Alma Mater Studiorum – Università Di Bologna DOTTORATO DI RICERCA in Scienze E Tecnologie Agrarie, Ambientali E Alimentari Ci

Total Page:16

File Type:pdf, Size:1020Kb

Alma Mater Studiorum – Università Di Bologna DOTTORATO DI RICERCA in Scienze E Tecnologie Agrarie, Ambientali E Alimentari Ci Alma Mater Studiorum – Università di Bologna DOTTORATO DI RICERCA IN Scienze e Tecnologie Agrarie, Ambientali e Alimentari Ciclo XXIX° Settore Concorsuale di afferenza: 07/H2 Settore Scientifico disciplinare: VET04 Assessment of the impact of different feeding strategies on chicken gastrointestinal tract by shotgun metagenomic sequencing to fight colonization by potential foodborne pathogens Tesi presentata da: Paola Moniaci CoordinatoreDottorato Relatore Prof. Giovanni Dinelli Prof. Gerardo Manfreda Correlatore Dott.ssa Alessandra De Cesare Esame finale anno 2017 To my parents, for believing in me and for always supporting me in my journey even when it did not seem right, for always telling me that everything happens for a reason, and that I must face every situation with courage and without fear. Thank to them I learnt how to befriend strangers, to be always honest and kind with everyone. Thank you for sharing your love of life and sense of humour with me and for showing me how hard work looks like. Thank you for being such caring and dedicated parents always willing to help and protect me and my beloved sister. Without you, I would not be nowhere near the person I would like to became and this thesis would certainly have not existed. Thank you… I owe you everything. CONTENTS 1 1. INTRODUCTION 4 1.1 The chicken gut microbiota: composition and development 4 1.2 Interactions between populations belonging to the chicken gut microbiota 7 1.3 Microbiota’s role in host physiology 9 1.3.1 Immunostimulation, immunomediation and mucosal development 10 1.3.2 Synthesis of dietary compounds 11 1.4 Factors affecting and modulating the chicken GI microbiota 14 1.4.1 Environment, age and diet 14 1.4.2 Diet and feed additives 18 1.5 Analysis of chicken gut microbiota: from traditional techniques to metagenomic analysis 22 1.5.1 16S rRNA gene based metataxonomic analysis 25 1.5.2 Shotgun whole genome metagenomic sequencing 26 1.5.3 Sequences’ data analysis and MG-RAST platform 27 2. OBJECTIVES 30 3. TRIALS PERFORMED 32 3.1 Trial on metagenomic investigation of caeca of chickens fed with Lactobacillus acidophilus D2/CSL 32 3.1.1 Background 32 3.1.2 Methodology 34 3.1.2.1 Animals and diet groups 34 3.1.2.2 Sample collection 37 3.1.2.3 DNA extraction from chicken caecum contents 37 3.1.2.4 Library preparation and metagenomic sequencing 37 3.1.2.5 Sequences analysis 37 3.1.2.6 Statistical analysis 38 3.1.3 Results 39 3.1.3.1 Sequences obtained 39 3.1.3.2 Caeca microbiota composition 41 3.1.3.3 Caeca metabolic genes composition 47 3.2 Trial on metagenomic investigation of caeca of chickens fed with serine protease 53 3.2.1 Background 53 1 3.2.2 Methodology 55 3.2.2.1 Animals and diet groups 55 3.2.2.2 Sample collection 57 3.2.2.3 DNA extraction from chicken caecum contents 57 3.2.2.4 Library preparation and metagenomic sequencing 57 3.2.2.5 Sequences analysis 58 3.2.2.6 Statistical analysis 59 3.2.3 Results 60 3.2.3.1 Sequences obtained 60 3.2.3.2 Caeca microbiota composition 62 3.2.3.3 Impact of diet, age and their interaction on microbiota composition 69 3.2.3.4 Identification of signature species 75 3.2.3.5 Caeca metabolic genes composition 77 3.3 Trial on metagenomic investigation of caeca of chickens fed with phytase and corresponding carcasses 87 3.3.1 Background 87 3.3.2 Methodology 89 3.3.2.1 Animals and diet groups 89 3.3.2.2 Sample collection 91 3.3.2.3 DNA extraction from chicken caecum contents 91 3.3.2.4 DNA extraction from chicken carcass skin and washing water 92 3.3.2.5 Library preparation and metagenomic sequencing 92 3.3.2.6 Sequences analysis 93 3.3.2.7 Statistical analysis 94 3.3.3 Results 94 3.3.3.1 Sequences obtained 94 3.3.3.2 Caeca microbiota composition 97 3.3.3.3 Caeca metabolic genes composition 106 3.3.3.4 Chicken carcass microbiota composition 108 4. DISCUSSION AND CONCLUSIONS 116 4.1 Impact of feed supplemented with Lactobacillus acidophilus D2/CSL on chicken gastrointestinal tract 116 2 4.2 Impact of feed supplemented with serine protease on chicken gastrointestinal tract 118 4.3 Impact of feed supplemented with phytase on chicken gastrointestinal tract 121 4.4 Impact of feed supplemented with phytase on chicken carcass microbiota 122 4.5 Future prospectives 123 5. REFERENCES 126 6. LIST OF PUBBLICATIONS AND ATTENDANCE TO CONFERENCES 149 3 1. INTRODUCTION 1.1 The chicken gut microbiota: composition and development Domestic chickens are the most common avian species and valuable sources of proteins for humans. The chicken gastrointestinal tract is densely populated by microorganisms, which closely and intensively interact with the host, the diet and the ingested feed. A better understanding of these interactions, impacting on animal nutrition and health, is required to further enhance poultry productions, safety of poultry products and host growth performance (Rinttilä and Apajalahti, 2013; Pan and Yu, 2014). The total DNA that can be extracted from the chicken gut is the metagenome and is the aggregate of the DNA of the host and the microbiota. Microbiota is the collective microbial community inhabiting the chicken gut. Metagenome and microbiome are often used interchangeably but the microbiome is the collective genomic content of a microbiota and indicates the total genetic capacity of the community (Tremaroli and Bäckhed, 2012). Between all body sites the gastrointestinal tract (GIT) is the most densely colonized organ by different microbial cells representing the GIT microbiota (Scott et al., 2013; Doré and Blottière, 2015; Jandhyala et al., 2015; Yoon et al. 2015). The microbiota consists of trillions of symbiotic microbial cells harbored by each host, primarily bacteria in the gut; furthermore, the microbiome consists of the genes these cells harbor. In fact, the microbiome is defined as the combined genetic material of the microorganisms in a particular environment (Ursell et al., 2013). All animals coexist with their microbiota establishing a symbiotic equilibrium that confers them a variety of physiologic benefits. The composition of the microbiota is host specific, evolve during the animal's lifetime and is susceptible to both exogenous and endogenous modifications (Neish, 2009; Sekirov et al., 2010). Rawls et al. (2006) showed that the transplantation of microbial communities between different host species results in the transplanted community transforming to resemble the native microbiota of the recipient host. The symbiotic equilibrium between host and microbiota is established soon after the animal birth. Later on, changes in its composition are influenced by the exposure to the microorganisms present in the surrounding environment by diet (Pan and Yu, 2014; Blottière Doré, 2015; Wang et al., 2016). The loss of balance settled between the various populations that compose each microbiota may lead to serious repercussions on the host, such as the onset of a large number of metabolic, immune-mediated, allergic and inflammatory pathologies (Cogen et al., 2008; Yoon et al. 2015). Compared with mammals, chicken and other poultry, as turkey and duck, have a shorter gastrointestinal tract causing a faster digesta transit, a relatively short retention time for ingested food and consequently selecting a deeply different intestinal microbiota compared to other food animals. 4 The average transit time through the whole chicken gastrointestinal tract is less than 3.5 h (Hughes, 2008; Pan and Yu, 2014). The chicken gastrointestinal apparatus is divided into histologically and anatomically distinct structure, named esophagus, stomach, small intestine (duodenum, jejunum and ileum) and large intestine (caecum, colon and rectum). The ingested food is initially stored in the crop, an extension of the esophagus, which inner surface is covered with non-secretory stratified squamous epithelium, then it passes to the stomach (Van de Graaff, 1986; Grist, 2004). The food begins the digestion process in the crop where it is fermented by bacteria, especially Lactobacillus genus, since crop is the election site for bacteria colonization. From the crop, food passes into the proventriculus and successively into the gizzard, that constitute the glandular and muscular parts of the avian stomach. From the gizzard, the digesta passes into the small intestine which is comprised of the duodenum, jejunum and ileum, where it is mixed with bile salts and proteinases, amylases and lipases secreted in enzyme secretions from the pancreas and others digestive enzyme produced by the secretory mucosa of the small intestine. The small intestine is the major site of chemical digestion and nutrient absorption due, other than presence of pancreatic and small intestine-produced enzymes, to villi and microvilli. The digesta then passes into the large intestine where two caeca branch out forming two separate blind ended pouches (Fuller and Brooker, 1974; Barnes et al., 1980; McLelland, 1989; Mead, 1997) that are filled trough retrograde peristalsis from the colon. The caeca are thought to be involved in the breakdown of plant material indigestible for the host and the absorption of water, glucose and volatile fatty acids. From the ileo-caecal junction the digesta enters the colon where there is very little absorption or digestion processes and then finally the feces pass into the cloaca and expelled mixed with uric acid (McLelland, 1989). The short digesta retention time, during chicken digestion process, selects bacteria that can adhere to the mucosal layer and/or grow fast. The regions which have less tolerable conditions and faster passage of contents have lower numbers of bacteria. However, abundance and diversity of microbiota are different along the gastrointestinal tract and the ceca.
Recommended publications
  • Diversitat De Comunitats Heteròtrofes Associades a Les Aigües De Consum
    Diversitat de comunitats heteròtrofes associades a les aigües de consum Laura Sala Comorera ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • Evolutionary Genomics of Conjugative Elements and Integrons
    Université Paris Descartes École doctorale Interdisciplinaire Européenne 474 Frontières du Vivant Microbial Evolutionary Genomic, Pasteur Institute Evolutionary genomics of conjugative elements and integrons Thèse de doctorat en Biologie Interdisciplinaire Présentée par Jean Cury Pour obtenir le grade de Docteur de l’Université Paris Descartes Sous la direction de Eduardo Rocha Soutenue publiquement le 17 Novembre 2017, devant un jury composé de: Claudine MÉDIGUE Rapporteure CNRS, Genoscope, Évry Marie-Cécile PLOY Rapporteure Université de Limoges Érick DENAMUR Examinateur Université Paris Diderot, Paris Philippe LOPEZ Examinateur Université Pierre et Marie Curie, Paris Alan GROSSMAN Examinateur MIT, Cambdridge, USA Eduardo ROCHA Directeur de thèse CNRS, Institut Pasteur, Paris ِ عمحمود ُبدرويش َالنرد َم ْن انا ِٔ َقول ُلك ْم ما ا ُقول ُلك ْم ؟ وانا لم أ ُك ْن َ َج ًرا َص َق َل ْت ُه ُالمياه َفأ ْص َب َح ِوهاً و َق َصباً َثق َب ْت ُه ُالرياح َفأ ْص َب َح ًنايا ... انا ِع ُب َالن ْرد ، ا َرب ُح يناً وا َس ُر يناً انا ِم ُثل ُك ْم ا وا قل قليً ... The dice player Mahmoud Darwish Who am I to say to you what I am saying to you? I was not a stone polished by water and became a face nor was I a cane punctured by the wind and became a lute… I am a dice player, Sometimes I win and sometimes I lose I am like you or slightly less… Contents Acknowledgments 7 Preamble 9 I Introduction 11 1 Background for friends and family . 13 2 Horizontal Gene Transfer (HGT) . 16 2.1 Mechanisms of horizontal gene transfer .
    [Show full text]
  • Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 2 Microalgae
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley,
    [Show full text]
  • Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 1 Microalgae 2 Richard G. Do
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley,
    [Show full text]
  • Mapping the Diversity of Microbial Lignin Catabolism: Experiences from the Elignin Database
    Applied Microbiology and Biotechnology (2019) 103:3979–4002 https://doi.org/10.1007/s00253-019-09692-4 MINI-REVIEW Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database Daniel P. Brink1 & Krithika Ravi2 & Gunnar Lidén2 & Marie F Gorwa-Grauslund1 Received: 22 December 2018 /Revised: 6 February 2019 /Accepted: 9 February 2019 /Published online: 8 April 2019 # The Author(s) 2019 Abstract Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database (www.elignindatabase.com), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings. Keywords Lignin . Database . Aromatic metabolism . Catabolic pathways
    [Show full text]
  • Identification, Molecular Epidemiology, and Antibiotic Resistance Characterization of Acinetobacter Spp
    FACULTY OF HEALTH SCIENCES DEPARTMENT OF MEDICAL BIOLOGY UNIVERSITY HOSPITAL OF NORTH NORWAY DEPARTMENT OF MICROBIOLOGY AND INFECTION CONTROL REFERENCE CENTRE FOR DETECTION OF ANTIMICROBIAL RESISTANCE Identification, molecular epidemiology, and antibiotic resistance characterization of Acinetobacter spp. clinical isolates Nabil Karah A dissertation for the degree of Philosophiae Doctor June 2011 Acknowledgments The work presented in this thesis has been carried out between January 2009 and September 2011 at the Reference Centre for Detection of Antimicrobial Resistance (K-res), Department of Microbiology and Infection Control, University Hospital of North Norway (UNN); and the Research Group for Host–Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø (UIT), Tromsø, Norway. I would like to express my deep and truthful acknowledgment to my main supervisor Ørjan Samuelsen. His understanding and encouraging supervision played a major role in the success of every experiment of my PhD project. Dear Ørjan, I am certainly very thankful for your indispensible contribution in all the four manuscripts. I am also very grateful to your comments, suggestions, and corrections on the present thesis. I am sincerely grateful to my co-supervisor Arnfinn Sundsfjord for his important contribution not only in my MSc study and my PhD study but also in my entire career as a “Medical Microbiologist”. I would also thank you Arnfinn for your nonstop support during my stay in Tromsø at a personal level. My sincere thanks are due to co-supervisors Kristin Hegstad and Gunnar Skov Simonsen for the valuable advice, productive comments, and friendly support. I would like to thank co-authors Christian G.
    [Show full text]
  • Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 2010 Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi South Dakota School of Mines and Technology Shariff Osman Lawrence Berkeley National Laboratory Ravi K. Kukkadapu Pacific Northwest National Laboratory, [email protected] Mark Engelhard Pacific Northwest National Laboratory Parag A. Vaishampayan California Institute of Technology See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Rastogi, Gurdeep; Osman, Shariff; Kukkadapu, Ravi K.; Engelhard, Mark; Vaishampayan, Parag A.; Andersen, Gary L.; and Sani, Rajesh K., "Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota" (2010). US Department of Energy Publications. 170. https://digitalcommons.unl.edu/usdoepub/170 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Gurdeep Rastogi, Shariff Osman, Ravi K. Kukkadapu, Mark Engelhard, Parag A. Vaishampayan, Gary L. Andersen, and Rajesh K. Sani This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdoepub/170 Microb Ecol (2010) 60:539–550 DOI 10.1007/s00248-010-9657-y SOIL MICROBIOLOGY Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi & Shariff Osman & Ravi Kukkadapu & Mark Engelhard & Parag A.
    [Show full text]
  • Acinetobacter Cumulans Sp. Nov., Isolated from Hospital Sewage And
    Systematic and Applied Microbiology 42 (2019) 319–325 Contents lists available at ScienceDirect Systematic and Applied Microbiology jou rnal homepage: http://www.elsevier.com/locate/syapm Acinetobacter cumulans sp. nov., isolated from hospital sewage and ଝ capable of acquisition of multiple antibiotic resistance genes a,b,c d d a,b,c e,f Jiayuan Qin , Martina Maixnerová , Matejˇ Nemec , Yu Feng , Xinzhuo Zhang , d,g,∗ a,b,c,∗∗ Alexandr Nemec , Zhiyong Zong a Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu 610041, Sichuan, China b Division of Infectious Diseases, State Key Laboratory of Biotherapy, Guoxuexiang 37, Chengdu 610041, Sichuan, China c Center for Pathogen Research, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu 610041, Sichuan, China d Laboratory of Bacterial Genetics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobárovaˇ 48, 100 42 Prague 10, Czech Republic e School of International Education, Southwest Medical University, No. 1 Xianglin Road, Luzhou 646000, Sichuan, China f Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, No. 1 Xianglin Road, Luzhou 646000, Sichuan, China g Department of Laboratory Medicine, Third Faculty of Medicine, Charles University, Srobárovaˇ 50, 100 34 Prague 10, Czech Republic a r t i c l e i n f o a b s t r a c t Article history: We studied the taxonomic position of six phenetically related strains of the genus Acinetobacter, which Received 21 November 2018 were recovered from hospital sewage in China and showed different patterns of resistance to clinically Received in revised form 3 February 2019 important antibiotics.
    [Show full text]
  • Epidemiological and Phylogenetic Analysis Reveals Flavobacteriaceae As Potential Ancestral Source of Tigecycline Resistance Gene Tet(X)
    ARTICLE https://doi.org/10.1038/s41467-020-18475-9 OPEN Epidemiological and phylogenetic analysis reveals Flavobacteriaceae as potential ancestral source of tigecycline resistance gene tet(X) Rong Zhang 1,5, Ning Dong2,5, Zhangqi Shen3,5, Yu Zeng1, Jiauyue Lu1, Congcong Liu1, Hongwei Zhou1, Yanyan Hu1, Qiaoling Sun1, Qipeng Cheng2,4, Lingbing Shu1, Jiachang Cai1, Edward Wai-Chi Chan4, ✉ ✉ Gongxiang Chen 1 & Sheng Chen 2 1234567890():,; Emergence of tigecycline-resistance tet(X) gene orthologues rendered tigecycline ineffective as last-resort antibiotic. To understand the potential origin and transmission mechanisms of these genes, we survey the prevalence of tet(X) and its orthologues in 2997 clinical E. coli and K. pneumoniae isolates collected nationwide in China with results showing very low pre- valence on these two types of strains, 0.32% and 0%, respectively. Further surveillance of tet (X) orthologues in 3692 different clinical Gram-negative bacterial strains collected during 1994–2019 in hospitals in Zhejiang province, China reveals 106 (2.7%) tet(X)-bearing strains with Flavobacteriaceae being the dominant (97/376, 25.8%) bacteria. In addition, tet(X)s are found to be predominantly located on the chromosomes of Flavobacteriaceae and share similar GC-content as Flavobacteriaceae. It also further evolves into different orthologues and transmits among different species. Data from this work suggest that Flavobacteriaceae could be the potential ancestral source of the tigecycline resistance gene tet(X). 1 Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, ZhejiangHangzhou, China. 2 Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
    [Show full text]
  • CARACTERIZAÇÃO DE Acinetobacter Spp. MULTIRRESISTENTES PRODUTORES DE CARBAPENEMASES, DOS TIPOS OXA E NDM, ISOLADOS DE DIFERENTES REGIÕES DO BRASIL
    MINISTÉRIO DA SAÚDE FUNDAÇÃO OSWALDO CRUZ INSTITUTO OSWALDO CRUZ Doutorado no Programa de Pós-Graduação em Medicina Tropical CARACTERIZAÇÃO DE Acinetobacter spp. MULTIRRESISTENTES PRODUTORES DE CARBAPENEMASES, DOS TIPOS OXA E NDM, ISOLADOS DE DIFERENTES REGIÕES DO BRASIL THIAGO PAVONI GOMES CHAGAS Rio de Janeiro Outubro de 2015 INSTITUTO OSWALDO CRUZ Programa de Pós-Graduação em Medicina Tropical THIAGO PAVONI GOMES CHAGAS Caracterização de Acinetobacter spp. multirresistentes produtores de carbapenemases, dos tipos OXA e NDM, isolados de diferentes regiões do Brasil Tese apresentada ao Instituto Oswaldo Cruz como parte dos requisitos para obtenção do título de Doutor em Ciências (Medicina Tropical). Orientador: Profª. Drª. Marise Dutra Asensi RIO DE JANEIRO Outubro de 2015 Ficha catalográfica elaborada pela Biblioteca de Ciências Biomédicas/ ICICT / FIOCRUZ - RJ C433 Chagas, Thiago Pavoni Gomes Caracterização de Acinetobacter spp. multirresistentes produtores de carbapenemases, dos tipos OXA e NDM, isolados de diferentes regiões do Brasil / Thiago Pavoni Gomes Chagas. – Rio de Janeiro, 2015. xiii, 118 f. : il. ; 30 cm. Tese (Doutorado) – Instituto Oswaldo Cruz, Pós-Graduação em Medicina Tropical, 2015. Bibliografia: f. 70-104 1. Acinetobacter spp.. 2. Resistência aos antimicrobianos. 3. Carbapenemases. 4. OXA-23. 5. NDM. 6. PFGE. 7. MLST. I. Título. CDD 616.92 INSTITUTO OSWALDO CRUZ Programa de Pós-Graduação em Medicina Tropical AUTOR: THIAGO PAVONI GOMES CHAGAS Caracterização de Acinetobacter spp. multirresistentes produtores de carbapenemases, dos tipos OXA e NDM, isolados de diferentes regiões do Brasil ORIENTADOR: Profª. Drª. Marise Dutra Asensi Aprovada em: 26/10/2015 REVISÃO: Profª Drª. Ana Paula D’Allincourt Carvalho Assef Instituto Oswaldo Cruz (IOC - FIOCRUZ) EXAMINADORES: Prof.
    [Show full text]
  • Screening Hydrolase-Producing Environmental Bacteria Towards Their Application in Bioremediation Microbiology
    Screening hydrolase-producing environmental bacteria towards their application in bioremediation Maria Cristina Lopes Matias Thesis to obtain the Master of Science Degree in Microbiology Supervisor: Professor Rogério Paulo de Andrade Tenreiro Co-supervisor: Professor Nuno Gonçalo Pereira Mira Examination Committee Chairperson: Professor Isabel Maria de Sá Correia Leite de Almeida Supervisor: Professor Rogério Paulo de Andrade Tenreiro Member of the Committee: Professor Ana Cristina Anjinho Madeira Viegas October 2019 Declaration I declare that this document is an original work of my own authorship and that it fulfills all the requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa. i Preface The work presented in this thesis was performed at Lab Bugworkers | M&B-BioISI, Faculty of Sciences of the University of Lisbon (Lisbon, Portugal), during the period from September 2017 to October 2019, under the supervision of Professor Rogério Tenreiro. The thesis was co-supervised at Instituto Superior Técnico (Lisbon, Portugal) by Professor Nuno Mira. ii Acknowledgments This thesis is the end result of the work developed within the Microbiology & Biotechnology Group of Biosystems and Integrative Sciences Institute (M&B-BioISI), at Lab Bugworkers | M&B-BioISI, located in the Innovation Centre from the Faculty of Sciences of the University of Lisbon, Tec Labs. It would not have been successfully achieved without the help and collaboration of several people, to whom I would like to express my sincere gratitude. First, and foremost, I would like to thank my supervisor, Professor Rogério Tenreiro, for challenging me with this project. I have to thank him for the patience for my endless questions, for letting me error along the way (and learn with those errors), and for all the ideas to improve my work.
    [Show full text]
  • Resistance Et Évolution Des Poux Humains Pediculus Humanus
    AIX-MARSEILLE UNIVERSITE ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE FACULTE DE MEDECINE DE MARSEILLE Unité de Recherche Microbes, Evolution, Phylogeny and Infection (MEФI) IHU-Méditerranée infection Thèse présentée pour obtenir le grade de Doctorat d’Aix-Marseille Université Spécialité Pathologie Humaine : Maladies infectieuses Mme Nadia AMANZOUGAGHENE -MEHALLA Resistance et évolution des poux humains Pediculus humanus Soutenue le 05 Juillet 2018 devant le jury : Mme le Professeur Fabienne BREGEON Présidente du jury Mr le Docteur Arezki IZRI Rapporteur Mr le Professeur Lionel ZENNER Rapporteur Mr le Docteur Oleg MEDIANNIKOV Co-directeur de thèse Direction de la Thèse : Mr le Professeur Didier RAOULT Directeur de thèse Mr le Docteur Oleg MEDIANNIKOV Co-directeur de thèse Année Universitaire 2017-2018 Remerciements Je commencerai par remercier le Professeur Didier RAOULT pour m’avoir accueilli au sein de son laboratoire et permis de réaliser ces travaux de recherche sous sa direction et ses conseils avisés. Permettez-moi de vous exprimer mon profond respect. Mes profonds remerciements au Docteur Oleg MEDIANNIKOV pour avoir dirigé ce travail. Vous m’avez donné un support scientifique incontournable et la liberté d’évoluer comme un chercheur. Merci pour m’avoir donné votre temps, votre patience, votre assistance, vos conseils et surtout votre confiance dans toutes les étapes de ce travail. Aussi grande que puisse être ma gratitude, soyez assuré qu'elle ne sera jamais à la hauteur de tous les efforts que vous avez déployé, je vous témoigne le plus profond de mes plaisirs de travailler avec vous. Mes sincères et chaleureux remerciements vont au Professeur Florence FENOLLAR, pour avoir co-dirigé ce travail.
    [Show full text]