Integrating DNA and Fossils Elucidates the Evolutionary History of Hexactinellid Sponges

Total Page:16

File Type:pdf, Size:1020Kb

Integrating DNA and Fossils Elucidates the Evolutionary History of Hexactinellid Sponges Paleobiology, 39(1), 2013, pp. 95–108 Molecular paleobiology of early-branching animals: integrating DNA and fossils elucidates the evolutionary history of hexactinellid sponges Martin Dohrmann, Sergio Vargas, Dorte Janussen, Allen G. Collins, and Gert Worheide¨ Abstract.—Reconciliation of paleontological and molecular phylogenetic evidence holds great promise for a better understanding of the temporal succession of cladogenesis and character evolution, especially for taxa with a fragmentary fossil record and uncertain classification. In zoology, studies of this kind have largely been restricted to Bilateria. Hexactinellids (glass sponges) readily lend themselves to test such an approach for early-branching (non-bilaterian) animals: they have a long and rich fossil record, but for certain taxa paleontological evidence is still scarce or ambiguous. Furthermore, there is a lack of consensus for taxonomic interpretations, and discrepancies exist between neontological and paleontological classification systems. Using conservative fossil calibration constraints and the largest molecular phylogenetic data set assembled for this group, we infer divergence times of crown-group Hexactinellida in a Bayesian relaxed molecular clock framework. With some notable exceptions, our results are largely congruent with interpretations of the hexactinellid fossil record, but also indicate long periods of undocumented evolution for several groups. This study illustrates the potential of an integrated molecular/paleobiological approach to reconstructing the evolution of challenging groups of organisms. Martin Dohrmann and Sergio Vargas. Department fur¨ Geo- und Umweltwissenschaften, Ludwig-Maximilians- Universitat¨ Munchen,¨ Richard-Wagner-Strabe 10, 80333 Munich, Germany Gert Worheide.¨ Department fur¨ Geo- und Umweltwissenschaften and GeoBioCenterLMU, Ludwig-Maximilians- Universitat¨ Munchen,¨ and Bayerische Staatsammlung fur¨ Palaontologie¨ und Geologie, Richard-Wagner- Strabe 10, 80333 Munich, Germany. E-mail: [email protected]. Corresponding author. Dorte Janussen. Forschungsinstitut Senckenberg, Sektion Marine Evertebraten I, Senckenberganlage 25, 60325 Frankfurt am Main, Germany Allen G. Collins. NMFS, National Systematics Laboratory, National Museum of Natural History, MRC-153, Smithsonian Institution, Post Office Box 37012, Washington, D.C. 20013-7012, U.S.A. Accepted: 16 May 2012 Supplemental materials deposited at Dryad: doi 10.5061/dryad.sm01b Introduction Donoghue and Benton 2007; Peterson et al. The fossil record provides the only tangible 2007). Taxa vary greatly in their suitability for such evidence of the temporal distribution of taxa, integrated analyses. For diverse groups with but it is well appreciated that these data are still no appreciable fossil record, e.g., Platy- often incomplete. Furthermore, taxonomic helminthes or Placozoa, analyses integrating interpretation of fossils can be difficult when paleontological data will probably never be key characters are not preserved, leaving possible. The evolution of other important much room for speculation. Molecular se- groups for which there are only scattered quences provide an independent source of fossil occurrences, usually as partly isolated data that can be brought to bear on evolu- Lagerstatten,¨ e.g., Nematoda or Medusozoa, tionary questions. Using these data to eluci- may also be prohibitively difficult to address date the timing of evolutionary events by with synthetic analyses combining fossil and estimating dates of clade divergence, however, molecular data because first fossil occurrences requires external information, typically taken of subclades are not likely to correspond from the fossil record. Therefore, synthesizing closely to their evolutionary origin (Cart- paleontological and molecular data for a more wright and Collins 2007). A further difficulty holistic understanding of evolutionary history is posed for groups that have a relatively rich is one of the most promising—and most fossil record, but whose phylogenetic histories challenging—lines of modern paleobiological are difficult to reconstruct with morphological research (Brochu et al. 2004; Magallon´ 2004; data owing to the paucity of informative Ó 2013 The Paleontological Society. All rights reserved. 0094-8373/13/3901-0006/$1.00 96 MARTIN DOHRMANN ET AL. characters and high levels of homoplasy. evidence, thereby coming to an enhanced Sponges (Porifera) are perhaps the most appreciation of hexactinellid evolution. notorious example of such a taxon (see Fossil Record and Systematics of Glass Spong- Hooper and van Soest 2002; Ca´rdenas et al. es.—Hexactinellids were important compo- 2012). Although molecular systematics has nents of deep- and at times also shallower- greatly helped resolve relationships of extant water benthic ecosystems throughout the sponges (Erpenbeck and Worheide¨ 2007; Phanerozoic, often associated with reef com- Worheide¨ et al. 2012), it has also generally munities (e.g., Finks 1960; Mehl 1992; Brunton indicated that traditional sponge classification and Dixon 1994; Leinfelder et al. 1994; and taxonomy is based on characters that do Krautter et al. 2001; Carrera and Botting not accurately reflect evolutionary history 2008). Their rich fossil record (see Krautter (Ca´rdenas et al. 2012). Morphology-based 2002; Pisera 2006) dates back to the late classification, which is already difficult for Neoproterozoic (Steiner et al. 1993; Gehling extant taxa, is thus even more problematic for and Rigby 1996; Brasier et al. 1997). The two fossil sponges. Paleontologists naturally have extant subclasses, Hexasterophora and Am- to rely on morphological characters for taxo- phidiscophora, whose monophyly is strongly nomic assignment, and the task for sponges is supported by both morphological and molec- complicated by a fossil record biased toward ular data (Mehl 1992; Dohrmann et al. 2008), groups with fused or articulated skeletons, appear in the early Paleozoic, as indicated by leaving substantial gaps for taxa that more isolated microscleres (Mostler 1986). Because readily disintegrate after death (Pisera 2006). the oldest hexasters (the defining autapomor- This difficult situation, however, is less severe phy of Hexasterophora) are known from the in the Hexactinellida (glass sponges), which lowermost Ordovician, the hexasterophoran have recently been shown to have an evolu- and amphidiscophoran stem-lineages must tionary history, as elucidated by molecular have already evolved during the Cambrian sequence data, that is largely consistent with (Mostler 1986; Mehl 1996). However, given the distribution of morphological features that the earliest (late Ediacaran and early across its traditional taxa (Dohrmann et al. Cambrian) bodily preserved hexactinellid fos- 2008, 2009). However, the fossil record pres- sils (e.g., Steiner et al. 1993; Gehling and Rigby ently provides incomplete or ambiguous 1996; Brasier et al. 1997; Wu et al. 2005; Xiao et evidence regarding the origin and evolution al. 2005) bear no resemblance to any specific of extant hexactinellid subtaxa (see next extant subtaxon, it is likely that they represent section). Furthermore, the poor concordance stem-group members, implying that the origin between paleontological and neontological of the crown group (i.e., the split between the systematics greatly complicates matters two subclasses) does not predate the Ediacar- (Krautter 2002; Reiswig 2006). an/Cambrian boundary. Thus, although the Here we use glass sponges to illustrate how origin of Hexactinellida from a common a molecular paleobiological approach (Peter- ancestor with demosponges certainly occurred son et al. 2007) can enhance our understand- in Precambrian times, their crown group likely ing of the evolution of such ‘‘problematic’’ evolved rapidly as part of the Cambrian animal groups. We estimate divergence times radiation (see Zhang and Pratt 1994; Reitner of crown-group Hexactinellida from the larg- and Mehl 1995; Xiao et al. 2005; see also Erwin est molecular phylogenetic data set assembled 2011). to date for this class of sponges (Dohrmann et Following a high Paleozoic diversity, most al. 2012a), using a relaxed molecular clock groups dominant in that era had disappeared approach (see, e.g., Welch and Bromham 2005; by the end of the Permian (Mostler 1990; Mehl Yang 2006 for reviews) and fossil-based age 1996; Mehl-Janussen 1999; Krautter 2002). constraints for calibration. We then compare Because the taxonomically important micro- the dated phylogeny with the fossil record and scleres are rarely preserved in situ (but see, discussimplicationsofcongruenciesand e.g., Kling and Reif 1969 and Rigby et al. 2007 discrepancies between the two sources of for notable exceptions), and Paleozoic skeletal MOLECULAR PALEOBIOLOGY OF HEXACTINELLIDA 97 architectures differ greatly from Mesozoic and majority of hexactinosidans form a highly modern forms (Mehl and Mostler 1993; Mehl supported clade, the Sceptrulophora (Mehl 1996), relationships of these taxa to extant 1992; Dohrmann et al. 2011), which is the sister hexactinellids remain largely elusive. Thus, group of the remaining hexasterophorans fossils assigned to modern families are mostly (Dohrmann et al. 2008, 2009). This taxon is confined to the Mesozoic–Cenozoic. The fossil characterized by the possession of sceptrules, record of Amphidiscophora is poor (Mehl a scepter-like spicule type that occurs in 1992, 1996), and the earliest crown-group various forms, mostly scopules or clavules member (family Hyalonematidae)
Recommended publications
  • New Zealand Oceanographic Institute Memoir 100
    ISSN 0083-7903, 100 (Print) ISSN 2538-1016; 100 (Online) , , II COVER PHOTO. Dictyodendrilla cf. cavernosa (Lendenfeld, 1883) (type species of Dictyodendri/la Bergquist, 1980) (see page 24), from NZOI Stn I827, near Rikoriko Cave entrance, Poor Knights Islands Marine Reserve. Photo: Ken Grange, NZOI. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH The Marine Fauna of New Zealand: Index to the Fauna 2. Porifera by ELLIOT W. DAWSON N .Z. Oceanographic Institute, Wellington New Zealand Oceanographic Institute Memoir 100 1993 • This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Cataloguing in publication DAWSON, E.W. The marine fauna of New Zealand: Index to the Fauna 2. Porifera / by Elliot W. Dawson - Wellington: New Zealand Oceanographic Institute, 1993. (New Zealand Oceanographic Institute memoir, ISSN 0083-7903, 100) ISBN 0-478-08310-6 I. Title II. Series UDC Series Editor Dennis P. Gordon Typeset by Rose-Marie C. Thompson NIWA Oceanographic (NZOI) National Institute of Water and Atmospheric Research Received for publication: 17 July 1991 © NIWA Copyright 1993 2 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page ABSTRACT 5 INTRODUCTION 5 SCOPE AND ARRANGEMENT 7 SYSTEMATIC LIST 8 Class DEMOSPONGIAE 8 Subclass Homosclcromorpha ..............................................................................................
    [Show full text]
  • Early Paleozoic Life & Extinctions (Part 1)
    NJU Course Extinctions: Past, Present & Future Prof. Norman MacLeod School of Earth Sciences & Engineering, Nanjing University Extinctions: Past, Present & Future Extinctions: Past, Present & Future Course Syllabus (Revised) Section Week Title Introduction 1 Course Introduction, Intro. To Extinction Introduction 2 History of Extinction Studies Introduction 3 Evolution, Fossils, Time & Extinction Precambrian Extinctions 4 Origin of Life & Precambrian Extionctions Paleozoic Extinctions 5 Early Paleozoic World & Extinctions Paleozoic Extinctions 6 Middle Paleozoic World & Extinctions Paleozoic Extinctions 7 Late Paleozoic World & Extinctions Assessment 8 Mid-Term Examination Mesozoic Extinctions 9 Triassic-Jurassic World & Extinctions Mesozoic Extinctions 10 Labor Day Holiday Cenozoic Extinctions 11 Cretaceous World & Extinctions Cenozoic Extinctions 12 Paleogene World & Extinctions Cenozoic Extinctions 13 Neogene World & Extinctions Modern Extinctions 14 Quaternary World & Extinctions Modern Extinctions 15 Modern World: Floras, Faunas & Environment Modern Extinctions 16 Modern World: Habitats & Organisms Assessment 17 Final Examination Early Paleozoic World, Life & Extinctions Norman MacLeod School of Earth Sciences & Engineering, Nanjing University Early Paleozoic World, Life & Extinctions Objectives Understand the structure of the early Paleozoic world in terms of timescales, geography, environ- ments, and organisms. Understand the structure of early Paleozoic extinction events. Understand the major Paleozoic extinction drivers. Understand
    [Show full text]
  • Diversity Partitioning During the Cambrian Radiation
    Diversity partitioning during the Cambrian radiation Lin Naa,1 and Wolfgang Kiesslinga,b aGeoZentrum Nordbayern, Paleobiology and Paleoenvironments, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; and bMuseum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, 10115 Berlin, Germany Edited by Douglas H. Erwin, Smithsonian National Museum of Natural History, Washington, DC, and accepted by the Editorial Board March 10, 2015 (received for review January 2, 2015) The fossil record offers unique insights into the environmental and Results geographic partitioning of biodiversity during global diversifica- Raw gamma diversity exhibits a strong increase in the first three tions. We explored biodiversity patterns during the Cambrian Cambrian stages (informally referred to as early Cambrian in this radiation, the most dramatic radiation in Earth history. We as- work) (Fig. 1A). Gamma diversity dropped in Stage 4 and de- sessed how the overall increase in global diversity was partitioned clined further through the rest of the Cambrian. The pattern is between within-community (alpha) and between-community (beta) robust to sampling standardization (Fig. 1B) and insensitive to components and how beta diversity was partitioned among environ- including or excluding the archaeocyath sponges, which are po- ments and geographic regions. Changes in gamma diversity in the tentially oversplit (16). Alpha and beta diversity increased from Cambrian were chiefly driven by changes in beta diversity. The the Fortunian to Stage 3, and fluctuated erratically through the combined trajectories of alpha and beta diversity during the initial following stages (Fig. 2). Our estimate of alpha (and indirectly diversification suggest low competition and high predation within beta) diversity is based on the number of genera in published communities.
    [Show full text]
  • Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida
    Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida Aulocalycoida and Lychniscosida Hexactinellida: Hexasterophora): Orders Hexactinosida, The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges Zealand (Porifera: ISSN 1174–0043; 124 Henry M. Reiswig and Michelle Kelly The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida Henry M. Reiswig and Michelle Kelly NIWA Biodiversity Memoir 124 COVER PHOTO Two unidentified hexasterophoran glass sponge species, the first possibly Farrea onychohexastera n. sp. (frilly white honeycomb sponge in several bushy patches), and the second possibly Chonelasma lamella, but also possibly C. chathamense n. sp. (lower left white fan), attached to the habitat-forming coral Solenosmilia variabilis, dominant at 1078 m on the Graveyard seamount complex of the Chatham Rise (NIWA station TAN0905/29: 42.726° S, 179.897° W). Image captured by DTIS (Deep Towed Imaging System) onboard RV Tangaroa, courtesy of NIWA Seamounts Programme (SFAS103), Oceans2020 (LINZ, MFish) and Rob Stewart, NIWA, Wellington (Photo: NIWA). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH (NIWA) The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida:
    [Show full text]
  • An Integrative Systematic Framework Helps to Reconstruct Skeletal
    Dohrmann et al. Frontiers in Zoology (2017) 14:18 DOI 10.1186/s12983-017-0191-3 RESEARCH Open Access An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida) Martin Dohrmann1*, Christopher Kelley2, Michelle Kelly3, Andrzej Pisera4, John N. A. Hooper5,6 and Henry M. Reiswig7,8 Abstract Background: Glass sponges (Class Hexactinellida) are important components of deep-sea ecosystems and are of interest from geological and materials science perspectives. The reconstruction of their phylogeny with molecular data has only recently begun and shows a better agreement with morphology-based systematics than is typical for other sponge groups, likely because of a greater number of informative morphological characters. However, inconsistencies remain that have far-reaching implications for hypotheses about the evolution of their major skeletal construction types (body plans). Furthermore, less than half of all described extant genera have been sampled for molecular systematics, and several taxa important for understanding skeletal evolution are still missing. Increased taxon sampling for molecular phylogenetics of this group is therefore urgently needed. However, due to their remote habitat and often poorly preserved museum material, sequencing all 126 currently recognized extant genera will be difficult to achieve. Utilizing morphological data to incorporate unsequenced taxa into an integrative systematics framework therefore holds great promise, but it is unclear which methodological approach best suits this task. Results: Here, we increase the taxon sampling of four previously established molecular markers (18S, 28S, and 16S ribosomal DNA, as well as cytochrome oxidase subunit I) by 12 genera, for the first time including representatives of the order Aulocalycoida and the type genus of Dactylocalycidae, taxa that are key to understanding hexactinellid body plan evolution.
    [Show full text]
  • Download-The-Data (Accessed on 12 July 2021))
    diversity Article Integrative Taxonomy of New Zealand Stenopodidea (Crustacea: Decapoda) with New Species and Records for the Region Kareen E. Schnabel 1,* , Qi Kou 2,3 and Peng Xu 4 1 Coasts and Oceans Centre, National Institute of Water & Atmospheric Research, Private Bag 14901 Kilbirnie, Wellington 6241, New Zealand 2 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; [email protected] 3 College of Marine Science, University of Chinese Academy of Sciences, Beijing 100049, China 4 Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; [email protected] * Correspondence: [email protected]; Tel.: +64-4-386-0862 Abstract: The New Zealand fauna of the crustacean infraorder Stenopodidea, the coral and sponge shrimps, is reviewed using both classical taxonomic and molecular tools. In addition to the three species so far recorded in the region, we report Spongicola goyi for the first time, and formally describe three new species of Spongicolidae. Following the morphological review and DNA sequencing of type specimens, we propose the synonymy of Spongiocaris yaldwyni with S. neocaledonensis and review a proposed broad Indo-West Pacific distribution range of Spongicoloides novaezelandiae. New records for the latter at nearly 54◦ South on the Macquarie Ridge provide the southernmost record for stenopodidean shrimp known to date. Citation: Schnabel, K.E.; Kou, Q.; Xu, Keywords: sponge shrimp; coral cleaner shrimp; taxonomy; cytochrome oxidase 1; 16S ribosomal P. Integrative Taxonomy of New RNA; association; southwest Pacific Ocean Zealand Stenopodidea (Crustacea: Decapoda) with New Species and Records for the Region.
    [Show full text]
  • The Unique Skeleton of Siliceous Sponges (Porifera; Hexactinellida and Demospongiae) That Evolved first from the Urmetazoa During the Proterozoic: a Review
    Biogeosciences, 4, 219–232, 2007 www.biogeosciences.net/4/219/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review W. E. G. Muller¨ 1, Jinhe Li2, H. C. Schroder¨ 1, Li Qiao3, and Xiaohong Wang4 1Institut fur¨ Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Duesbergweg 6, 55099 Mainz, Germany 2Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, P. R. China 3Department of Materials Science and Technology, Tsinghua University, 100084 Beijing, P. R. China 4National Research Center for Geoanalysis, 26 Baiwanzhuang Dajie, 100037 Beijing, P. R. China Received: 8 January 2007 – Published in Biogeosciences Discuss.: 6 February 2007 Revised: 10 April 2007 – Accepted: 20 April 2007 – Published: 3 May 2007 Abstract. Sponges (phylum Porifera) had been considered an axial filament which harbors the silicatein. After intracel- as an enigmatic phylum, prior to the analysis of their genetic lular formation of the first lamella around the channel and repertoire/tool kit. Already with the isolation of the first ad- the subsequent extracellular apposition of further lamellae hesion molecule, galectin, it became clear that the sequences the spicules are completed in a net formed of collagen fibers. of sponge cell surface receptors and of molecules forming the The data summarized here substantiate that with the find- intracellular signal transduction pathways triggered by them, ing of silicatein a new aera in the field of bio/inorganic chem- share high similarity with those identified in other metazoan istry started.
    [Show full text]
  • Ediacaran and Cambrian Stratigraphy in Estonia: an Updated Review
    Estonian Journal of Earth Sciences, 2017, 66, 3, 152–160 https://doi.org/10.3176/earth.2017.12 Ediacaran and Cambrian stratigraphy in Estonia: an updated review Tõnu Meidla Department of Geology, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Ravila 14a, 50411 Tartu, Estonia; [email protected] Received 18 December 2015, accepted 18 May 2017, available online 6 July 2017 Abstract. Previous late Precambrian and Cambrian correlation charts of Estonia, summarizing the regional stratigraphic nomenclature of the 20th century, date back to 1997. The main aim of this review is updating these charts based on recent advances in the global Precambrian and Cambrian stratigraphy and new data from regions adjacent to Estonia. The term ‘Ediacaran’ is introduced for the latest Precambrian succession in Estonia to replace the formerly used ‘Vendian’. Correlation with the dated sections in adjacent areas suggests that only the latest 7–10 Ma of the Ediacaran is represented in the Estonian succession. The gap between the Ediacaran and Cambrian may be rather substantial. The global fourfold subdivision of the Cambrian System is introduced for Estonia. The lower boundary of Series 2 is drawn at the base of the Sõru Formation and the base of Series 3 slightly above the former lower boundary of the ‘Middle Cambrian’ in the Baltic region, marked by a gap in the Estonian succession. The base of the Furongian is located near the base of the Petseri Formation. Key words: Ediacaran, Cambrian, correlation chart, biozonation, regional stratigraphy, Estonia, East European Craton. INTRODUCTION The latest stratigraphic chart of the Cambrian System in Estonia (Mens & Pirrus 1997b, p.
    [Show full text]
  • GSSP) of the Drumian Stage (Cambrian) in the Drum Mountains, Utah, USA
    Articles 8585 by Loren E. Babcock1, Richard A. Robison2, Margaret N. Rees3, Shanchi Peng4, and Matthew R. Saltzman1 The Global boundary Stratotype Section and Point (GSSP) of the Drumian Stage (Cambrian) in the Drum Mountains, Utah, USA 1 School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH 43210, USA. Email: [email protected] and [email protected] 2 Department of Geology, University of Kansas, Lawrence, KS 66045, USA. Email: [email protected] 3 Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, NV 89145, USA. Email: [email protected] 4 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. Email: [email protected] The Global boundary Stratotype Section and Point correlated with precision through all major Cambrian regions. (GSSP) for the base of the Drumian Stage (Cambrian Among the methods that should be considered in the selection of a GSSP (Remane et al., 1996), biostratigraphic, chemostratigraphic, Series 3) is defined at the base of a limestone (cal- paleogeographic, facies-relationship, and sequence-stratigraphic cisiltite) layer 62 m above the base of the Wheeler For- information is available (e.g., Randolph, 1973; White, 1973; McGee, mation in the Stratotype Ridge section, Drum Moun- 1978; Dommer, 1980; Grannis, 1982; Robison, 1982, 1999; Rowell et al. 1982; Rees 1986; Langenburg et al., 2002a, 2002b; Babcock et tains, Utah, USA. The GSSP level contains the lowest al., 2004; Zhu et al., 2006); that information is summarized here. occurrence of the cosmopolitan agnostoid trilobite Pty- Voting members of the International Subcommission on Cam- chagnostus atavus (base of the P.
    [Show full text]
  • New Evolutionary and Ecological Advances in Deciphering the Cambrian Explosion of Animal Life
    Journal of Paleontology, 92(1), 2018, p. 1–2 Copyright © 2018, The Paleontological Society 0022-3360/18/0088-0906 doi: 10.1017/jpa.2017.140 New evolutionary and ecological advances in deciphering the Cambrian explosion of animal life Zhifei Zhang1 and Glenn A. Brock2 1Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’an, 710069, China 〈[email protected]〉 2Department of Biological Sciences and Marine Research Centre, Macquarie University, Sydney, NSW, 2109, Australia 〈[email protected]〉 The Cambrian explosion represents the most profound animal the body fossil record of ecdysozoans and deuterostomes is very diversification event in Earth history. This astonishing evolu- poorly known during this time, potentially the result of a distinct tionary milieu produced arthropods with complex compound lack of exceptionally preserved faunas in the Terreneuvian eyes (Paterson et al., 2011), burrowing worms (Mángano and (Fortunian and the unnamed Stage 2). However, this taxonomic Buatois, 2017), and a variety of swift predators that could cap- ‘gap’ has been partially filled with the discovery of exceptionally ture and crush prey with tooth-rimmed jaws (Bicknell and well-preserved stem group organisms in the Kuanchuanpu Paterson, 2017). The origin and evolutionary diversification of Formation (Fortunian Stage, ca. 535 Ma) from Ningqiang County, novel animal body plans led directly to increased ecological southern Shaanxi Province of central China. High diversity and complexity, and the roots of present-day biodiversity can be disparity of soft-bodied cnidarians (see Han et al., 2017b) and traced back to this half-billion-year-old evolutionary crucible.
    [Show full text]
  • Status of the Glass Sponge Reefs in the Georgia Basin Sarah E
    Status of the glass sponge reefs in the Georgia Basin Sarah E. Cook, Kim W. Conway, Brenda Burd To cite this version: Sarah E. Cook, Kim W. Conway, Brenda Burd. Status of the glass sponge reefs in the Georgia Basin. Marine Environmental Research, Elsevier, 2008, 66, 10.1016/j.marenvres.2008.09.002. hal-00563054 HAL Id: hal-00563054 https://hal.archives-ouvertes.fr/hal-00563054 Submitted on 4 Feb 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Status of the glass sponge reefs in the Georgia Basin Sarah E. Cook, Kim W. Conway, Brenda Burd PII: S0141-1136(08)00204-3 DOI: 10.1016/j.marenvres.2008.09.002 Reference: MERE 3286 To appear in: Marine Environmental Research Received Date: 29 October 2007 Revised Date: 28 August 2008 Accepted Date: 2 September 2008 Please cite this article as: Cook, S.E., Conway, K.W., Burd, B., Status of the glass sponge reefs in the Georgia Basin, Marine Environmental Research (2008), doi: 10.1016/j.marenvres.2008.09.002 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]