The Role of Climate in Outbreaks of Larch Casebearer a DISSERTATION
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Larix Decidua Miller Taxonomy Author, Year Miller Synonym Larix Europaea DC; Larix Sudetica Domin; Pinus Larix L
Forest Ecology and Forest Management Group Tree factsheet images at pages 3 and 4 Larix decidua Miller taxonomy author, year Miller synonym Larix europaea DC; Larix sudetica Domin; Pinus larix L. Family Pinaceae Eng. Name European larch, Common larch Dutch name Europese lariks (Boom, 2000) Europese lork (Heukels’ Flora, 2005) subspecies - varieties L. decidua var. polonica (Racib) Ostenf. & Syrach Larsen (syn. L. polonica Racib.) L. decidua var. carpatica Domin (syn. L. carpatica Domin.) hybrids Larix x marschlinsii Coaz (L. decidua x L. kaempferi) (syn. Larix x eurolepis Henry) cultivars, frequently planted - references Earle, C.J. Gymnosperm database www.conifers.org USDA Forest Service www.pfaf.org/database/index.php Westra, J.J. Het geslacht Larix. In Schmidt (ed.). 1987. Ned. Boomsoorten 1 Syllabus vakgroep Bosteelt en Bosecologie, Landbouwuniversiteit Wageningen Plants for a Future Database; www.pfaf.org/index.html morphology crown habit tree, pyramidal max. height (m) Europe: 30-50 The Netherlands: 30 max. dbh (cm) 100-200 oldest tree year 988 AC, tree ring count, Val Malenco, Italy. actual size Europe year …, d(130) 95, h 46, Glenlee Park, Dumfries and Galloway, UK. year …, d(130) 271, h 30, Ulten Valley, Saint Nicholas, Italy. actual size Netherlands year 1844, d…, h …, Schovenhorst, Putten year 1830-1840, d(130) 114, h 17 year 1850-1860, d(130) 115, h 20 year 1860-1870, d(130) 97, h 28 leaf length (cm) 2-4 single leaf petiole (cm) 0 leaf colour upper surface green leaf colour under surface green leaves arrangement alternate flowering March - May flowering plant monoecious flower monosexual flower diameter (cm) ? pollination wind fruit; length cone; 3-4 cm fruit petiole (cm) 0,3 seed; length samara (=winged nut); … cm seed-wing length (cm) weight 1000 seeds (g) 5,0-5,9 seeds ripen October same year seed dispersal wind habitat natural distribution Alps, Central Europe in N.W. -
Boring Beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea Glauca (Moench) Voss) Ecosystems of Alaska
United States Department of Agriculture Effect of Ecosystem Disturbance Forest Service on Diversity of Bark and Wood- Pacific Northwest Research Station Boring Beetles (Coleoptera: Research Paper PNW-RP-546 April 2002 Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea glauca (Moench) Voss) Ecosystems of Alaska Richard A. Werner This publication reports research involving pesticides. It does not contain recommenda- tions for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate state and federal agencies, or both, before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Author Richard A. Werner was a research entomologist (retired), Pacific Northwest Research Station, 8080 NW Ridgewood Drive, Corvallis, OR 97330. He is currently a volunteer at the Pacific Northwest Research Station conducting research for the Long Term Ecological Research Program in Alaska. Abstract Werner, Richard A. 2002. Effect of ecosystem disturbance on diversity of bark and wood-boring beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in white spruce (Picea glauca (Moench) Voss) ecosystems of Alaska. Res. Pap. PNW-RP-546. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 15 p. Fire and timber harvest are the two major disturbances that alter forest ecosystems in interior Alaska. Both types of disturbance provide habitats that attract wood borers and bark beetles the first year after the disturbance, but populations then decrease to levels below those in undisturbed sites. -
Lepidoptera: Tortricidae: Tortricinae) and Evolutionary Correlates of Novel Secondary Sexual Structures
Zootaxa 3729 (1): 001–062 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3729.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:CA0C1355-FF3E-4C67-8F48-544B2166AF2A ZOOTAXA 3729 Phylogeny of the tribe Archipini (Lepidoptera: Tortricidae: Tortricinae) and evolutionary correlates of novel secondary sexual structures JASON J. DOMBROSKIE1,2,3 & FELIX A. H. SPERLING2 1Cornell University, Comstock Hall, Department of Entomology, Ithaca, NY, USA, 14853-2601. E-mail: [email protected] 2Department of Biological Sciences, University of Alberta, Edmonton, Canada, T6G 2E9 3Corresponding author Magnolia Press Auckland, New Zealand Accepted by J. Brown: 2 Sept. 2013; published: 25 Oct. 2013 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 JASON J. DOMBROSKIE & FELIX A. H. SPERLING Phylogeny of the tribe Archipini (Lepidoptera: Tortricidae: Tortricinae) and evolutionary correlates of novel secondary sexual structures (Zootaxa 3729) 62 pp.; 30 cm. 25 Oct. 2013 ISBN 978-1-77557-288-6 (paperback) ISBN 978-1-77557-289-3 (Online edition) FIRST PUBLISHED IN 2013 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2013 Magnolia Press 2 · Zootaxa 3729 (1) © 2013 Magnolia Press DOMBROSKIE & SPERLING Table of contents Abstract . 3 Material and methods . 6 Results . 18 Discussion . 23 Conclusions . 33 Acknowledgements . 33 Literature cited . 34 APPENDIX 1. 38 APPENDIX 2. 44 Additional References for Appendices 1 & 2 . 49 APPENDIX 3. 51 APPENDIX 4. 52 APPENDIX 5. -
The Biodiversity of Flying Coleoptera Associated With
THE BIODIVERSITY OF FLYING COLEOPTERA ASSOCIATED WITH INTEGRATED PEST MANAGEMENT OF THE DOUGLAS-FIR BEETLE (Dendroctonus pseudotsugae Hopkins) IN INTERIOR DOUGLAS-FIR (Pseudotsuga menziesii Franco). By Susanna Lynn Carson B. Sc., The University of Victoria, 1994 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming To t(p^-feguired standard THE UNIVERSITY OF BRITISH COLUMBIA 2002 © Susanna Lynn Carson, 2002 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. 1 further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) Abstract Increasing forest management resulting from bark beetle attack in British Columbia's forests has created a need to assess the impact of single species management on local insect biodiversity. In the Fort St James Forest District, in central British Columbia, Douglas-fir (Pseudotsuga menziesii Franco) (Fd) grows at the northern limit of its North American range. At the district level the species is rare (representing 1% of timber stands), and in the early 1990's growing populations of the Douglas-fir beetle (Dendroctonus pseudotsuage Hopkins) threatened the loss of all mature Douglas-fir habitat in the district. -
Insectes, Maladies Et Feux Dans Les Forêts Québécoises 2008
2008 Insectes, maladies et feux dans les forêts québécoises 2008 Insectes, maladies et feux dans les forêts québécoises REMERCIEMENTS Les auteurs remercient les 16 techniciens du ministère des Ressources naturelles et de la Faune qui travaillent en protection des forêts dans les diverses régions administratives du Québec ainsi que le personnel de la Direction de l’environnement et de la protection des forêts, pour leur contribution à la préparation de ce rapport annuel. RÉALISATION Ministère des Ressources naturelles et de la Faune Direction de l’environnement et de la protection des forêts Service des relevés et des diagnostics 2700, rue Einstein, local D 2.370a Québec (Québec) G1P 3W8 Téléphone : 418 643-9679 Télécopieur : 418 643-0381 Courriel : [email protected] Rédaction Yves Boilard, Martin Bonneau, Réjean Dostie, Claudine Dussault, Julie Fortin, Louise Innes, Chantal Lachance, Lucie Marchand, Louis Morneau, Nicolas Nadeau-Thibodeau, Martin Prémont, Guy Rhéaume et Solange Simard Cartographie Louis Deschamps, Sylvie Jean et Jacquelin Martel Infographie Sylvie Jean Secrétariat Claudyne Fortin Révision linguistique Anne Veilleux Révision scientifique Michel Huot DIFFUSION Cette publication, conçue pour une impression recto-verso, est accessible en ligne uniquement à l’adresse : www.mrnf.gouv.qc.ca/publications/forets/fimaq/insectes/bilan2008.pdf NOTE La consultation en couleurs de ce document est recommandée pour mieux apprécier les cartes, les tableaux et les photographies. PAGE COUVERTURE De haut en bas : Pupe de la tordeuse des -
Choristoneura Fumiferana) Group on an Isolated Forest Island Lisa M
Life-history traits maintain the genomic integrity of sympatric species of the spruce budworm (Choristoneura fumiferana) group on an isolated forest island Lisa M. Lumley & Felix A. H. Sperling Department of Biological Sciences, CW 405 Biological Sciences Centre, University of Alberta, Edmonton, AB T6G 2E9, Canada Keywords Abstract Cypress Hills, Choristoneura lambertiana, Choristoneura occidentalis, hybridization, Identification of widespread species collected from islands can be challenging due to integrative taxonomy, phenology, the potential for local ecological and phenotypic divergence in isolated populations. pheromones, speciation, species delimitation. We sought to determine how many species of the spruce budworm (Choristoneura fumiferana) complex reside in Cypress Hills, an isolated remnant coniferous forest Correspondence in western Canada. We integrated data on behavior, ecology, morphology, mito- Lisa M. Lumley, Laurentian Forestry Centre, chondrial DNA, and simple sequence repeats, comparing Cypress Hills populations Canadian Forest Service, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Stn. to those from other regions of North America to determine which species they Ste. Foy, Quebec, QC G1V 4C7, Canada. resembled most. We identified C. fumiferana, C. occidentalis, C. lambertiana,and Tel: +01 (418) 648-7149; hybrid forms in Cypress Hills. Adult flight phenology and pheromone attraction Fax: +01 (418) 648-5849; were identified as key life-history traits involved in maintaining the genomic in- E-mail: [email protected] tegrity of species. Our study highlights the importance of extensive sampling of both specimens and a variety of characters for understanding species boundaries in Received: 12 May 2011; Revised: 27 June biodiversity research. 2011; Accepted: 28 June 2011. -
An Annotated List of the Lepidoptera of Alberta, Canada
A peer-reviewed open-access journal ZooKeys 38: 1–549 (2010) Annotated list of the Lepidoptera of Alberta, Canada 1 doi: 10.3897/zookeys.38.383 MONOGRAPH www.pensoftonline.net/zookeys Launched to accelerate biodiversity research An annotated list of the Lepidoptera of Alberta, Canada Gregory R. Pohl1, Gary G. Anweiler2, B. Christian Schmidt3, Norbert G. Kondla4 1 Editor-in-chief, co-author of introduction, and author of micromoths portions. Natural Resources Canada, Northern Forestry Centre, 5320 - 122 St., Edmonton, Alberta, Canada T6H 3S5 2 Co-author of macromoths portions. University of Alberta, E.H. Strickland Entomological Museum, Department of Biological Sciences, Edmonton, Alberta, Canada T6G 2E3 3 Co-author of introduction and macromoths portions. Canadian Food Inspection Agency, Canadian National Collection of Insects, Arachnids and Nematodes, K.W. Neatby Bldg., 960 Carling Ave., Ottawa, Ontario, Canada K1A 0C6 4 Author of butterfl ies portions. 242-6220 – 17 Ave. SE, Calgary, Alberta, Canada T2A 0W6 Corresponding authors: Gregory R. Pohl ([email protected]), Gary G. Anweiler ([email protected]), B. Christian Schmidt ([email protected]), Norbert G. Kondla ([email protected]) Academic editor: Donald Lafontaine | Received 11 January 2010 | Accepted 7 February 2010 | Published 5 March 2010 Citation: Pohl GR, Anweiler GG, Schmidt BC, Kondla NG (2010) An annotated list of the Lepidoptera of Alberta, Canada. ZooKeys 38: 1–549. doi: 10.3897/zookeys.38.383 Abstract Th is checklist documents the 2367 Lepidoptera species reported to occur in the province of Alberta, Can- ada, based on examination of the major public insect collections in Alberta and the Canadian National Collection of Insects, Arachnids and Nematodes. -
DRAFT***Literature Syntheses***DRAFT
***DRAFT*** This document is the review version of a manuscript to be published by the USDA Forest Service, Rocky Mountain Research Station as a General Technical Report. Readers are encouraged to send comments to the authors. Hazardous Fuels Reduction Treatments in the Northern Rockies: An Annotated Bibliography 10/5/04 Sharon A. Ritter1, Elaine Kennedy Sutherland2, Ward McCaughey3, and Jan Scher4 1Research/Management Coordinator, Bitterroot National Forest, Hamilton, MT, [email protected] 2Research Biologist, Rocky Mountain Research Station, Missoula, MT, [email protected] 3Jan Scher, (formerly) contractor, METI corporation. Table of Contents Introduction..................................................................................................................................... 1 Literature Reviews.......................................................................................................................... 4 Air Quality .................................................................................................................................... 41 Economics..................................................................................................................................... 42 Fire Behavior and Fuel Reduction ................................................................................................ 48 Fisheries ........................................................................................................................................ 64 Hydrology .................................................................................................................................... -
Larch Casebearer by Lee Pederson Coleophora Laricella (Hubner) US Forest Service (Lepidoptera: Coleophoridae)
Forest Health Protection and State Forestry Organizations January 2006 8.1 Management Guide for WEB July 2010 Larch Casebearer By Lee Pederson Coleophora laricella (Hubner) US Forest Service (Lepidoptera: Coleophoridae) First reported in northern Idaho Host: in 1957, the larch casebearer is Western the most important needle larch Topics miner found in our Regions. Damage 1 Life History 1 Damage Identification 1 Management 2 Larch casebearer larvae can Continued heavy defoliation causes completely defoliate new foliage in appreciable radial growth loss, and Other Reading 3 early spring, especially during its after 5 years branch dieback begins, Field Guide fourth instar. Defoliated trees can and trees gradually die. put out another flush of needles but Management summer larvae may consume them. Guide Index Life History Larch casebearers overwinter as Upon hatching, a larva bores through third instars inside cases attached to the eggshell directly into the needle. Key Points spurs (buds). Larvae start feeding by It mines the needle for about 2 The larvae can May as new needles appear. A larva months, and then lines a portion of it completely fastens its case to a needle with silk with silk. This case is chewed free defoliate new and then mines the interior as far as from the rest of the needle. Both foliage in early it can reach without actually leaving ends of the case are open and the spring. the case. After going through the larva feeds from one end of it from Damage fourth instar, larvae pupate inside mid-August to late October. Larvae identification is their cases in late May. -
UNIVERSITY of CALIFORNIA RIVERSIDE Transcriptome
UNIVERSITY OF CALIFORNIA RIVERSIDE Transcriptome Analyses of Ascovirus Genome Expression in Lepidopteran Larvae and Host Responses A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology by Heba Ahmed Hamed Mohamed Zaghloul June 2018 Dissertation Committee: Dr. Brian A. Federici, Chairperson Dr. Ayala L.N. Rao Dr. Adler R. Dillman Copyright by Heba Ahmed Hamed Mohamed Zaghloul 2018 The Dissertation of Heba Ahmed Hamed Mohamed Zaghloul is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENT I would like to thank my major professor Dr. Brian Federici for his guidance and support over the past five years. I have learned much from his research experience and wisdom. He constantly encouraged me during my graduate studies, research, and this dissertation. My discussions with him were always fruitful. His wide knowledge in different areas of science is impressive. I will always be proud that I have been one of his students. Also, I would like to extend my thanks to my dissertation committee members, Dr. Ayala L. N. Rao and Dr. Adler R. Dillman. Your guidance, discussion and feedback were of great importance to my completion of this work. Moreover, I would like to thank present and previous Federici lab members for their help and guidance with mastering different methods and techniques as I carried out my research. I especially thank Robert Hice and Peter Arensburger for their continuous support, guidance, discussions and feedback over the years that helped me develop several skills. In addition, I extend my gratitude to Dennis Bideshi, Hyun-Woo Park and Stephanie Nanneman. -
Minnesota's Top 124 Terrestrial Invasive Plants and Pests
Photo by RichardhdWebbWebb 0LQQHVRWD V7RS 7HUUHVWULDO,QYDVLYH 3ODQWVDQG3HVWV 3ULRULWLHVIRU5HVHDUFK Sciencebased solutions to protect Minnesota’s prairies, forests, wetlands, and agricultural resources Contents I. Introduction .................................................................................................................................. 1 II. Prioritization Panel members ....................................................................................................... 4 III. Seventeen criteria, and their relative importance, to assess the threat a terrestrial invasive species poses to Minnesota ...................................................................................................................... 5 IV. Prioritized list of terrestrial invasive insects ................................................................................. 6 V. Prioritized list of terrestrial invasive plant pathogens .................................................................. 7 VI. Prioritized list of plants (weeds) ................................................................................................... 8 VII. Terrestrial invasive insects (alphabetically by common name): criteria ratings to determine threat to Minnesota. .................................................................................................................................... 9 VIII. Terrestrial invasive pathogens (alphabetically by disease among bacteria, fungi, nematodes, oomycetes, parasitic plants, and viruses): criteria ratings -
United States Department of Agriculture Forest Service Alaska
United States Department of Agriculture Forest Service Alaska Region State and Private Forestry Forest Health Protection 2009 Cover photos clockwise from top: Spruce bark beetle damage (inset spruce bark beetle) Chicken of the woods conks Hemlock fluting and wood decay Wood wasp 2 Insects and Diseases of Alaskan Forests Edward Holsten, U.S. Forest Service Entomologist (retired) Paul Hennon, U.S. Forest Service Pathologist Lori Trummer, U.S. Forest Service Pathologist James Kruse, U.S. Forest Service Entomologist Mark Schultz, U.S. Forest Service Entomologist John Lundquist, U.S. Forest Service Entomologist Publication Number R10–TP–140 3 Acknowledgments The authors thank Tom Laurent, Richard Werner, and John Hard, retired U.S. Forest Service Pathologist and Entomologists, respectively, who were instrumental in developing previous editions of this handbook. We thank Courtney Danley, biological technician, U.S. Forest Service Juneau, for her efforts in obtaining new insect photos. We also appreciate the technical assistance of Ken Zogas, biological technician, U.S. Forest Service Anchorage, and Roger Burnside, Entomologist, Division of Forestry, State of Alaska, as well as the enthusiasm and professionalism of the Alaska Cooperative Extension IPM Technicians. This handbook would not have been possible without the hard work and dedication of David Allen, graphic designer, Public Affairs Office, Chugach National Forest, Anchorage, Alaska. Photographs and other illustrations were obtained, as credited in the Appendix, from individuals and from the files of the State of Alaska, Canadian Forestry Service, the U.S. Forest Service, and other sources as cited. Preface The U.S. Forest Service publication, Identification of Destructive Alaska Forest Insects (91), dealt mainly with the damaging forest insects of Southeastern Alaska.