November 2014

Total Page:16

File Type:pdf, Size:1020Kb

November 2014 National Aeronautics and Space Administration Volume 56 Number 7 November 2014 ACTE takes flight New flap may validate new technologies By Peter Merlin NASA Armstrong Public Affairs NASA’s green aviation project is one step closer to developing technology that could make future airliners quieter and more fuel- efficient with the successful flight test of a wing surface that can change shape in flight. This past summer researchers replaced an airplane’s conventional aluminum flaps with advanced, shape-changing assemblies that form seamless bendable and twistable surfaces. Flight testing will determine whether flexible trailing- ED14-0338-081 NASA/Ken Ulbrich edge wing flaps are a viable approach Above, for the initial ACTE flight, to improve aerodynamic efficiency the experimental control surfaces were and reduce noise generated during locked at a specified setting. Varied takeoffs and landings. flap settings on subsequent tests will The Adaptive Compliant Trailing demonstrate the capability of the Edge (ACTE) project is a joint flexible surfaces under actual flight effort between NASA and the U.S. conditions. Air Force Research Laboratory (AFRL), using flaps designed At left, flight results will validate and built by FlexSys, Inc. of Ann whether the ACTE flap’s seamless Arbor, Michigan. With AFRL design and advanced lightweight funding through the Air Force’s materials can reduce wing structural Small Business Innovative Research weight, improve fuel economy and program, FlexSys developed a efficiency, and reduce environmental impacts. ACTE, page 2 ED14-0338-016 NASA/Ken Ulbrich www.nasa.gov/ X-Press November 2014 New configuration has first flight By Jay Levine inexpensive remotely or optionally X-Press Editor piloted glider that will be towed aloft NASA has successfully flight- by a transport aircraft. Following tested a prototype twin-fuselage release at about 40,000 feet, the towed glider that could lead to glider would launch a booster rocket rockets being launched from into an optimal trajectory to place pilotless aircraft at high altitudes – its payload into low Earth orbit. a technology application that could The glider was built primarily significantly reduce the cost and with commercial-off-the-shelf improve the efficiency of sending components, but some parts were small satellites into space. The first manufactured by NASA Armstrong’s flights of the one-third-scale twin Fabrication Branch. Assembly was fuselage towed glider took place at accomplished in NASA Armstrong’s NASA Armstrong on Oct. 21. Small Unmanned Aircraft Systems The towed glider is an element Research Lab, or model shop. In of the novel rocket-launching ED14-0159-69 NASA/Tom Tschida January 2014, flights confirmed concept of the Towed Glider that towing and releasing a single- One of NASA Armstrong’s DROID small, unmanned research aircraft tows Air-Launch System, or TGALS. fuselage version of the aircraft by the twin-fuselage towed glider into the blue sky on its first test flight. NASA Armstrong researchers are the DROID tow plane functioned developing the project, which as expected. The recent flights is funded as a part of the Space the first, the glider was towed – is mated with the glider and confirmed the dual-fuselage version Technology Mission Directorate’s behind the DROID, leveled out in ultimately launched from the also is airworthy. Game Changing Development flight and the glider was released glider after its release from the TGALS chief engineer Ryan program. for another free flight to the dry DROID. Dibley said using two commercial- The 27-foot-wingspan glider was lakebed. Gerald Budd, who for about off-the-shelf glider halves and towed behind the Dryden Remotely “We had a really good first three years has conceptualized and joining them together with a center Operated Integrated Drone, or flight,” said John Kelly, TGALS sought funding for the concept, wing structure created challenges. DROID, unmanned aircraft into project manager. “Both aircraft piloted the DROID during the While the center wing section was the blue skies above Edwards Air performed well.” test flight and was pleased that the built in-house and was designed Force Base. Minutes later the “It flies fantastically,” said Robert project had a successful first test specifically for this mission, the towline was released and the twin “Red” Jensen, who piloted the flight. outer wing sections were built for fuselage aircraft glided to a perfect dual-fuselage glider. “There were no “It was surreal to watch it fly the standard single-fuselage glider landing on Rogers Dry Lake. squawks (problems).” after all of the work it took to get without the additional weight. After reviewing wind conditions The goal is to build confidence here,” Budd said. “One of the concerns was we and checking the systems of both with the aircraft and with tow If the project continues to didn’t know what the outer wing aircraft, mission managers decided operations before the final element succeed, Budd believes the ultimate to go for a second flight. As with – an experimental rocket payload goal would be to build a relatively TGALS, page 6 ACTE... from page 1 variable geometry airfoil system demonstrations to show design to existing airplane wings or materials will reduce wing structural called FlexFoil that can be retrofitted improvements in drag, weight, noise, integrated into new airframes. weight and give engineers the ability to existing airplane wings or emission and fuel reductions,” said “We have progressed from an to aerodynamically tailor the wings integrated into brand new airframes. Fay Collier, ERA project manager at innovative idea and matured the to promote improved fuel economy FlexFoil’s inventor, FlexSys NASA’s Langley Research Center in concept through multiple designs and more efficient operations, while founder and Chief Executive Officer Hampton, Virginia. and wind tunnel tests, to a final reducing environmental impacts. Sridhar Kota hopes testing with the During the initial ACTE demonstration that should prove “The first flight went as planned modified Gulfstream III will confirm flight, the experimental control to the aerospace industry that this – we validated many key elements the design’s flight worthiness and surfaces were locked at a specified technology is ready to dramatically of the experimental trailing edges,” open doors to future applications and setting. Different flap settingsimprove aircraft efficiency,” said said Thomas Rigney, ACTE project commercialization. ACTE is being will be employed on subsequent AFRL Program Manager Pete manager at Armstrong. “We expect flown from NASA Armstrong. flights to collect a variety of data Flick, from Wright-Patterson Air this technology to make future “This flight test is one of the demonstrating the capability of Force Base, Ohio. aircraft lighter, more efficient and NASA Environmentally Responsible the flexible wings to withstand a ACTE technology is expected to quieter. It also has the potential to Aviation (ERA) Project’s eight real flight environment. The flaps have far-reaching effects on future save hundreds of millions of dollars large-scale integrated technology have the potential to be retrofitted aviation. Advanced lightweight annually in fuel costs.” X-Press November 2014 FAA honors McMurtry News By Alan Brown Richard Dilbeck NASA Armstrong Public Affairs (left), coordinator at NASA Retired NASA Armstrong of the Master research pilot Thomas C. McMurtry Pilot award was honored by the Federal Aviation presentations Orion set Administration Oct. 25 with the for the Federal presentation of the agency’s Wright Aviation Brothers Master Pilot Award Administration’s to launch during a ceremony before family, Sacramento NASA’s new Orion spacecraft friends and associates at the AERO regional office, now is at its launch pad after Institute in Palmdale. presents the completing its journey Nov. award to retired Richard Dilbeck, coordinator of 12. It arrived at Space Launch NASA Armstrong Complex 37 at Cape Canaveral the Master Pilot award presentations research pilot for the FAA’s Sacramento regional Tom McMurtry Air Force Station in Florida, office, presented the prestigious as McMurtry’s where the spacecraft then was award to McMurtry as his wife, wife Mary Louise lifted onto a United Launch Mary Louise McMurtry and an assists. Alliance Delta IV heavy rocket estimated 120 attendees applauded in preparation for its first trip to the honoree. ED14-0325-021 NASA/Jim Ross space. McMurtry, whose activity Orion will travel almost is severely limited following 60,000 miles into space a debilitating stroke, was also Thursday, Dec. 4, during an presented with resolutions and uncrewed flight designed to certificates honoring his service to test many of the spacecraft’s NASA and the nation from several systems before it begins carrying public officials, including California astronauts on missions to deep state senator Stephen Knight of the space destinations. 21st district, Los Angeles County The spacecraft, which includes fifth district supervisor Michael the crew and service modules, Antonovich and U.S. Congressman launch abort system and the Howard “Buck” McKeon of adapter that will connect it to California’s 25th district. the rocket, was completed in Now 79, McMurtry joined the October. NASA Flight Research Center “In less than a month, Orion in 1967 after service as a U.S. will travel farther than any Navy pilot and with Lockheed spacecraft built for humans has EC76-4973 NASA/Tom Tschida Corporation. He was a project pilot been in more than 40 years,” on some of the most significant Retired NASA research pilot Tom McMurtry is pictured with the X-24B lifting said William Gerstenmaier, body after he made the 36th and final flight in the unique craft on Nov. 26, NASA’s associate administrator McMurtry, page 8 1975. for human exploration and operations.. Orion is scheduled to liftoff Happy 50th at 7:05 a.m. Dec. 4. During NASA Armstrong Flight Loads its two-orbit, 4.5 hour flight Laboratory chief test engineer test, Orion will travel 3,600 Larry Hudson, at left, displays miles beyond Earth.
Recommended publications
  • Lick Observatory Records: Photographs UA.036.Ser.07
    http://oac.cdlib.org/findaid/ark:/13030/c81z4932 Online items available Lick Observatory Records: Photographs UA.036.Ser.07 Kate Dundon, Alix Norton, Maureen Carey, Christine Turk, Alex Moore University of California, Santa Cruz 2016 1156 High Street Santa Cruz 95064 [email protected] URL: http://guides.library.ucsc.edu/speccoll Lick Observatory Records: UA.036.Ser.07 1 Photographs UA.036.Ser.07 Contributing Institution: University of California, Santa Cruz Title: Lick Observatory Records: Photographs Creator: Lick Observatory Identifier/Call Number: UA.036.Ser.07 Physical Description: 101.62 Linear Feet127 boxes Date (inclusive): circa 1870-2002 Language of Material: English . https://n2t.net/ark:/38305/f19c6wg4 Conditions Governing Access Collection is open for research. Conditions Governing Use Property rights for this collection reside with the University of California. Literary rights, including copyright, are retained by the creators and their heirs. The publication or use of any work protected by copyright beyond that allowed by fair use for research or educational purposes requires written permission from the copyright owner. Responsibility for obtaining permissions, and for any use rests exclusively with the user. Preferred Citation Lick Observatory Records: Photographs. UA36 Ser.7. Special Collections and Archives, University Library, University of California, Santa Cruz. Alternative Format Available Images from this collection are available through UCSC Library Digital Collections. Historical note These photographs were produced or collected by Lick observatory staff and faculty, as well as UCSC Library personnel. Many of the early photographs of the major instruments and Observatory buildings were taken by Henry E. Matthews, who served as secretary to the Lick Trust during the planning and construction of the Observatory.
    [Show full text]
  • Department of Aeronautics and Astronautics Stanford University Stanford, California
    Department of Aeronautics and Astronautics Stanford University Stanford, California THE CONTROL AND USE OF LIBRATION-POINT SATELLITES by Robert W. Farquhar SUDAAR NO. 350 July 1968 Prepared for the National Aeronautics and Space Administration Under Grant NsG 133-61 '3 t ABSTRACT This study is primarily concerned with satellite station-keeping in the vicinity of the unstable collinear libration points, L1 and L2. Station-keeping problems at other libration points, including an "isosce- les-triangle point," are also treated, but to a lesser degree. A detailed analysis of the translation-control problem for a satel- lite in the vicinity of a collinear point is presented. Simple linear feedback control laws are formulated, and stability conditions are deter- mined for both constant and periodic coefficient systems. It was found that stability could be achieved with a single-axis control that used only range and range-rate measurements. The station-keeping cost with this control is given as a function of the measurement noise. If Earth- based measurements are available, this cost is very Pow. Other transla- tion-control analyses of this study include (1) solar-sail control at the Earth-Moon collinear points, (2) a limit-cycle analysis for an on-off :b control system, and (3) a method for stabilizing the position of the mass center of a cable-connected satellite at a collinear point by simply changing the length of the cable with an internal device. b, For certain applications, a satellite is required to follow a small quasi-periodic orbit around a collinear libration point. Analytical estimates for the corrections to this orbit due to the effects of non- linearity, eccentricity, and perturbations are derived.
    [Show full text]
  • China Dream, Space Dream: China's Progress in Space Technologies and Implications for the United States
    China Dream, Space Dream 中国梦,航天梦China’s Progress in Space Technologies and Implications for the United States A report prepared for the U.S.-China Economic and Security Review Commission Kevin Pollpeter Eric Anderson Jordan Wilson Fan Yang Acknowledgements: The authors would like to thank Dr. Patrick Besha and Dr. Scott Pace for reviewing a previous draft of this report. They would also like to thank Lynne Bush and Bret Silvis for their master editing skills. Of course, any errors or omissions are the fault of authors. Disclaimer: This research report was prepared at the request of the Commission to support its deliberations. Posting of the report to the Commission's website is intended to promote greater public understanding of the issues addressed by the Commission in its ongoing assessment of U.S.-China economic relations and their implications for U.S. security, as mandated by Public Law 106-398 and Public Law 108-7. However, it does not necessarily imply an endorsement by the Commission or any individual Commissioner of the views or conclusions expressed in this commissioned research report. CONTENTS Acronyms ......................................................................................................................................... i Executive Summary ....................................................................................................................... iii Introduction ................................................................................................................................... 1
    [Show full text]
  • Chapter 5: Lunar Minerals
    5 LUNAR MINERALS James Papike, Lawrence Taylor, and Steven Simon The lunar rocks described in the next chapter are resources from lunar materials. For terrestrial unique to the Moon. Their special characteristics— resources, mechanical separation without further especially the complete lack of water, the common processing is rarely adequate to concentrate a presence of metallic iron, and the ratios of certain potential resource to high value (placer gold deposits trace chemical elements—make it easy to distinguish are a well-known exception). However, such them from terrestrial rocks. However, the minerals separation is an essential initial step in concentrating that make up lunar rocks are (with a few notable many economic materials and, as described later exceptions) minerals that are also found on Earth. (Chapter 11), mechanical separation could be Both lunar and terrestrial rocks are made up of important in obtaining lunar resources as well. minerals. A mineral is defined as a solid chemical A mineral may have a specific, virtually unvarying compound that (1) occurs naturally; (2) has a definite composition (e.g., quartz, SiO2), or the composition chemical composition that varies either not at all or may vary in a regular manner between two or more within a specific range; (3) has a definite ordered endmember components. Most lunar and terrestrial arrangement of atoms; and (4) can be mechanically minerals are of the latter type. An example is olivine, a separated from the other minerals in the rock. Glasses mineral whose composition varies between the are solids that may have compositions similar to compounds Mg2SiO4 and Fe2SiO4.
    [Show full text]
  • 19720023166.Pdf
    /~~~~~~~ ~'. ,;/_ ., i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f', k· ' S 7. 0 ~ ~~~~~ ·,. '''':'--" ""-J' x ' ii 5 T/~~~~~~~~~' q z ?p~ ~ ~ ~~~~'-'. -' ' 'L ,'' "' I ci~~~'""7: .... ''''''~ 1(oI~~~~~~~~~~~~~~~~~~~~nci"~~~~~~~~~~~~~' ;R --,'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~j. DTERSMINAT ION,SUBSYSTEM I i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~, ;' '~/ ',\* i ' /,i~~·EM'AI-At1' - ' ' ' ' . , .. SPECQIFICA~TIONS'` .i ~~~~~~~-- r ~. i .t +-% ~.- V~~~~~~~r~_' " , ' ''~v N .·~~~~~,·' : z' '% - '::' "~'' ' ·~''-,z '""·' -... '"' , ......?.':; ,,<" .~:iI ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.. L /' ' ) .. d~' 1.- il · ) · 'i. i L i i; j~~~~~~~~~~l^ ' .1) ~~~~~~~~~~~~Y~~~~~~~~~~ .i · ~ .i -~.,,-~.~~ ' / (NASA-TM-X-65984 ) GODDARD TRAJECTORY N 72- 30O816 , .,-Q: ... DETERMlINATION SUBSY STEM: M9ATHEMATICAL k_ % SP E CIFTC AT IONS W.E. Wagner, et al (NASA) -_/3.· ~ar. 1972 333 CSCL 22C Uca i-- ~·--,::--..:- ~~~~~~~~~ ~~~~~~~ : .1... T~T· r~ ~~~~~~~~~~~~I~~~~~~~~~~ ~ ~ ~ ~ ~ I~-' ~~~~~~~ x -'7 ' ¥' .;'. ,( .,--~' I "-, /. ·~.' 'd , %- ~ '' ' , , ' ~,- - . '- ' :~ ' ' ' ". · ' ~ . 'I - ... , ~ ~ -~ /~~~~~~~~~~~~~~~~~~.,. ,.,- ,~ , ., ., . ~c ,x. , -' ,, ~ ~ -- ' ' I/· \' {'V ,.%' -- -. '' I ,- ' , -,' · '% " ' % \ ~ 2 ' - % ~~: ' - · r ~ %/, .. I : ,-, \-,;,..' I '.-- ,'' · ~"I. ~ I· , . ...~,% ' /'-,/.,I.~ .,~~~-~, ",-->~-'."-,-- '''i" - ~' -,'r ,I r .'~ -~~~'-I ' ' ;, ' r-.'', ":" I : " " ' -~' '-", '" I~~ ~~~~~i ~ ~~~~~~~~'"'% ~'. , ' ',- ~-,' - <'/2 , -;'- ,. 'i , 7-~' ' ,'z~, , '~,'ddz ~ "% ' ~',2; ; ' · -o ,-~ ' '~',.,~~~~.~,~,,,:.i? -":,:-,~-
    [Show full text]
  • A Benchmarking and Sensitivity Study of the Full Two-Body Gravitational
    A benchmarking and sensitivity study of the full two-body gravitational dynamics of the DART mission target, binary asteroid 65803 Didymos Harrison Agrusa, Derek Richardson, Alex Davis, Eugene Fahnestock, Masatoshi Hirabayashi, Nancy Chabot, Andrew Cheng, Andrew Rivkin, Patrick Michel To cite this version: Harrison Agrusa, Derek Richardson, Alex Davis, Eugene Fahnestock, Masatoshi Hirabayashi, et al.. A benchmarking and sensitivity study of the full two-body gravitational dynamics of the DART mission target, binary asteroid 65803 Didymos. Icarus, Elsevier, 2020, 349, pp.113849. 10.1016/j.icarus.2020.113849. hal-02986184 HAL Id: hal-02986184 https://hal.archives-ouvertes.fr/hal-02986184 Submitted on 22 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Benchmarking and Sensitivity Study of the Full Two-Body Gravitational Dynamics of the DART Mission Target, Binary Asteroid 65803 Didymos Harrison F. Agrusaa,∗, Derek C. Richardsona, Alex B. Davisb, Eugene Fahnestockc, Masatoshi Hirabayashid, Nancy L. Chabote, Andrew F. Chenge, Andrew S. Rivkine,
    [Show full text]
  • Hearing on China in Space: a Strategic Competition?
    HEARING ON CHINA IN SPACE: A STRATEGIC COMPETITION? HEARING BEFORE THE U.S.-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION ONE HUNDRED SIXTEENTH CONGRESS FIRST SESSION THURSDAY, APRIL 25, 2019 Printed for use of the United States-China Economic and Security Review Commission Available via the World Wide Web: www.uscc.gov UNITED STATES-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION WASHINGTON: 2019 U.S.-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION CAROLYN BARTHOLOMEW, CHAIRMAN ROBIN CLEVELAND, VICE CHAIRMAN Commissioners: HON. CARTE P. GOODWIN MICHAEL A. MCDEVITT ROY D. KAMPHAUSEN HON. JAMES M. TALENT THEA MEI LEE MICHAEL R. WESSEL KENNETH LEWIS The Commission was created on October 30, 2000 by the Floyd D. Spence National Defense Authorization Act for 2001 § 1238, Public Law No. 106-398, 114 STAT. 1654A-334 (2000) (codified at 22 U.S.C. § 7002 (2001), as amended by the Treasury and General Government Appropriations Act for 2002 § 645 (regarding employment status of staff) & § 648 (regarding changing annual report due date from March to June), Public Law No. 107-67, 115 STAT. 514 (Nov. 12, 2001); as amended by Division P of the “Consolidated Appropriations Resolution, 2003,” Pub L. No. 108-7 (Feb. 20, 2003) (regarding Commission name change, terms of Commissioners, and responsibilities of the Commission); as amended by Public Law No. 109- 108 (H.R. 2862) (Nov. 22, 2005) (regarding responsibilities of Commission and applicability of FACA); as amended by Division J of the “Consolidated Appropriations Act, 2008,” Public Law Nol. 110-161 (December 26, 2007) (regarding responsibilities of the Commission, and changing the Annual Report due date from June to December); as amended by the Carl Levin and Howard P.
    [Show full text]
  • 76255 Banded Impact Melt Breccia 406.6 Grams
    76255 Banded Impact melt Breccia 406.6 grams Figure 1: Close-up photo of block 1 of large boulder at station 6, Apollo 17, showing area where sample 76255 was collected. AS17-140-21443. Figure 3: Photo of sawn surface of slab ,26 cut through middle of 76255. Cube is 1 inch. S75- Figure 2: Sawn surface of 76255, 20. Cube is 1 22687. Compare with sketch in figure 9. inch. S75-22684. Lunar Sample Compendium C Meyer 2009 Figure 4: Photo of freshly broken inside surface of 76255. Sample is about 8 cm across. S72-56415. The bottom surface and the area marked by triangle are the “white clast”. Figure 5: Photo of exterior surface, with patina, of 76255, showing the approxi- mate location of first and second(?) slabs. S7256414. Note the fracture caused by the large zap pit. Note also the large dark clast in top right (circle) and the white clast at bottom (box). Petrography Introduction Warner et al. (1976) began the study of 76255 with Sample 76255 was chipped by the astronauts from what they called “absolute petrography”. They across the contact between unit C and a large clast (1 described 76255 as a banded impact melt breccia m) seen in the surface of block 1 of the large boulder (figure 4) with a large clast of crushed norite and several at station 6 (figure 1). A large portion of the sample small white clasts. The outer surface (figure 5) (~300 g) has been reported to be a “crushed norite” contained a large zap pit, where a micrometeorite (poorly studied, to date).
    [Show full text]
  • Geophysical Abstracts 186 July-September 1961
    Geophysical Abstracts 186 July-September 1961 By JAMES W. CLARKE, DOROTHY B. VITALIANO, VIRGINIA S. NEUSCHEL, and others GEOLOGICAL SURVEY BULLETIN 1146-C Abstracts of current literature pertaining to the physics of the solid earth and to geophysical exploration UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1961 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printtna Office, Washintlton 25, D.C. Price 40 cents (sintUe copy). Subacription price: $1.75 a year; 50 cents additional for foreilln mattin!l. Use of funds for printing this publication has been approved by the Director of the Bureau of the Budget (June 23, 1960). CONTENTS Page Introduction --------------------------------------------------- 351 Extent of coverage ------------------------------------------ 351 List of journals--------------------------------------------- 351 Form of citation-------------------------------------------- 353 Abstracters ------------------------------------------------ 353 Age determinations -------------------------------------------- 353 Cosmogony---------------------------------------------------- 366 Earth currents ------------------------------------------------ 385 Earthquakes and earthquake waves------------------------------- 387 Earth tides and related phenomena------------------------------- 413 Elasticity ----------------------------------------------------- 416 Electrical exploration------------------------------------------
    [Show full text]
  • The Origin and Timing of Fluvial Activity at Eberswalde Crater, Mars
    Icarus 220 (2012) 530–551 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The origin and timing of fluvial activity at Eberswalde crater, Mars ⇑ N. Mangold a, , E.S. Kite b, M.G. Kleinhans c, H. Newsom d, V. Ansan a, E. Hauber e, E. Kraal f, C. Quantin g, K. Tanaka h a Laboratoire Planétologie et Géodynamique de Nantes, LPGN/CNRS, Université Nantes, 2, rue de la Houssinière, 44322 Nantes, France b Division of Geological and Planetary Science, Caltech MC 150-21, 1200 E. California Boulevard, Pasadena, CA 91125, USA c Faculty of Geosciences, Universiteit Utrecht, PO Box 80115, 3508 TC Utrecht, The Netherlands d Institute of Meteoritics, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, USA e Institut für Planetenforschung/Institute of Planetary Research, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin, Germany f Department of Physical Sciences, Kutztown University of Pennsylvania, PA 19530, USA g Laboratoire Géologie de Lyon, La Doua, Université Claude Bernard Lyon, 69622 Villeurbanne, France h Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Dr. Flagstaff, AZ 86001, USA article info abstract Article history: The fan deposit in Eberswalde crater has been interpreted as strong evidence for sustained liquid water on Received 19 September 2011 early Mars with a paleolake formed during the Noachian period (>3.7 Gy). This location became a key region Revised 2 May 2012 for understanding the Mars paleo-environment. Eberswalde crater is located 50 km north of the rim of the Accepted 22 May 2012 150 km diameter crater Holden.
    [Show full text]
  • Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 48106 74-1993
    THE LUNAR LASER RANGING POINTING PROBLEM Item Type text; Dissertation-Reproduction (electronic) Authors Carter, William E. (William Eugene), 1939- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 18:35:17 Link to Item http://hdl.handle.net/10150/288113 INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material.
    [Show full text]
  • A New Model of Lunar Crust: Asymmetry in Crustal Composition and Evolution
    Earth Planets Space, 60, 433–444, 2008 A new model of lunar crust: asymmetry in crustal composition and evolution Tomoko Arai1, Hiroshi Takeda2, Akira Yamaguchi1,3, and Makiko Ohtake4 1Antarctic Meteorite Research Center, National Institute of Polar Research, 1-9-10 Kaga, Itabashi, Tokyo 173-8515, Japan 2Department of Earth and Planetary Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan 3Department of Polar Science, The Graduate University for Advanced Studies, 1-9-10 Kaga, Itabashi, Tokyo 173-8515, Japan 4Planetary Science Department, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Sagamihara 229-8510, Japan (Received May 7, 2007; Revised December 18, 2007; Accepted December 21, 2007; Online published April 9, 2008) Earlier models of lunar crustal formation as a simple flotation of ferroan anorthosites (FAN) do not account for the diverse crustal composition revealed by feldspathic lunar meteorites and granulites in the Apollo samples. Based on the integrated results of recent studies of lunar meteorites and global chemical and mineralogical maps, we propose a novel asymmetric crust model with a ferroan, noritic, nearside crust and a magnesian, troctolitic farside crust. Asymmetric crystallization of a primordial magma ocean can be one possibility to produce a crust with an asymmetric composition. A post-magma-ocean origin for a portion of the lunar crust is also possible and would account for the positive εNd value for FAN and phase equilibria. The formation of giant basins, such as the South Pole-Aitken (SPA) basin may have significant effects on resurfacing of the early lunar crust.
    [Show full text]