In Vitro Production and Biocontrol Potential of Nematodes Associated with Molluscs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Angiostoma Meets Phasmarhabditis: a Case of Angiostoma Kimmeriense Korol & Spiridonov, 1991
Russian Journal of Nematology, 2018, 26 (1), 77 – 85 Angiostoma meets Phasmarhabditis: a case of Angiostoma kimmeriense Korol & Spiridonov, 1991 Elena S. Ivanova and Sergei E. Spiridonov Centre of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii Prospect 33, 119071, Moscow, Russia e-mail: [email protected] Accepted for publication 28 June 2018 Summary. Angiostoma kimmeriense (= A. kimmeriensis) Korol & Spiridonov, 1991 was re-isolated from the snail Oxyhilus sp. in the West Caucasus (Adygea Republic) and characterised morphologically and molecularly. The morphology of the genus Angiostoma Dujardin, 1845 was discussed and vertebrate- associated species suggested to be considered as species insertae sedis based on the head end structure (3 vs 6 lips). Phylogenetic analysis based on partial sequences of three RNA domains (D2-D3 segment of LSU rDNA and ITS rDNA) did not resolve the relationships of A. kimmeriense, as the most similar sequences of these loci were found between members of another gastropod associated genus, Phasmarhabditis Andrássy, 1976. However, such biological traits of A. kimmeriense as its large size, limited number of parasites within the host and the site of infection, point to a parasitic rather than pathogenic/necromenic way of life typical for Phasmarhabditis. Key words: description, D2-D3 LSU sequences, ITS RNA sequences, Mollusca, morphology, morphometrics, phylogeny, taxonomy. The family Angiostomatidae comprises two and 2014 did not reveal the presence of the nematode genera, Angiostoma Dujardin, 1845 with its 18 species, in this or other gastropods examined (Vorobjeva et al., and monotypic Aulacnema Pham Van Luc, Spiridonov 2008; Ivanova et al., 2013). -
Two Androdioecious and One Dioecious New Species of Pristionchus (Nematoda: Diplogastridae): New Reference Points for the Evolution of Reproductive Mode
Journal of Nematology 45(3):172–194. 2013. Ó The Society of Nematologists 2013. Two Androdioecious and One Dioecious New Species of Pristionchus (Nematoda: Diplogastridae): New Reference Points for the Evolution of Reproductive Mode 1,y 2,y 2 2 2 NATSUMI KANZAKI, ERIK J. RAGSDALE, MATTHIAS HERRMANN, VLADISLAV SUSOY, RALF J. SOMMER Abstract: Rhabditid nematodes are one of a few animal taxa in which androdioecious reproduction, involving hermaphrodites and males, is found. In the genus Pristionchus, several cases of androdioecy are known, including the model species P. pacificus. A comprehensive understanding of the evolution of reproductive mode depends on dense taxon sampling and careful morpho- logical and phylogenetic reconstruction. In this article, two new androdioecious species, P. boliviae n. sp. and P. mayeri n. sp., and one gonochoristic outgroup, P. atlanticus n. sp., are described on morphological, molecular, and biological evidence. Their phylogenetic relationships are inferred from 26 ribosomal protein genes and a partial SSU rRNA gene. Based on current representation, the new androdioecious species are sister taxa, indicating either speciation from an androdioecious ancestor or rapid convergent evolution in closely related species. Male sexual characters distinguish the new species, and new characters for six closely related Pristionchus species are presented. Male papillae are unusually variable in P. boliviae n. sp. and P. mayeri n. sp., consistent with the predictions of ‘‘selfing syndrome.’’ Description and phylogeny of new androdioecious species, supported by fuller outgroup representation, es- tablish new reference points for mechanistic studies in the Pristionchus system by expanding its comparative context. Key words: gonochorism, hermaphroditism, morphology, P. boliviae n. -
Angiostrongylus Cantonensis: a Review of Its Distribution, Molecular Biology and Clinical Significance As a Human
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303551798 Angiostrongylus cantonensis: A review of its distribution, molecular biology and clinical significance as a human... Article in Parasitology · May 2016 DOI: 10.1017/S0031182016000652 CITATIONS READS 4 360 10 authors, including: Indy Sandaradura Richard Malik Centre for Infectious Diseases and Microbiolo… University of Sydney 10 PUBLICATIONS 27 CITATIONS 522 PUBLICATIONS 6,546 CITATIONS SEE PROFILE SEE PROFILE Derek Spielman Rogan Lee University of Sydney The New South Wales Department of Health 34 PUBLICATIONS 892 CITATIONS 60 PUBLICATIONS 669 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Create new project "The protective rate of the feline immunodeficiency virus vaccine: An Australian field study" View project Comparison of three feline leukaemia virus (FeLV) point-of-care antigen test kits using blood and saliva View project All content following this page was uploaded by Indy Sandaradura on 30 May 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. 1 Angiostrongylus cantonensis: a review of its distribution, molecular biology and clinical significance as a human pathogen JOEL BARRATT1,2*†, DOUGLAS CHAN1,2,3†, INDY SANDARADURA3,4, RICHARD MALIK5, DEREK SPIELMAN6,ROGANLEE7, DEBORAH MARRIOTT3, JOHN HARKNESS3, JOHN ELLIS2 and DAMIEN STARK3 1 i3 Institute, University of Technology Sydney, Ultimo, NSW, Australia 2 School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia 3 Department of Microbiology, SydPath, St. -
Hymenoptera: Eulophidae)
November - December 2008 633 ECOLOGY, BEHAVIOR AND BIONOMICS Wolbachia in Two Populations of Melittobia digitata Dahms (Hymenoptera: Eulophidae) CLAUDIA S. COPELAND1, ROBERT W. M ATTHEWS2, JORGE M. GONZÁLEZ 3, MARTIN ALUJA4 AND JOHN SIVINSKI1 1USDA/ARS/CMAVE, 1700 SW 23rd Dr., Gainesville, FL 32608, USA; [email protected], [email protected] 2Dept. Entomology, The University of Georgia, Athens, GA 30602, USA; [email protected] 3Dept. Entomology, Texas A & M University, College Station, TX 77843-2475, USA; [email protected] 4Instituto de Ecología, A.C., Ap. postal 63, 91000 Xalapa, Veracruz, Mexico; [email protected] Neotropical Entomology 37(6):633-640 (2008) Wolbachia en Dos Poblaciones de Melittobia digitata Dahms (Hymenoptera: Eulophidae) RESUMEN - Se investigaron dos poblaciones de Melittobia digitata Dahms, un parasitoide gregario (principalmente sobre un rango amplio de abejas solitarias, avispas y moscas), en busca de infección por Wolbachia. La primera población, provenía de Xalapa, México, y fue originalmente colectada y criada sobre pupas de la Mosca Mexicana de la Fruta, Anastrepha ludens Loew (Diptera: Tephritidae). La segunda población, originaria de Athens, Georgia, fue colectada y criada sobre prepupas de avispas de barro, Trypoxylon politum Say (Hymenoptera: Crabronidae). Estudios de PCR de la región ITS2 confi rmaron que ambas poblaciones del parasitoide pertenecen a la misma especie; lo que nos provee de un perfi l molecular taxonómico muy útil debído a que las hembras de las diversas especies de Melittobia son superfi cialmente similares. La amplifi cación del gen de superfi cie de proteina (wsp) de Wolbachia confi rmó la presencia de este endosimbionte en ambas poblaciones. -
The Slugs of Bulgaria (Arionidae, Milacidae, Agriolimacidae
POLSKA AKADEMIA NAUK INSTYTUT ZOOLOGII ANNALES ZOOLOGICI Tom 37 Warszawa, 20 X 1983 Nr 3 A n d rzej W ik t o r The slugs of Bulgaria (A rionidae , M ilacidae, Limacidae, Agriolimacidae — G astropoda , Stylommatophora) [With 118 text-figures and 31 maps] Abstract. All previously known Bulgarian slugs from the Arionidae, Milacidae, Limacidae and Agriolimacidae families have been discussed in this paper. It is based on many years of individual field research, examination of all accessible private and museum collections as well as on critical analysis of the published data. The taxa from families to species are sup plied with synonymy, descriptions of external morphology, anatomy, bionomics, distribution and all records from Bulgaria. It also includes the original key to all species. The illustrative material comprises 118 drawings, including 116 made by the author, and maps of localities on UTM grid. The occurrence of 37 slug species was ascertained, including 1 species (Tandonia pirinia- na) which is quite new for scientists. The occurrence of other 4 species known from publications could not bo established. Basing on the variety of slug fauna two zoogeographical limits were indicated. One separating the Stara Pianina Mountains from south-western massifs (Pirin, Rila, Rodopi, Vitosha. Mountains), the other running across the range of Stara Pianina in the^area of Shipka pass. INTRODUCTION Like other Balkan countries, Bulgaria is an area of Palearctic especially interesting in respect to malacofauna. So far little investigation has been carried out on molluscs of that country and very few papers on slugs (mostly contributions) were published. The papers by B a b o r (1898) and J u r in ić (1906) are the oldest ones. -
Molluscs of the Dürrenstein Wilderness Area
Molluscs of the Dürrenstein Wilderness Area S a b i n e F ISCHER & M i c h a e l D UDA Abstract: Research in the Dürrenstein Wilderness Area (DWA) in the southwest of Lower Austria is mainly concerned with the inventory of flora, fauna and habitats, interdisciplinary monitoring and studies on ecological disturbances and process dynamics. During a four-year qualitative study of non-marine molluscs, 96 sites within the DWA and nearby nature reserves were sampled in cooperation with the “Alpine Land Snails Working Group” located at the Natural History Museum of Vienna. Altogether, 84 taxa were recorded (72 land snails, 12 water snails and mussels) including four endemics and seven species listed in the Austrian Red List of Molluscs. A reference collection (empty shells) of molluscs, which is stored at the DWA administration, was created. This project was the first systematic survey of mollusc fauna in the DWA. Further sampling might provide additional information in the future, particularly for Hydrobiidae in springs and caves, where detailed analyses (e.g. anatomical and genetic) are needed. Key words: Wilderness Dürrenstein, Primeval forest, Benign neglect, Non-intervention management, Mollusca, Snails, Alpine endemics. Introduction manifold species living in the wilderness area – many of them “refugees”, whose natural habitats have almost In concordance with the IUCN guidelines, research is disappeared in today’s over-cultivated landscape. mandatory for category I wilderness areas. However, it may not disturb the natural habitats and communities of the nature reserve. Research in the Dürrenstein The Dürrenstein Wilderness Area Wilderness Area (DWA) focuses on providing invento- (DWA) ries of flora and fauna, on interdisciplinary monitoring The Dürrenstein Wilderness Area (DWA) was as well as on ecological disturbances and process dynamics. -
The Land Snails of Lichadonisia Islets (Greece)
Ecologica Montenegrina 39: 59-68 (2021) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2021.39.6 The land snails of Lichadonisia islets (Greece) GALATEA GOUDELI1*, ARISTEIDIS PARMAKELIS1, KONSTANTINOS PROIOS1, IOANNIS ANASTASIOU2, CANELLA RADEA1, PANAYIOTIS PAFILIS2, 3 & KOSTAS A. TRIANTIS1,4* 1Section of Ecology and Taxonomy, Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece Emails: [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 2Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece Emails: [email protected]; [email protected] 3Zoological Museum, National and Kapodistrian University of Athens, 15784 Athens, Greece 4Natural Environment and Climate Change Agency, Villa Kazouli, 14561 Athens, Greece *Corresponding authors Received 12 January 2021 │ Accepted by V. Pešić: 30 January 2021 │ Published online 8 February 2021. Abstract The Lichadonisia island group is located between Maliakos and the North Evian Gulf, in central Greece. Lichadonisia is one of the few volcanic island groups of Greece, consisting mainly of lava flows. Today the islands are uninhabited with high numbers of visitors, but permanent population existed for many decades in the past. Herein, we present for the first time the land snail fauna of the islets and we compare their species richness with islands of similar size across the Aegean Sea. This group of small islands, provides a typical example on how human activities in the current geological era, i.e., the Anthropocene, alter the natural communities and differentiate biogeographical patterns. -
Helminths in Mesaspis Monticola \(Squamata: Anguidae\)
Article available at http://www.parasite-journal.org or http://dx.doi.org/10.1051/parasite/2006133183 HELMINTHS IN MESASPIS MONTICOLA (SQUAMATA: ANGUIDAE) FROM COSTA RICA, WITH THE DESCRIPTION OF A NEW SPECIES OF ENTOMELAS (NEMATODA: RHABDIASIDAE) AND A NEW SPECIES OF SKRJABINODON (NEMATODA: PHARYNGODONIDAE) BURSEY C.R.* & GOLDBERG S.R.** Summary: Résumé : HELMINTHES CHEZ MESASPIS MONTICOLA (SQUAMATA: ANGUIDAE) AU COSTA RICA, AVEC LA DESCRIPTION D’UNE NOUVELLE Entomelas duellmani n. sp. (Rhabditida: Rhabdiasidae) from the ESPÈCE D’ENTOMELAS (NEMATODA: RHABDIASIDAE), ET DUNE NOUVELLE lungs and Skrjabinodon cartagoensis n. sp. (Oxyurida: ESPÈCE DE SKRJABINODON (NEMATODA: PHARYNGODONIDAE) Pharyngodonidae) from the intestines of Mesaspis monticola Entomelas duellmani n. sp. (Rhabditida: Rhabdiasidae) des (Sauria: Anguidae) are described and illustrated. E. duellmani is poumons et Skrjabinodon cartagoensis n. sp. (Oxyurida: the sixth species assigned to the genus and is the third species Pharyngodonidae) des intestins de Mesaspis monticola (Sauria: described from the Western Hemisphere. It is easily separated Anguidae) sont décrits et illustrés. Entomelas duellmani est la from other neotropical species in the genus by pre-equatorial sixième espèce assignée au genre et est la troisième espèce position of its vulva. Skrjabinodon cartagoensis is the 24th species décrite de l’hémisphère occidental. Elle se distingue facilement des assigned to the genus and differs from other neotropical species in autres espèces néotropicales par la position pré-équatoriale de la the genus by female tail morphology. vulve. Skrjabinodon cartagoensis est la 24e espèce assignée au KEY WORDS : Nematoda, Entomelas, Rhabdiasidae, Skrjabinodon, genre et diffère des autres espèces néotropicales du genre par la Pharyngodonidae, new taxa, Mesaspis monticola, Anguidae, Costa Rica. -
Selection and Maintenance of Androdioecy in Caenorhabditis Elegans
Copyright 2002 by the Genetics Society of America Selection and Maintenance of Androdioecy in Caenorhabditis elegans Andrew D. Stewart1 and Patrick C. Phillips2 Department of Biology, University of Texas, Arlington, Texas 76019-0498 Manuscript received September 27, 2001 Accepted for publication December 14, 2001 ABSTRACT Caenorhabditis elegans is an androdioecious nematode composed of selfing hermaphrodites and rare males. A model of male maintenance demonstrates that selfing rates in hermaphrodites cannot be too high or else the frequency of males will be driven down to the rate of spontaneous nondisjunction of the X chromosome. After their outcrossing ability is assessed, males are found to skirt the frequency range in which they would be maintained. When male maintenance is directly assessed by elevating male frequency and observing the frequency change through time, males are gradually eliminated from the population. Males, therefore, appear to reproduce at a rate just below that necessary for them to be maintained. Populations polymorphic for a mutation (fog-2) that effectively changes hermaphrodites into females demonstrate that there is strong selection against dioecy. Factors such as variation in male mating ability and inbreeding depression could potentially lead to the long-term maintenance of males. NDRODIOECY is a sexual system composed of males the offspring to compensate (Lloyd 1975; Charles- A and hermaphrodites. Androdioecy has been well stud- worth and Charlesworth 1978; Charlesworth ied in terms of theories predicting conditions under which 1984; Otto et al. 1993). Finally, androdioecious popula- it could evolve and be maintained (Lloyd 1975; Charles- tions will tend to maintain males at such a low frequency worth and Charlesworth 1978; Charlesworth 1984; that they may not be easily recognized as such (Charles- Otto et al. -
Denkschriften Der Malhem.-Naturw
Digitised by the Harvard University, Download from The BHL http://www.biodiversitylibrary.org/; www.biologiezentrum.at 19 ÜBER SCHALENTRAGENDE LANDMOLLÜSKEN AUS ALBANIEN UND NACHBARGEBIETEN VON D«- R. STURANY (Wien) und D^- A. J. WAGNER (Diemlach) Mit 18 Tafeln und 1 Karte VORGELEGT IN DER SITZUNG AM 7. MAI 1914 Die Anregung zu der vorliegenden Arbeit war durch ein reichhaltiges Material gegeben, welches sich im Besitze des k. k. Naturhistorischen Hofmuseums befindet und in erster Linie dem Naturwissen- schaftlichen Orientverein in Wien zu danken ist. Der genannte Verein hat im Jahre 1905 eine zoologische Reise subventioniert, welche Sturany^ in das Miriditengebiet ausführte, und ein Jahr später — ebenfalls zu zoologischen Studien — die Herren V. Apfelbeck und Dr. Karl Gf. Attems in das Gebiet des Schar Dagh entsendet. Von diesen beiden Reisen nun, über deren Verlauf im XI. und XII. Jahresbericht des Naturwissen- schaftlichen Orientvereins ausführliche Mitteilungen enthalten sind, stammt die Mehrzahl der hier testa- ceologisch und — wenn inögiich — auch anatomisch behandelten Mollusken, während sich der Rest auf kleinere, doch nicht weniger wichtige Aufsammlungen früheren oder späteren Datums verteilt, die u. a. gemacht wurden: von Prof. Dr. H. Rebel 1896 und 1902 und von J. Haberhauer 1899 in der Gegend von Slivno in Bulgarien, von L. Buljubasic 1904 und 1905 im Koritni'kgebirge, in den Bergen bei Oroshi und um Skutari, von A. Petrovic 1905 in Skutari und Umgebung, von A. Winneguth 1906 in den Bergen bei Oroshi und 1908 in der Gegend von Valona, von Kustos V. Apfelbeck 1908 auf der Golesnica bei Köprülü, von A. Schatzmayr in Kereckoi in Macedonien und auf dem Berge Athos, von Dr. -
Caretta Caretta) from Brazil
©2021 Institute of Parasitology, SAS, Košice DOI 10.2478/helm-2021-0023 HELMINTHOLOGIA, 58, 2: 217 – 224, 2021 Research Note Some digenetic trematodes found in a loggerhead sea turtle (Caretta caretta) from Brazil B. CAVACO¹, L. M. MADEIRA DE CARVALHO¹, M. R. WERNECK²* ¹Interdisciplinary Animal Health Research Centre (CIISA), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; ²*BW Veterinary Consulting. Rua Profa. Sueli Brasil Flores n.88, Praia Seca, Araruama, RJ 28970-000(CEP), Brazil, E-mail: [email protected] Article info Summary Received December 28, 2020 This paper reports three recovered species of digeneans from an adult loggerhead sea turtle - Caret- Accepted February 8, 2021 ta caretta (Testudines, Cheloniidae) in Brazil. These trematodes include Diaschistorchis pandus (Pronocephalidae), Cymatocarpus solearis (Brachycoeliidae) and Rhytidodes gelatinosus (Rhytido- didae) The fi rst two represent new geographic records. A list of helminths reported from the Neotrop- ical region, Gulf of Mexico and USA (Florida) is presented. Keywords: Caretta caretta; loggerhead turtle; trematodes; Brazil Introduction Material and Methods During the last century sea turtle populations worldwide have been In March 22, 2014 an adult female loggerhead sea turtle measur- declining mostly due to human activities, but also due to natural ing 97.9 cm in curved carapace length was found in the Camburi dangers, such as predation and infections caused by several beach (20° 16’ 0.120” S, 40° 16’ 59.880” W), municipality of Vitória pathogens, like parasites. According to the International Union for in the state of Espírito Santo, Brazil. The turtle was found dead on Conservation of Nature, the loggerhead turtle is considered a vul- the beach during a monitoring expedition and it was frozen. -
Sexual Conflict in Hermaphrodites
Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Sexual Conflict in Hermaphrodites Lukas Scha¨rer1, Tim Janicke2, and Steven A. Ramm3 1Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland 2Centre d’E´cologie Fonctionnelle et E´volutive, CNRS UMR 5175, 34293 Montpellier Cedex 05, France 3Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany Correspondence: [email protected] Hermaphrodites combine the male and female sex functions into a single individual, either sequentially or simultaneously. This simple fact means that they exhibit both similarities and differences in the way in which they experience, and respond to, sexual conflict compared to separate-sexed organisms. Here, we focus on clarifying how sexual conflict concepts can be adapted to apply to all anisogamous sexual systems and review unique (or especially im- portant) aspects of sexual conflict in hermaphroditic animals. These include conflicts over the timing of sex change in sequential hermaphrodites, and in simultaneous hermaphrodites, over both sex roles and the postmating manipulation of the sperm recipient by the sperm donor. Extending and applying sexual conflict thinking to hermaphrodites can identify general evolutionary principles and help explain some of the unique reproductive diversity found among animals exhibiting this widespread but to date understudied sexual system. onceptual and empirical work on sexual strategy of making more but smaller gam- Cconflict is dominated by studies on gono- etes—driven by (proto)sperm competition— chorists (species with separate sexes) (e.g., Par- likely forced the (proto)female sexual strategy ker 1979, 2006; Rice and Holland 1997; Holland into investing more resources per gamete (Par- and Rice 1998; Rice and Chippindale 2001; ker et al.