Evolutionary Paleoecology of Ediacaran Benthic Marine Animals

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Paleoecology of Ediacaran Benthic Marine Animals Chapter 4 Evolutionary Paleoecology of Ediacaran Benthic Marine Animals DAVID J. BOTTJER and MATTHEW E. CLAPHAM Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089- 0740, USA. 1. Introduction .................................................... 91 2. A Mat-Based World.............................................. 92 3. Nature of the Data............................................... 95 3.1. Geology and Paleoenvironments................................. 95 3.2. Lagerstätten................................................ 96 3.3. Biomarkers................................................ 97 3.4. Molecular Clock Analyses..................................... 97 4. Evolutionary Paleoecology......................................... 97 4.1. Doushantuo Fauna (?600-570 Mya) .............................. 99 4.2. Ediacara Avalon Assemblage (575-560 Mya) ....................... 101 4.3. Ediacara White Sea Assemblage (560-550 Mya) ..................... 102 4.4. Ediacara Nama Assemblage (549-542 Mya) ........................ 105 5. Discussion..................................................... 108 Acknowledgements ................................................. 110 References....................................................... 110 1. INTRODUCTION Paleobiological study of the Phanerozoic and the Precambrian largely developed as separate cultures during the 20th century. This was primarily because the presence of common body fossils with mineralized skeletons Neoproterozoic Geobiology and Paleobiology, edited by Shuhai Xiao and Alan Jay Kaufman, © 2006 Springer. Printed in The Netherlands. 91 92 D. J. BOTTJER and M. E. CLAPHAM typical of the Phanerozoic allowed certain types of science, such as biostratigraphy and benthic paleoecology, to be done that was not feasible in the Precambrian. However, as fossils have increasingly been documented from the late Neoproterozoic, approaches more typical of the Phanerozoic have become possible, leading recently to the definition of the Ediacaran Period as a formal name for the terminal Neoproterozoic interval (Knoll et al., 2004). This time period is bounded below by the Marinoan Snowball Earth glaciation, and above by the Cambrian, and is characterized by diverse suites of largely soft-bodied fossils, exemplified by the Doushantuo and Ediacara biotas. This push back from the Phanerozoic has also allowed for the first time studies on the evolutionary paleoecology of Ediacaran benthic assemblages (e.g., Clapham and Narbonne, 2002; Droser et al., 2006). In particular this is because we are beginning to understand the biological affinities of these fossils better (e.g., Fedonkin and Waggoner, 1997; Seilacher, 1999; Narbonne, 2004), although differences of opinion remain (Xiao et al., 2000; Peterson et al., 2003; Seilacher et al., 2003; Bengtson and Budd, 2004; Chen et al., 2004; Grazhdankin, 2004). This promises to be a growing field of research in the future, as we begin to apply some of the approaches developed in the Phanerozoic (e.g., Brenchley and Harper, 1998; Allmon and Bottjer, 2001) to the record of animal life in the Ediacaran. This contribution, which focuses on ecological aspects of Ediacaran benthic marine animal life, synthesizes the early stages of a research program that will eventually integrate the two worlds of Precambrian and Phanerozoic evolutionary paleoecology. 2. A MAT-BASED WORLD Much Phanerozoic benthic paleoecology has focused on the effects of bioturbation and the nature of substrates. One of the biggest differences between Phanerozoic and Proterozoic benthic ecosystems is that while vertical bioturbation and all its effects upon seafloor characteristics are nearly ubiquitous in the Phanerozoic, only limited horizontal bioturbation was present in the Ediacaran (Seilacher, 1999; Bottjer et al., 2000). Thus, a distinguishing feature of the Ediacaran is that it was a time where seafloors were commonly dominated by microbial mats (Gehling, 1999; Hagadorn and Bottjer, 1999; Wood et al., 2003; Droser et al., 2005; Gehling et al., 2005; Dornbos et al., 2006; Droser et al., 2006). The most typical expression of this transition is the widespread occurrence of stromatolites in carbonates during the Proterozoic and their decline at the end of the Precambrian, likely due to the emergence of animals (Awramik, 1971). A recent reanalysis of Evolutionary Paleoecology of Ediacaran Benthic Marine Animals 93 Awramik’s database confirms that the greatest decline in stromatolite form diversity is indeed in the Ediacaran, culminating in the Early Cambrian (Olcott et al., 2002). Although other factors were also involved (Grotzinger and Knoll, 1999), since this was a time of appearance and radiation of animal groups, it implies that the stromatolite form diversity decline was strongly affected by increasing development of passive and/or active interactions between evolving animals and microbial sedimentary structures. Some part of this was likely caused by the increasing disruption due to more intense bioturbation. Recent research has shown that there is also substantial evidence for the common presence of seafloor microbial mats in siliciclastic settings during the Neoproterozoic (Hagadorn and Bottjer, 1997; Gehling, 1999; Hagadorn and Bottjer, 1999). Despite their widespread occurrence in Proterozoic carbonates, mat structures in siliciclastics are less dramatic than the stromatolites found in carbonates, so they have received less attention. Their subdued appearance is because siliciclastic settings are non-mineral- precipitating seafloor environments, so vertical dimensions of such structures are commonly on the millimeter scale. Microbially-mediated structures in siliciclastic settings have been given intriguing names, reflecting the lack of understanding, until recently, of their origin. Thus, we have Ediacaran wrinkle structures (Fig. 1 A-C) and “elephant skin” (Fig. 1D) from a variety of depositional environments. Much of what we know about the distribution of mats in Ediacaran strata is from the presence of trace fossils, such as the scratch-like trace Radulichnus that can be found associated with Kimberella (Fig. 1D), a possible stem-group mollusc that is found in Ediacaran-aged deposits from both Russia and Australia. These widespread structures are interpreted as the feeding traces produced by Kimberella as it scraped the mat-covered seafloor. Other diffuse impressions show movement of Yorgia and Dickinsonia, and possibly also their feeding activities, on mat-covered sediment (Fedonkin, 2003; Gehling et al., 2005). Interpretations of the taphonomy of the Ediacara biota by Gehling (1999) also demonstrate the typical occurrence of microbial mats on siliciclastic Ediacaran seafloors. For example, Ediacaran bedding surfaces at Mistaken Point, Newfoundland, are commonly covered by a red coating of limonitic “rust,” implying an enrichment by organic matter and hence the presence of a mat. Such features are also found in Lower Cambrian marine facies which contain bedding planes representing seafloors once extensively covered by microbial mats (Dornbos et al., 2004). Some relatively unweathered Mistaken Point outcrops of bedding planes show the presence of pyrite, indicating that the red “rust” is oxidized from pyrite, which likely formed as a decomposition product of the mat organic matter (Gehling et al., 2005). 94 D. J. BOTTJER and M. E. CLAPHAM The presence of crinkly carbonaceous laminae within siltstone intervals at Mistaken Point confirms the widespread distribution of microbial mats (Wood et al., 2003). In addition, the abundance of discoidal fossils is likely an indicator that the disc was a holdfast structure embedded in the seafloor below a mat-bound surface (Seilacher, 1999; Wood et al., 2003). Strata in which the Doushantuo biota of southwest China are found have not been studied extensively for the presence of microbial structures, but preliminary investigations indicate the presence of microbial mats on Doushantuo seafloors (Dornbos et al., 2006). Despite the increasing presence of animals through the Ediacaran, the common presence of microbial mats strongly influenced benthic organism ecology, and hence their morphology as well as taphonomy (Gehling, 1999; Seilacher, 1999). Figure 1. Evidence for mat-dominated Neoproterozoic benthic ecosystems. (A) Wrinkle structures preserved on the surface of wave ripples, Rawnsley Quartzite, Ediacara Hills, South Australia. From Selden and Nudds (2004). (B) Wrinkle structures in deep-water turbiditic siltstone, Drook Formation, Mistaken Point, Newfoundland. Coin is 19 mm diameter. From Margaret Fraiser. (C) Wrinkle structures from the late Ediacaran Wyman Formation, Silver Peak Range, Nevada. Scale bar 1 cm. From Hagadorn and Bottjer (1999). (D) Kimberella fossil and associated Radulichnus grazing trace on microbial “elephant skin” (arrow) bedding surface, White Sea, Russia. Scale bar divisions are 1 cm. From Fedonkin (2003). Evolutionary Paleoecology of Ediacaran Benthic Marine Animals 95 3. NATURE OF THE DATA A broad variety of data from both earth and biological sciences is incorporated in the analysis of Ediacaran paleobiology and evolutionary paleoecology. The habitats of Ediacaran animals can be reconstructed through geological analysis of depositional environments. The fossils themselves are almost exclusively found in Lagerstätten where soft tissues are preserved as molds and casts, although the presence of animals in ancient environments can sometimes be inferred through studies of preserved
Recommended publications
  • Ediacaran Developmental Biology
    Dunn, F., Liu, A., & Donoghue, P. (2017). Ediacaran developmental biology. Biological Reviews. https://doi.org/10.1111/brv.12379 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/brv.12379 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12379 Ediacaran developmental biology Frances S. Dunn1,2,∗, Alexander G. Liu1,† and Philip C. J. Donoghue1 1School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K. 2British Geological Survey, Nicker Hill, Keyworth, Nottingham, NG12 5GG, U.K. ABSTRACT Rocks of the Ediacaran System (635–541 Ma) preserve fossil evidence of some of the earliest complex macroscopic organisms, many of which have been interpreted as animals. However, the unusual morphologies of some of these organisms have made it difficult to resolve their biological relationships to modern metazoan groups. Alternative competing phylogenetic interpretations have been proposed for Ediacaran taxa, including algae, fungi, lichens, rhizoid protists, and even an extinct higher-order group (Vendobionta). If a metazoan affinity can be demonstrated for these organisms, as advocated by many researchers, they could prove informative in debates concerning the evolution of the metazoan body axis, the making and breaking of axial symmetries, and the appearance of a metameric body plan.
    [Show full text]
  • Early Fossil Record of Euarthropoda and the Cambrian Explosion
    PERSPECTIVE Early fossil record of Euarthropoda and the Cambrian Explosion PERSPECTIVE Allison C. Daleya,b,c,1, Jonathan B. Antcliffea,b,c, Harriet B. Dragea,b,c, and Stephen Patesa,b Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved April 6, 2018 (received for review December 20, 2017) Euarthropoda is one of the best-preserved fossil animal groups and has been the most diverse animal phylum for over 500 million years. Fossil Konservat-Lagerstätten, such as Burgess Shale-type deposits (BSTs), show the evolution of the euarthropod stem lineage during the Cambrian from 518 million years ago (Ma). The stem lineage includes nonbiomineralized groups, such as Radiodonta (e.g., Anomalocaris) that provide insight into the step-by-step construction of euarthropod morphology, including the exo- skeleton, biramous limbs, segmentation, and cephalic structures. Trilobites are crown group euarthropods that appear in the fossil record at 521 Ma, before the stem lineage fossils, implying a ghost lineage that needs to be constrained. These constraints come from the trace fossil record, which show the first evi- dence for total group Euarthropoda (e.g., Cruziana, Rusophycus) at around 537 Ma. A deep Precambrian root to the euarthropod evolutionary lineage is disproven by a comparison of Ediacaran and Cambrian lagerstätten. BSTs from the latest Ediacaran Period (e.g., Miaohe biota, 550 Ma) are abundantly fossilif- erous with algae but completely lack animals, which are also missing from other Ediacaran windows, such as phosphate deposits (e.g., Doushantuo, 560 Ma). This constrains the appearance of the euarthropod stem lineage to no older than 550 Ma.
    [Show full text]
  • The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
    Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present.
    [Show full text]
  • Ediacaran) of Earth – Nature’S Experiments
    The Early Animals (Ediacaran) of Earth – Nature’s Experiments Donald Baumgartner Medical Entomologist, Biologist, and Fossil Enthusiast Presentation before Chicago Rocks and Mineral Society May 10, 2014 Illinois Famous for Pennsylvanian Fossils 3 In the Beginning: The Big Bang . Earth formed 4.6 billion years ago Fossil Record Order 95% of higher taxa: Random plant divisions domains & kingdoms Cambrian Atdabanian Fauna Vendian Tommotian Fauna Ediacaran Fauna protists Proterozoic algae McConnell (Baptist)College Pre C - Fossil Order Archaean bacteria Source: Truett Kurt Wise The First Cells . 3.8 billion years ago, oxygen levels in atmosphere and seas were low • Early prokaryotic cells probably were anaerobic • Stromatolites . Divergence separated bacteria from ancestors of archaeans and eukaryotes Stromatolites Dominated the Earth Stromatolites of cyanobacteria ruled the Earth from 3.8 b.y. to 600 m. [2.5 b.y.]. Believed that Earth glaciations are correlated with great demise of stromatolites world-wide. 8 The Oxygen Atmosphere . Cyanobacteria evolved an oxygen-releasing, noncyclic pathway of photosynthesis • Changed Earth’s atmosphere . Increased oxygen favored aerobic respiration Early Multi-Cellular Life Was Born Eosphaera & Kakabekia at 2 b.y in Canada Gunflint Chert 11 Earliest Multi-Cellular Metazoan Life (1) Alga Eukaryote Grypania of MI at 1.85 b.y. MI fossil outcrop 12 Earliest Multi-Cellular Metazoan Life (2) Beads Horodyskia of MT and Aust. at 1.5 b.y. thought to be algae 13 Source: Fedonkin et al. 2007 Rise of Animals Tappania Fungus at 1.5 b.y Described now from China, Russia, Canada, India, & Australia 14 Earliest Multi-Cellular Metazoan Animals (3) Worm-like Parmia of N.E.
    [Show full text]
  • Integrative and Comparative Biology Integrative and Comparative Biology, Volume 58, Number 4, Pp
    Integrative and Comparative Biology Integrative and Comparative Biology, volume 58, number 4, pp. 605–622 doi:10.1093/icb/icy088 Society for Integrative and Comparative Biology SYMPOSIUM INTRODUCTION The Temporal and Environmental Context of Early Animal Evolution: Considering All the Ingredients of an “Explosion” Downloaded from https://academic.oup.com/icb/article-abstract/58/4/605/5056706 by Stanford Medical Center user on 15 October 2018 Erik A. Sperling1 and Richard G. Stockey Department of Geological Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, CA 94305, USA From the symposium “From Small and Squishy to Big and Armored: Genomic, Ecological and Paleontological Insights into the Early Evolution of Animals” presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2018 at San Francisco, California. 1E-mail: [email protected] Synopsis Animals originated and evolved during a unique time in Earth history—the Neoproterozoic Era. This paper aims to discuss (1) when landmark events in early animal evolution occurred, and (2) the environmental context of these evolutionary milestones, and how such factors may have affected ecosystems and body plans. With respect to timing, molecular clock studies—utilizing a diversity of methodologies—agree that animal multicellularity had arisen by 800 million years ago (Ma) (Tonian period), the bilaterian body plan by 650 Ma (Cryogenian), and divergences between sister phyla occurred 560–540 Ma (late Ediacaran). Most purported Tonian and Cryogenian animal body fossils are unlikely to be correctly identified, but independent support for the presence of pre-Ediacaran animals is recorded by organic geochemical biomarkers produced by demosponges.
    [Show full text]
  • Gehling-Ediacaran Publications 2015 Palaeo Down Under2
    Gehling-Ediacaran Publications 2015 1. Droser, M.L. and Gehling, J.G. 2015. The advent of animals: the view from the Ediacaran: Proceedings of the National Academy of Sciences 112, 4865-4870. 2. Evans, S.D., Droser, M.L. and Gehling, J.G. 2015. Dickinsonia lift off: Evidence of current derived morphologies. Palaeogeography Palaeoclimatology Palaeoecology ; DOI: 10.1016/j.palaeo.2015.02.006. 3. Hall, C.M.S., Droser, M.L., Gehling, J.G., Dzaugis. M.E. 2015. Paleoecology of the enigmatic Tribrachidium: New data from the Ediacaran of South Australia. Precambrian Research 269:183-194. 4. Gold, D. A., Runnegar, B., Gehling, J.G., and Jacobs, D.K. 2015. Ancestral state reconstruction of ontogeny supports a bilaterian affinity for Dickinsonia. Evolution and Development 17 (6), 315–397. 5. Tarhan, L.G., Droser, M.L. and Gehling, J.G. 2015. Taphonomy and morphology of the Ediacara form genus Aspidella. Precambrian Research 257:124-136. 6. Tarhan, L.G., Droser, M.L. and Gehling, J.G. 2015. Depositional and preservational environments of the Ediacara Member, Rawnsley Quartzite (South Australia): Assessment of paleoenvironmental proxies and the timing of ‘ferruginization’. Palaeogeography, Palaeclimatology, Paleoecology in press. Palaeo Down Under2 — July 2016 Association of Australasian Palaeontologists (AAP) is organizing a Palaeo Down Under 2 conference at the University of Adelaide in South Australia from July 10-15. The conference is preceded by a Field Excursion to key Cambrian localities of Kangaroo Island, the Fleurieu Peninsula and the Cambrian and Ediacaran of the Flinders Ranges from July 3-9. Ediacara Research — South Australia 2015 Ediacara research in South Australia has continued with further excavations at the National Heritage Listed Ediacara Fossil Site at Nilpena, a new site in the northern Flinders Ranges of South Australia, and for the first time, at the historic discovery site in the Ediacara Conservation Park.
    [Show full text]
  • Contributions to the Neoproterozoic Geobiology
    Contributions to the Neoproterozoic Geobiology Bing Shen Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Department of Geosciences Shuhai Xiao (Chair) Robert Bodnar Michal Kowalewski J. Fred Read November 29, 2007 Blacksburg, Virginia Key words: Neoproterozoic, Ediacaran, Ediacara fossils, China, Disparity, Sulfur isotope, Carbon isotope Copyright 2007, Bing Shen Contributions to the Neoproterozoic Geobiology Bing Shen Abstract This thesis makes several contributions to improve our understanding of the Neoproterozoic Paleobiology. In chapter 1, a comprehensive quantitative analysis of the Ediacara fossils indicates that the oldest Ediacara assemblage—the Avalon assemblage— already encompassed the full range of Ediacara morphospace. A comparable morphospace range was occupied by the subsequent White Sea and Nama assemblages, although it was populated differently. In contrast, taxonomic richness increased in the White Sea assemblage and declined in the Nama assemblage. The Avalon morphospace expansion mirrors the Cambrian explosion, and both may reflect similar underlying mechanisms. Chapter 2 describes problematic macrofossils collected from the Neoproterozoic slate of the upper Zhengmuguan Formation in North China and sandstone of the Zhoujieshan Formation in Chaidam. Some of these fossils were previously interpreted as animal traces. Our study of these fossils recognizes four genera and five species. None of these taxa can be interpreted as animal traces. Instead, they are problematic body fossils of unresolved phylogenetic affinities. Chapter 3 reports stable isotopes of the Zhamoketi cap dolostone atop the Tereeken diamictite in the Quruqtagh area, eastern Chinese Tianshan. Our new data indicate that carbonate associated sulfate (CAS) abundance decreases rapidly in the basal 34 cap dolostone and δ SCAS composition varies between +9‰ and +15‰ in the lower 2.5 34 m.
    [Show full text]
  • Geobiological Events in the Ediacaran Period
    Geobiological Events in the Ediacaran Period Shuhai Xiao Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA NSF; NASA; PRF; NSFC; Virginia Tech Geobiology Group; CAS; UNLV; UCR; ASU; UMD; Amherst; Subcommission of Neoproterozoic Stratigraphy; 1 Goals To review biological (e.g., acanthomorphic acritarchs; animals; rangeomorphs; biomineralizing animals), chemical (e.g., carbon and sulfur isotopes, oxygenation of deep oceans), and climatic (e.g., glaciations) events in the Ediacaran Period; To discuss integration and future directions in Ediacaran geobiology; 2 Knoll and Walter, 1992 • Acanthomorphic acritarchs in early and Ediacara fauna in late Ediacaran Period; • Strong carbon isotope variations; • Varanger-Laplandian glaciation; • What has happened since 1992? 3 Age Constraints: South China (538.2±1.5 Ma) 541 Ma Cambrian Dengying Ediacaran Sinian 551.1±0.7 Ma Doushantuo 632.5±0.5 Ma 635 Ma 635.2±0.6 Ma Nantuo (Tillite) 636 ± 5Ma Cryogenian Nanhuan 654 ± 4Ma Datangpo 663±4 Ma Neoproterozoic Neoproterozoic Jiangkou Group Banxi Group 725±10 Ma Tonian Qingbaikouan 1000 Ma • South China radiometric ages: Condon et al., 2005; Hoffmann et al., 2004; Zhou et al., 2004; Bowring et al., 2007; S. Zhang et al., 2008; Q. Zhang et al., 2008; • Additional ages from Nama Group (Namibia), Conception Group (Newfoundland), and Vendian (White Sea); 4 The Ediacaran Period Ediacara fossils Cambrian 545 Ma Nama assemblage 555 Ma White Sea assemblage 565 Ma Avalon assemblage 575 Ma 585 Ma Doushantuo biota 595 Ma 605 Ma Ediacaran Period 615 Ma
    [Show full text]
  • Cambrian Small Bilaterian Fossils from 40 to 55 Million Years Before
    Supporting Online Material Systematic Paleontology Genus Vernanimalcula gen. et sp. nov. Etymology: Generic name denotes (from Latin) small spring animal (i.e., after Snowball Earth winter). Diagnosis: Small triploblastic bilaterian animal (about 120-180 microns in length), with an oval-shaped dorsal view. The alimentary canal is differentiated into a pharynx, which is muscular and multi-layered (three, possibly four single cell layers), running anterior- posterior with a collared mouth situating ventrally near anterior margin of the body. The pharynx opens into an expanded stomach/intestine, which terminates at the posterior end with an anus. Alimentary canal is flanked by paired coeloms, which are bounded with single-cell mesodermal layers. Externally the mesodermal layers are covered with ectoderm layers and internally they abut the endodermal wall of the alimentary tract. The body is convex dorsally and there are at least three pits on each side of the outer surface. These pits are floored with small cells. The ventral surface is interpreted to be flat. Type species: Vernanimalcula guizhouena gen. et sp. nov. (Fig. 1 A; Table 1). Etymology: Specific name refers to Guizhou Province, where the fossils came from. Holotype: The holotype represents a complete animal preserved; the section runs nearly parallel to the ventral surface of the animal. Material: Five specimens, all of which are nearly complete. Specimen numbers are given in Table 1. Diagnosis: Same as the generic diagnosis. This and the other specimens described are housed at the Early Life Research Center in Chengjiang, Yunnan, China. Locality and Stratigraphy: Badoushan, Weng'an County, Central Guizhou; from ~2-m- thick basal black bituminous phosphorite layer of the Precambrian lower Weng'an Phosphate Member, Doushantuo Formation.
    [Show full text]
  • Mcmenamin FM
    The Garden of Ediacara • Frontispiece: The Nama Group, Aus, Namibia, August 9, 1993. From left to right, A. Seilacher, E. Seilacher, P. Seilacher, M. McMenamin, H. Luginsland, and F. Pflüger. Photograph by C. K. Brain. The Garden of Ediacara • Discovering the First Complex Life Mark A. S. McMenamin C Columbia University Press New York C Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1998 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data McMenamin, Mark A. The garden of Ediacara : discovering the first complex life / Mark A. S. McMenamin. p. cm. Includes bibliographical references and index. ISBN 0-231-10558-4 (cloth) — ISBN 0–231–10559–2 (pbk.) 1. Paleontology—Precambrian. 2. Fossils. I. Title. QE724.M364 1998 560'.171—dc21 97-38073 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 9 8 7 6 5 4 3 2 1 p 10 9 8 7 6 5 4 3 2 1 For Gene Foley Desert Rat par excellence and to the memory of Professor Gonzalo Vidal This page intentionally left blank Contents Foreword • ix Preface • xiii Acknowledgments • xv 1. Mystery Fossil 1 2. The Sand Menagerie 11 3. Vermiforma 47 4. The Nama Group 61 5. Back to the Garden 121 6. Cloudina 157 7. Ophrydium 167 8. Reunite Rodinia! 173 9. The Mexican Find: Sonora 1995 189 10. The Lost World 213 11. A Family Tree 225 12. Awareness of Ediacara 239 13. Revenge of the Mole Rats 255 Epilogue: Parallel Evolution • 279 Appendix • 283 Index • 285 This page intentionally left blank Foreword Dorion Sagan Virtually as soon as earth’s crust cools enough to be hospitable to life, we find evidence of life on its surface.
    [Show full text]
  • Radial Symmetry Or Bilateral Symmetry Or "Spherical Symmetry"
    Symmetry in biology is the balanced distribution of duplicate body parts or shapes. The body plans of most multicellular organisms exhibit some form of symmetry, either radial symmetry or bilateral symmetry or "spherical symmetry". A small minority exhibit no symmetry (are asymmetric). In nature and biology, symmetry is approximate. For example, plant leaves, while considered symmetric, will rarely match up exactly when folded in half. Radial symmetry These organisms resemble a pie where several cutting planes produce roughly identical pieces. An organism with radial symmetry exhibits no left or right sides. They have a top and a bottom (dorsal and ventral surface) only. Animals Symmetry is important in the taxonomy of animals; animals with bilateral symmetry are classified in the taxon Bilateria, which is generally accepted to be a clade of the kingdom Animalia. Bilateral symmetry means capable of being split into two equal parts so that one part is a mirror image of the other. The line of symmetry lies dorso-ventrally and anterior-posteriorly. Most radially symmetric animals are symmetrical about an axis extending from the center of the oral surface, which contains the mouth, to the center of the opposite, or aboral, end. This type of symmetry is especially suitable for sessile animals such as the sea anemone, floating animals such as jellyfish, and slow moving organisms such as sea stars (see special forms of radial symmetry). Animals in the phyla cnidaria and echinodermata exhibit radial symmetry (although many sea anemones and some corals exhibit bilateral symmetry defined by a single structure, the siphonoglyph) (see Willmer, 1990).
    [Show full text]
  • Science Journals — AAAS
    RESEARCH EARLY ANIMALS years. For instance, hopanes are the hydrocarbon remains of bacterial hopanepolyols, whereas sat- urated steranes and aromatic steroids are diage- Ancient steroids establish netic products of eukaryotic sterols. The most common sterols of Eukarya possess a cholester- oid, ergosteroid, or stigmasteroid skeleton with the Ediacaran fossil Dickinsonia 27, 28, or 29 carbon atoms, respectively. These C27 to C29 sterols, distinguished by the alkylation as one of the earliest animals patternatpositionC-24inthesterolsidechain, function as membrane modifiers and are widely 1 1 2 3 distributed across extant Eukarya, but their rela- Ilya Bobrovskiy *, Janet M. Hope , Andrey Ivantsov , Benjamin J. Nettersheim , 3,4 1 tive abundances can give clues about the source Christian Hallmann , Jochen J. Brocks * organisms (24). Apart from Dickinsonia (Fig.1B),whichis The enigmatic Ediacara biota (571 million to 541 million years ago) represents the first one of the most recognizable Ediacaran fossils, macroscopic complex organisms in the geological record and may hold the key to our dickinsoniids include Andiva (Fig. 1C and fig. understanding of the origin of animals. Ediacaran macrofossils are as “strange as life on S1), Vendia, Yorgia, and other flattened Edia- another planet” and have evaded taxonomic classification, with interpretations ranging from caran organisms with segmented metameric marine animals or giant single-celled protists to terrestrial lichens. Here, we show that lipid bodies and a median line along the body axes, biomarkers extracted from organically preserved Ediacaran macrofossils unambiguously separating the “segments.” The specimens for clarify their phylogeny. Dickinsonia and its relatives solely produced cholesteroids, a Downloaded from this study were collected from two surfaces in hallmark of animals.
    [Show full text]