A copy of the license is found at http://creativecommons.org/licenses/by-nc/4.0/ 1 Contents Introduction ………………………………………………. 3 Chapter 1: What Philosophy Is ………………………….. 5 Chapter 2: How to do Philosophy ………………….……. 11 Chapter 3: Ancient Philosophy ………………….………. 23 Chapter 4: Rationalism ………….………………….……. 38 Chapter 5: Empiricism …………………………………… 50 Chapter 6: Philosophy of Science ………………….…..… 58 Chapter 7: Philosophy of Mind …………………….……. 72 Chapter 8: Love and Happiness …………………….……. 79 Chapter 9: Meta Ethics …………………………………… 94 Chapter 10: Right Action ……………………...…………. 108 Chapter 11: Social Justice …………………………...…… 120 2 Introduction The goal of this text is to present philosophy to newcomers as a living discipline with historical roots. While a few early chapters are historically organized, my goal in the historical chapters is to trace a developmental progression of thought that introduces basic philosophical methods and frames issues that remain relevant today. Later chapters are topically organized. These include philosophy of science and philosophy of mind, areas where philosophy has shown dramatic recent progress. This text concludes with four chapters on ethics, broadly construed. I cover traditional theories of right action in the third of these. Students are first invited first to think about what is good for themselves and their relationships in a chapter of love and happiness. Next a few meta-ethical issues are considered; namely, whether they are moral truths and if so what makes them so. -
Reexamining the Problem of Demarcating Science and Pseudoscience by Evan Westre B.A., Vancouver Island University, 2010 a Thesis
Reexamining the Problem of Demarcating Science and Pseudoscience By Evan Westre B.A., Vancouver Island University, 2010 A Thesis Submitted in Partial Fulfillment of the Requirements For the Degree of MASTER OF ARTS ©Evan Westre, 2014 All Rights Reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Supervisory Committee Reexamining the Problem of Demarcating Science and Pseudoscience By Evan Westre B.A., Vancouver Island University, 2010 Dr. Audrey Yap: Supervisor (Department of Philosophy) Dr. Jeffrey Foss: Departmental Member (Department of Philosophy) ii Abstract Supervisory Committee Dr. Audrey Yap: Supervisor (Department of Philosophy) Dr. Jeffrey Foss: Departmental Member (Department of Philosophy) The demarcation problem aims to articulate the boundary between science and pseudoscience. Solutions to the problem have been notably raised by the logical positivists (verificationism), Karl Popper (falsificationism), and Imre Lakatos (methodology of research programmes). Due, largely, to the conclusions drawn by Larry Laudan, in a pivotal 1981 paper which dismissed the problem of demarcation as a “pseudo-problem”, the issue was brushed aside for years. Recently, however, there has been a revival of attempts to reexamine the demarcation problem and synthesize new solutions. My aim is to survey two of the contemporary attempts and to assess these approaches over and against the broader historical trajectory of the demarcation problem. These are the efforts of Nicholas Maxwell (aim-oriented empiricism), and Paul Hoyningen-Huene (systematicity). I suggest that the main virtue of the new attempts is that they promote a self-reflexive character within the sciences. -
The Unity of Science in Early-Modern Philosophy: Subalternation, Metaphysics and the Geometrical Manner in Scholasticism, Galileo and Descartes
The Unity of Science in Early-Modern Philosophy: Subalternation, Metaphysics and the Geometrical Manner in Scholasticism, Galileo and Descartes by Zvi Biener M.A. in Philosophy, University of Pittsburgh, 2004 B.A. in Physics, Rutgers University, 1995 B.A. in Philosophy, Rutgers University, 1995 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH FACULTY OF ARTS AND SCIENCES This dissertation was presented by Zvi Biener It was defended on April 3, 2008 and approved by Peter Machamer J.E. McGuire Daniel Garber James G. Lennox Paolo Palmieri Dissertation Advisors: Peter Machamer, J.E. McGuire ii Copyright c by Zvi Biener 2008 iii The Unity of Science in Early-Modern Philosophy: Subalternation, Metaphysics and the Geometrical Manner in Scholasticism, Galileo and Descartes Zvi Biener, PhD University of Pittsburgh, 2008 The project of constructing a complete system of knowledge—a system capable of integrating all that is and could possibly be known—was common to many early-modern philosophers and was championed with particular alacrity by Ren´eDescartes. The inspiration for this project often came from mathematics in general and from geometry in particular: Just as propositions were ordered in a geometrical demonstration, the argument went, so should propositions be ordered in an overall system of knowledge. Science, it was thought, had to proceed more geometrico. I offer a new interpretation of ‘science more geometrico’ based on an analysis of the explanatory forms used in certain branches of geometry. These branches were optics, as- tronomy, and mechanics; the so-called subalternate, subordinate, or mixed-mathematical sciences. -
Phil. Colloquium Archives 2018
FALL 2018 1. Friday, September 14, 2018 - 3:00pm, BEH 215 "Defending Deflationism from a Forceful Objection." James Woodbridge, Department of Philosophy, University of Nevada Las Vegas This talk presents work done in collaboration with Brad Armour-Garb. We offer a unified picture of deflationism about truth, by explaining the proper way to understand the interrelations between (what Bar-On and Simmons (2007) call) conceptual, linguistic and metaphysical deflationism. I will then present our defense of deflationism against Bar-On and Simmons (2007)'s objection that conceptual deflationism is incompatible with the explanatory role the concept of truth plays in an account of assertion or assertoric illocutionary force. We defend deflationism, rather than just conceptual deflationism, because we take Bar-On and Simmons's stance on their target to involve a mistake. They purport to raise an objection merely to conceptual deflationism, putting the issues involved in metaphysical deflationism and linguistic deflationism to one side. I will explain how that cannot really be done because it mistakenly treats the three categories of deflationary views as running independently and as being at the same theoretical level. As we argue, given the relationships between them, a challenge to conceptual deflationism would flow upward and would amount to a challenge to linguistic deflationism, too, and, thus, to deflationism as a whole. Having defended conceptual deflationism against Bar-On and Simmon's objection, we conclude that deflationism about truth, understood primarily as a view about truth- talk, but with the other theses that brings with it, remains a viable position to endorse. 2. Friday, October 5, 2018 - 3:00pm, BEH 215 "Theorizing Testimony in Argumentative Contexts: Problems for Assurance." David Godden, Department of Philosophy, Michigan State University Standardly the testimonial acceptance of some claim, p, is analyzed as some subject, S, accepting that p on the basis of another's say-so. -
Nietzsche's Nonobjectivity on Planck's Quanta
Bellarmine University ScholarWorks@Bellarmine Undergraduate Theses Undergraduate Works 5-17-2019 Phantoms in Science: Nietzsche's Nonobjectivity on Planck's Quanta Donald Richard Dickerson III Bellarmine University, [email protected] Follow this and additional works at: https://scholarworks.bellarmine.edu/ugrad_theses Part of the Chemistry Commons, Philosophy of Science Commons, and the Quantum Physics Commons Recommended Citation Dickerson, Donald Richard III, "Phantoms in Science: Nietzsche's Nonobjectivity on Planck's Quanta" (2019). Undergraduate Theses. 41. https://scholarworks.bellarmine.edu/ugrad_theses/41 This Honors Thesis is brought to you for free and open access by the Undergraduate Works at ScholarWorks@Bellarmine. It has been accepted for inclusion in Undergraduate Theses by an authorized administrator of ScholarWorks@Bellarmine. For more information, please contact [email protected], [email protected]. ¬¬PHANTOMS IN SCIENCE: NIETZSCHE’S NONOBJECTIVITY ON PLANCK’S QUANTA Honors Thesis Abstract What does Maxwell Planck's concept of phantomness suggest about the epistemological basis of science and how might a Nietzschean critique reveal solution to the weaknesses revealed? With his solution to Kirchoff's equation, Maxwell Planck launched the paradigm of quantum physics. This same solution undermined much of current understandings of science versus pseudoscience. Using Nietzsche's perspectivism and other philosophical critiques, Planck's answer to blackbody radiation is used to highlight the troubles with phantom problems in science and how to try to direct science towards a more holistic and complete scientific approach. D. Richard Dickerson III [email protected] 1 PHANTOMS IN SCIENCE: NIETZSCHE’S NONOBJECTIVITY ON PLANCK’S QUANTA INTRODUCTION The current understanding of science relies on stark contrasts between physics and metaphysics. -
PHYSICS, PHILOSOPHY and PSYCHOANALYSIS Essays in Honor of Adolf Grilnbaum
PHYSICS, PHILOSOPHY AND PSYCHOANALYSIS Essays in Honor of Adolf Grilnbaum Edited by R. s. COHEN Boston University and L. LAUDAN Virginia Polytechnic Institute D. REIDEL PUBLISHING COMPANY A MEMBER OF THE KLUWER ACADEMIC PUBLISHERS GROUP DORDRECHT I BOSTON I LANCASTER Library of Congress Cataloging in Publication Data Main entry under title: Physics, philosophy, and psychoanalysis. (Boston studies in the philosophy of science; v. 76) Bibliography: p. Includes index. 1. Physics-Philo sophy-Addresses, essays, lectures. 2. Philos- ophy-Addresses, essays, lectures. 3. Psychoanalysis-Addresses, essays;lectures. 4. Griinbaum, Adolf. I. Griinbaum, Adolf. II. Cohen, Robert Sonne. III. Series. Q174.B67 vol. 76 [QC6.21 501s 1530'.011 83-4576 ISBN-I3: 978-94-009-7057-1 e-ISBN-13: 978-94-009-7055-7 DOl: 10.1007/978-94-009-7055-7 Published by D. Reidel Publishing Company, P.O. Box 17,3300 AA Dordrecht, Holland. Sold and distributed in the U.S.A. and Canada by Kluwer Boston Inc., 190 Old Derby Street, Hingham, MA 02043, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers Group, P.O. Box 322, 3300 AH Dordrecht, Holland. All Rights Reserved. Copyright © 1983 by D. Reidel Publishing Company, Dordrecht, Holland and copyright holders as specified on appropriate pages within. Softcover reprint of the hardcover 15t edition 1983 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any informational storage and retrieval system, without written permission from the copyright owner. -
Induction, Deduction, and the Scientific Method
INDUCTION, DEDUCTION, AND THE SCIENTIFIC METHOD AN ECLECTIC OVERVIEW OF THE PRACTICE OF SCIENCE IRVING ROTHCHILD Emeritus Professor of Reproductive Biology Case Western Reserve University School of Medicine Cleveland, Ohio © 2006 by the Society for the Study of Reproduction, Inc. CONTENTS ABSTRACT 1 INTRODUCTION 1 INDUCTION AND DEDUCTION 2 Etymology 2 Definitions 2 Induction 2 Deduction 3 THE SCIENTIFIC METHOD 3 BEING A SCIENTIST 4 Making Observations 4 Point of View 5 Asking the Right Question 6 Theorizing 6 The theory (or finding) that questions authority 7 Defending the controversial theory or finding 8 Eurekas 8 Experimentation 9 The failed experiment 9 Publishing 10 Statistics 10 Recognition 10 ACKNOWLEDGEMENTS 10 REFERENCES 11 © 2006 by the Society for the Study of Reproduction, Inc. © 2006 by the Society for the Study of Reproduction, Inc. INDUCTION, DEDUCTION, AND THE SCIENTIFIC METHOD AN ECLECTIC OVERVIEW OF THE PRACTICE OF SCIENCE IRVING ROTHCHILD* Emeritus Professor of Reproductive Biology Case Western Reserve University School of Medicine Cleveland, Ohio ABSTRACT: Science is a never-ending, always changing process through which we learn to know the material nature of the universe. Science does not deal with nonmaterial entities such as gods, for there is no way their existence can be either proved or disproved. No single, identifiable method applies to all branches of science; the only method, in fact, is whatever the scientist can use to find the solution to a problem. This includes induction, a form of logic that identifies similarities within a group of particulars, and deduction, a form of logic that identifies a particular by its resemblance to a set of accepted facts.