Examination of Photocopies and Computer Print Outs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Printing Technologies
Edited with the trial version of Foxit Advanced PDF Editor To remove this notice, visit: www.foxitsoftware.com/shopping Introduction to Printing Technologies Study Material for Students : Introduction to Printing Technologies CAREER OPPORTUNITIES IN MEDIA WORLD Mass communication and Journalism is institutionalized and source specific. Itfunctions through well-organized professionals and has an ever increasing interlace. Mass media has a global availability and it has converted the whole world in to a global village. A qualified journalism professional can take up a job of educating, entertaining, informing, persuading, interpreting, and guiding. Working in print media offers the opportunities to be a news reporter, news presenter, an editor, a feature writer, a photojournalist, etc. Electronic media offers great opportunities of being a news reporter, news editor, newsreader, programme host, interviewer, cameraman,Edited with theproducer, trial version of Foxit Advanced PDF Editor director, etc. To remove this notice, visit: www.foxitsoftware.com/shopping Other titles of Mass Communication and Journalism professionals are script writer, production assistant, technical director, floor manager, lighting director, scenic director, coordinator, creative director, advertiser, media planner, media consultant, public relation officer, counselor, front office executive, event manager and others. 2 : Introduction to Printing Technologies INTRODUCTION The book introduces the students to fundamentals of printing. Today printing technology is a part of our everyday life. It is all around us. T h e history and origin of printing technology are also discussed in the book. Students of mass communication will also learn about t h e different types of printing and typography in this book. The book will also make a comparison between Traditional Printing Vs Modern Typography. -
Embodied Community and Embodied Pedagogy
ZINES, n°2, 2021 MATERIAL MATTERS: EMBODIED COMMUNITY AND EMBODIED PEDAGOGY Kelly MCELROY & Korey JACKSON Oregon State University Libraries and Press [email protected] [email protected] Abstract: In this essay, we outline how materiality can be a tool of critical pedagogy, leading to pleasure, vulnerability, and embodied learning in the classroom. Over the past four years, we have taught an honors colloquium to undergraduate students focused on self-publishing as a means to create social change. As we explore various publishing media, genres, and activist movements with our students, we combine traditional academic activities like scholarly reading and written analysis with informal hands-on craft time. Our students make collages, learn to use the advanced features on a photocopier, and collaborate on hectograph printing among other crafts, all as they begin to put together their own final DIY publication. Students regularly report that the hands-on activities are crucial to their learning, giving them new appreciation for the underground publications they read, through embodied experiences that can’t be replicated with a reading or a quiz. It also builds our community of learners, as we share ideas, borrow glue sticks, and chit-chat as we put our zines together. We will outline how we built and teach this course, placing it within our critical pedagogy – informed by bell hooks, Kevin Kumashiro, and Paulo Freire, among others – and how teaching this course has helped us incorporate embodiment into our other teaching. Keywords: embodied pedagogy, teaching, publishing. 58 Material Matters: Embodied Community and Embodies Pedagogy ZINES, n°2, 2021 INTRODUCTION Alison Piepmeier has argued that, “Zines’ materiality creates College, this course is one of a suite of course offerings community because it creates pleasure, affection, allegiance, and that highlight exploratory discovery and deep dives vulnerability” (2008, 230). -
Glossary of Flexographic Printing Terms
GLOSSARY OF FLEXOGRAPHIC PRINTING TERMS AA: Authors Alterations, changes other than corrections, made by a client after the proofing process has begun. AA's are usually charged to a client as billable time. Abrasion: Process of wearing away the surface of a material by friction. Abrasion marks: Marks on a photographic print or film appearing as streaks or scratches, caused by the condition of the developer. Can be partially removed by swabbing with alcohol. Abrasion resistance: Ability to withstand the effects of repeated rubbing and scuffing. Also called scuff or rub resistance. Abrasion test: A test designed to determine the ability to withstand the effects of rubbing and scuffing. Abrasiveness: That property of a substance that causes it to wear or scratch other surfaces. Absorption: In paper, the property which causes it to take up liquids or vapors in contact with it. In optics, the partial suppression of light through a transparent or translucent material. Acceptance sampling or inspection: The evaluation of a definite lot of material or product that is already in existence to determine its acceptability within quality standards. Accelerate: In flexographic printing, as by the addition of a faster drying solvent or by increasing the temperature or volume of hot air applied to the printed surface. Electrical - To speed rewind shafts during flying splices, and in taking up web slackness. Accordion Fold: Bindery term, two or more parallel folds which open like an accordion. Acetone: A very active solvent used in packaging gravure inks; the fastest drying solvent in the ketone family. Activator: A chemistry used on exposed photographic paper or film emulsion to develop the image. -
Dick Maggiore: What We Can Learn from Xerox
Dick Maggiore: What we can learn from Xerox Tuesday Posted at 7:42 AM Company failed (and failed again) when it strayed from its established core position. By Dick MaggioreSpecial to The Canton Repository The basic positioning principle applies regardless of the size of your business or whether you sell to consumers or other businesses. It also does not matter whether your business sells locally, regionally or nationally, or whether you are for-profit or nonprofit. Your business works best when your brand stands for one idea. That's just the way the minds of your prospects and customers work. Xerox is a remarkable example of a company that did just about everything right in terms of technology, but made many mistakes in go-to-market matters. On the plus side, Xerox built one of the most powerful brands in the world. It achieved this by standing for one idea. Its name became the synonym for the act of making a photocopy, as well as the photocopy itself — the verb and the noun. Not too many brands can claim generic ownership of the category itself. In my industry, one of our favorite pastimes has been watching our friends at Xerox. Their follies demonstrated valuable lessons for business. In 1959, Xerox introduced the Xerox 914, the first automatic copier. Research showed people were not willing to pay 5 cents per copy, but Xerox launched the 914 anyway. The rest is photocopier history. If Xerox had heeded its research, it would have missed a tremendous opportunity to build the world’s greatest photocopier brand and gain notoriety as "the most successful product ever marketed in America" as Forbes magazine declared. -
Factsheet Photocopiers & Laser Printers
7 Photocopier and sept 200 laser printer hazards The LondonCentre Hazards Factsheet Photocopiers and laser printers fatigue, drowsiness, throat and eye minimised. Contact with the tongue, are safe when used occasionally irritation), xylene (can cause menstrual e.g. by touching copied papers with a disorder and kidney failure) and benzene wetted finger can lead to small growths and serviced regularly. But if (carcinogenic and teratogenic). on the tongue. Other health effects they are badly sited, poorly may be irritated eyes, headache and maintained and used frequently Selenium and cadmium sulphide itching skin. Maintenance workers are or for long runs, there are risks Some copiers use a drum impregnated at risk from repeated exposure which to health, ranging from irritated with selenium or cadmium sulphide. can lead to skin and eye sensitisation. The gas emitted from these materials eyes, nose and throat to especially when hot can cause throat Airborne toner dust dermatitis, headaches, premature irritation and sensitisation (i.e. adverse A recent study by the Queensland ageing and reproductive reaction to very tiny quantities of University of Technology in Australia has and cancer hazards. Proper chemical) to exposed workers. Short raised concerns about very small particles ventilation and maintenance are term exposure to high levels of selenium of toner from a number of laser printers by ingestion causes nausea, vomiting, that can become airborne and penetrate essential in eliminating hazards. skin rashes and rhinitis. The UK WEL deep into the lung. It showed that almost for selenium compounds is 0.1 mg/m3 a third studied emit potentially dangerous The chemicals (over an 8 hr reference period). -
Polyester Plate Lithography / Pronto Plates
Kevin Haas | www.wsu.edu/~khaas Polyester Plate Lithography / Pronto Plates CREATING YOUR IMAGE DRAWING MATERIALS Ball Point Pen, Sharpie or Permanent Marker, China Marker/ Litho Crayons, Photocopier Toner (Must be heat-set in an oven or on a hot plate at 225º - 250º for 10 minutes.) PHOTOCOPIED AND DIGITAL IMAGES Using Adobe Photoshop and a laser printer you can easily scan and print images onto polyester plates. A 1200dpi laser printer such as an HP 5000, a GCC Elite XL or a Xante printer will work best. However, it is best to make a few adjustments to your print settings to make polyester plates print easily and accu- Set the Format to the printer you are using and the Page Size to rately at the press. match the size of the polyester plates. Orientation (portrait or landscape) should also be set at this time. By default most laser printers will print images over 133 lines per inch. Lines per inch (lpi) is a measurement of how many 2. Set your Printing Options lines of small varying sized halftone dots are used to create the MB > File > Print with Preview… illusion of a continuous tone image. Since printing these plates by hand requires more ink and pressure than offset printing, which is what these plates were intended for, we need to de- crease the lpi to 75. If you did not do this, the ink sitting on top of all the very tiny halftone dots would likely run together, or ‘bridge’. To prevent this from happening, lower the lpi to main- tain a balance between the amount of ink that is needed to print and the space around the dots to hold water that repels the ink. -
Research and Development Washington, DC 20460 ABSTRACT
United Slates EPA- 600 R- 95-045 7 Enwronmental Protection ZL6ILI Agency March 1995 i= Research and Developmen t OFFICE EQUIPMENT: DESIGN, INDOOR AIR EMISSIONS, AND POLLUTION PREVENTION OPPORTUNITIES Prepared for Office of Radiation and Indoor Air Prepared by Air and Energy Engineering Research Laboratory Research Triangle Park NC 2771 1 EPA REVIEW NOTICE This report has been reviewed by the U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policy of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. This document is available to the public through the National Technical Informa- tion Service. Springfield, Virginia 22161. EPA- 600 I R- 95-045 March 1995 Office Equipment: Design, Indoor Air Emissions, and Pollution Prevention Opportunities by: Robert Hetes Mary Moore (Now at Cadmus, Inc.) Coleen Northeim Research Triangle Institute Center for Environmental Analysis Research Triangle Park, NC 27709 EPA Cooperative Agreement CR822025-01 EPA Project Officer: Kelly W. Leovic Air and Energy Engineering Research Laboratory Research Triangle Park, NC 2771 1 Prepared for: U.S. Environmental Protection Agency Ofice of Research and Development Washington, DC 20460 ABSTRACT The objective of this initial report is to summarize available information on office ~ equipment design; indoor air emissions of organics, ozone, and particulates from office ~ equipment; and pollution prevention approaches for reducing these emissions. It should be noted that much of the existing emissions data from office equipment are proprietary and not available in the general literature and are therefore not included in this report. -
The Story of Xerography Page 1 of 13
The Story of Xerography Page 1 of 13 Our Heritage, Our Commitment "10-22-38 ASTORIA" This humble legend marks the time and place of an auspicious event. It is the text of the first xerographic image ever fashioned. It was created in a makeshift laboratory in Queens, NY. by a patent attorney named Chester Carlson, who believed that the world was ready for an easier and less costly way to make copies. Carlson was proved right only after a discouraging ten-year search for a company that would develop his invention into a useful product. It was the Haloid Company, a small photo-paper maker in Rochester, N.Y, which took on the challenge and the promise of xerography and thus became, in a breathtakingly short time, the giant multinational company now known to the world as Xerox Corporation. This report contains several stories about xerography: the man who invented it, the company that made it work, and the products it yielded for the benefit of mankind. These stories chronicle a classic American success story: How men of courage and vision grew a highly profitable business from little more than the seed of an idea. Certainly, Xerox has changed greatly in size and scope since the historic 914 copier was introduced in 1959. But we also believe that the basic personality of Xerox has never changed. We are convinced that the essential attributes that brought the young Xerox such spectacular rewards in office copying are the same attributes we need to assure continued success for the mature Xerox as it develops total office information capability. -
Chapter 16: Thermal Printers
Computer Peripherals School of Computer Engineering Nanyang Technological University Singapore These notes are part of a 3rd year undergraduate course called "Computer Peripherals", taught at Nanyang Technological University School of Computer Engineering in Singapore, and developed by Associate Professor Kwoh Chee Keong. The course covered various topics relevant to modern computers (at that time), such as displays, buses, printers, keyboards, storage devices etc... The course is no longer running, but these notes have been provided courtesy of him although the material has been compiled from various sources and various people. I do not claim any copyright or ownership of this work; third parties downloading the material agree to not assert any copyright on the material. If you use this for any commercial purpose, I hope you would remember where you found it. Further reading is suggested at the end of each chapter, however you are recommended to consider a much more modern alternative reference text as follows: Computer Architecture: an embedded approach Ian McLoughlin McGraw-Hill 2011 Chapter 16 Thermal Printing 16.1 Introduction The growth in use of personal computers in the work place and in the home has spurred the development of compact printers capable of printing text and graphics for a variety of applications. A number of competing technologies have emerged, each with its own characteristics, and among these, thermal printing has progressed from providing primarily a utility function confined to special paper for calculators or portable terminals, to a much wider range of applications and capabilities. Today's market offerings range from low cost, quiet, home printers using a transfer ribbon to provide solid black or colour printing on selected smooth bond-like paper, to machines capable of printing several pages a minute at densities of 200 per inch and higher. -
Thermal Transfer Vs. Direct Thermal: Five Key Considerations
Thermal Transfer vs. Direct Thermal: Five Key Considerations BY SATO America Direct thermal label printing has traditionally been a niche Knowing the difference between thermal transfer printing and technology used across several narrow vertical markets including direct thermal printing is only the first step in evaluating the two meat, poultry and dairy. However, developments in thermal paper alternative technologies for use in a company’s label printing technology have resulted in a broader range of products that are application. The following considerations, while not an exhaustive now suitable for use in many applications across nearly any vertical list, account for the key areas of review during the technology market. The result has been increased interest in direct thermal as evaluation stage. the technology choice for new or upgraded applications. THERMAL PRINTHEAD LIFE & COST First, what’s the basic difference between direct thermal printing and thermal transfer printing? In simplest terms, thermal transfer From the above comparison, note that direct thermal printing printing utilizes a thermal ribbon and direct thermal printing does requires the printhead elements be in direct contact with the label not. Thermal transfer involves the thermal printhead elements material as it is pulled across the printhead. Conversely, thermal (dots) heating the backside of a thermal transfer ribbon to melt transfer printing has thermal ribbon acting as a “buffer” between and transfer the compounds on the front side of the ribbon to the the printhead elements and the label material. Many thermal label material, thus creating the printed image. Direct thermal ribbons are designed with a back-coating that serves to increase printing requires a heat sensitive label material. -
Lithographic Blanket Washes
Cleaner Technologies Substitutes Assessment: Lithographic Blanket Washes September 1997 Developed by the Design for the Environment Program in Cooperation with: The University of Tennessee Center for Clean Products and Clean Technologies, Printing Industries of America, The Environmental Group (formerly, the Environment Conservation Board of the Graphic Communications Industry), and The Graphic Arts Technical Foundation NOTICE 7KLVGRFXPHQWKDVEHHQUHYLHZHGE\WKH86(QYLURQPHQWDO3URWHFWLRQ$JHQF\ (3$ DQGDSSURYHGIRUSXEOLFDWLRQ7KHLQIRUPDWLRQFRQWDLQHGKHUHZDVGHYHORSHGE\WKH(3$ 'HVLJQIRU7KH(QYLURQPHQW 'I( 3URJUDPªV/LWKRJUDSK\3URMHFWLQFROODERUDWLRQZLWKSDUWQHUV IURPWKHSULQWLQJLQGXVWU\DQGWKH8QLYHUVLW\RI7HQQHVVHH0HQWLRQRIWUDGHQDPHVRU FRPPHUFLDOSURGXFWVGRHVQRWLPSO\HQGRUVHPHQWRUUHFRPPHQGDWLRQIRUXVH,QIRUPDWLRQRQ FRVWDQGSURGXFWXVDJHZDVSURYLGHGE\LQGLYLGXDOSURGXFWYHQGRUVDQGZDVQRWLQGHSHQGHQWO\ FRUURERUDWHGE\(3$ 'LVFXVVLRQRIIHGHUDOHQYLURQPHQWDOVWDWXWHVLVLQWHQGHGIRULQIRUPDWLRQSXUSRVHVRQO\ WKLVLVQRWDQRIILFLDOJXLGDQFHGRFXPHQWDQGVKRXOGQRWEHUHOLHGXSRQE\FRPSDQLHVWR GHWHUPLQHDSSOLFDEOHUHJXODWLRQV $GUDIWRIWKH&OHDQHU7HFKQRORJLHV6XEVWLWXWHV$VVHVVPHQW/LWKRJUDSKLF%ODQNHW :DVKHVZDVUHOHDVHGIRUSXEOLFFRPPHQWLQ-XO\$)HGHUDO5HJLVWHU1RWLFHRI$YDLODELOLW\ IRU&RPPHQWZDVSXEOLVKHG$XJXVWHVWDEOLVKLQJDGD\FRPPHQWSHULRG:ULWWHQ FRPPHQWVZHUHUHFHLYHGIURPWKUHHSDUWLHV7KHVHFRPPHQWVZHUHUHYLHZHGDQGLQFRUSRUDWHG DVDSSURSULDWH 7KHIROORZLQJPHPEHUVRIWKH86(3$VWDIIDUHSULPDULO\UHVSRQVLEOHIRUWKH LQIRUPDWLRQFROOHFWHGLQWKLVGRFXPHQW 'I(6WDII 6WHSKDQLH%HUJPDQ-HG0HOLQH'DYLG)XKV (3$:RUNJURXS 5REHUW%RHWKOLQJ 6XVDQ.UXHJHU -
Thermal Vs. Inkjet Printing
Thermal vs. Inkjet Printing Why thermal technology? Why inkjet printers are not mobile? • Low running costs: No ink or toner, the cost per page will remain • Recommended uses of inkjet technology are generally limited to the same regardless of how much print is on the page. a home or office environment. • Reliable: Thermal print technology is inherently reliable – • Inkjet printers are known to have problems in mobile using a very limited number of moving parts and operating under a environments where temperature or pressure extremes occur. wide range of environmental conditions. Cold ink or pressure variations can upset the printing process impacting print quality. • Print quality: Thermal technology uses precise temperature and contact with the paper to place a pixel (printed dot) onto a page. • The nozzles used in inkjet printers may become easily clogged in This means precise placement of every dot producing high print the extreme environments required for mobile printing. quality character and graphic images. • The many moving parts of the printer cannot withstand the harsh • Easy to maintain: There are no consumables such as ink, toners or use of mobile users. drums to replenish. There are no scheduled maintenance parts. • Printer sizes have been reduced, but still do not lend themselves • Easy to use: Once a printer has been configured, virtually the only to a mobile form factor. steps are feeding paper and turning the printer on and off. Some thermal printers can be automated by using the Power-on / Auto-off • Changing cartridges can be messy, if not challenging in features, and even the paper feeding can be automated using roll mobile environments.