Diversidade Microbiana De Lodo Nitrificante Aclimatado À Altas Concentrações Salinas

Total Page:16

File Type:pdf, Size:1020Kb

Diversidade Microbiana De Lodo Nitrificante Aclimatado À Altas Concentrações Salinas LÍVIA CARNEIRO FIDÉLIS SILVA DIVERSIDADE MICROBIANA DE LODO NITRIFICANTE ACLIMATADO À ALTAS CONCENTRAÇÕES SALINAS Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Microbiologia Agrícola, para obtenção do título de Magister Scientiae . VIÇOSA MINAS GERAIS – BRASIL 2015 Dedico esta dissertação aos meus pais, Ana Lúcia e Gilmar, e à minha irmã Luísa, que são a razão do meu viver e o motivo de eu querer ser sempre uma pessoa melhor. ii AGRADECIMENTOS Agradeço primeiramente a Deus, por ter me permitido chegar até aqui, me abençoando e guiando meus passos, me indicando sempre a melhor direção. Aos meus pais, Ana Lúcia e Gilmar, por me apoiarem e estarem sempre ao meu lado, nos momentos felizes e principalmente nos de angústia e desespero, além do amor e carinho incondicionais. À minha irmã Luísa, pelas risadas e pelo companheirismo, e por se espelhar em mim, me fazendo ser sempre uma pessoa melhor. A toda minha família, que mesmo de longe sempre me apoiou com palavras de carinho e incentivo. Ao Igor, meu grande amor, por todo amor, carinho, companheirismo e compreensão durante esses anos, e principalmente nesses últimos meses em que o estresse se tornou constante. Aos meus orientadores Cynthia e Sérgio, por todas as oportunidades concedidas, ensinamentos e pela confiança em mim depositada. À Helena, que de estagiária se tornou uma grande amiga. Obrigada por todas as risadas e momentos de descontração no meio dessa atmosfera de nervosismo. Ao Roberto, agradeço pela amizade, confiança e por toda a ajuda durante os experimentos. À Mariana e Juliana, amigas de graduação, pós-graduação, e da vida! Sem vocês os dias de trabalho não seriam os mesmos! Aos amigos do LIVM, por terem feito parte dessa experiência maravilhosa, por tornar os dias mais divertidos e contribuírem direta ou indiretamente para a realização deste trabalho. Aos meus amigos de longe, que estão sempre perto, por todo apoio, carinho, risadas, noites de jogos e pela amizade de sempre e pra sempre. Aos amigos que viçosa me deu, por fazerem meus finais de semana mais felizes e menos solitários. A CAPES e PETROBRÁS pelo financiamento do projeto e pela bolsa concedida. iii Enfim, agradeço a todos que contribuíram para a realização deste trabalho! iv BIOGRAFIA Lívia Carneiro Fidélis Silva, nascida em 11 de setembro de 1989, natural de Carangola, estado de Minas Gerais, filha de Gilmar Fernandes da Silva e Ana Lúcia Carneiro Fidélis Silva. Cursou o ensino fundamental na Escola Estadual Nascimento Leal, situada em Alvorada, distrito de Carangola. Em 2004 ingressou na Escola Estadual Emília Esteves Marques, localizada em Carangola, onde concluiu o ensino médio. Formou-se em Bacharel em Bioquímica pela Universidade Federal de Viçosa no ano de 2013. Durante a graduação foi estagiária do Laboratório de Imunovirologia Molecular, onde teve bolsa de iniciação científica pela FUNARBE durante seis meses, e bolsa de iniciação cientifica pela PETROBRÁS durante dois anos. Os resultados obtidos neste período foram apresentados em diferentes congressos de âmbito regional, nacional e internacional. No segundo semestre de 2013 ingressou no Mestrado no programa de Pós-Graduação Microbiologia Agrícola pela mesma instituição de ensino. v ÍNDICE LISTA DE FIGURAS ...........................................................................................viii LISTA DE TABELAS .............................................................................................x RESUMO ..............................................................................................................xii ABSTRACT .........................................................................................................xiv 1. Introdução ......................................................................................................1 2. Revisão bibliográfica ....................................................................................3 2.1. Água de produção....................................................................................3 2.2. Processo biológico de lodos ativados .....................................................4 2.3. Remoção biológica de nitrogênio ............................................................5 2.3.1. Nitrificação ............................................................................................6 2.3.2. Processo ANAMMOX ..........................................................................8 2.3.3. Nitrificação heterotrófica ......................................................................8 2.4. Remoção biológica de nitrogênio versus salinidade ..............................9 2.5. O estudo da diversidade microbiana ....................................................11 2.5.1. Índices de diversidade .......................................................................13 2.5.2. Eletroforese em gel de gradiente desnaturante (DGGE) .................14 2.5.3. Flow-fluorescence in situ hybridization (Flow-FISH) ........................16 3. Objetivos ......................................................................................................18 3.1. Objetivos gerais .....................................................................................18 3.2. Objetivos específicos .............................................................................18 4. Metodologia .................................................................................................19 4.1. Coleta da amostra de lodo ....................................................................19 4.2. Aclimatação do lodo ..............................................................................19 4.3. Avaliação do processo de nitrificação ...................................................19 vi 4.4. Coleta das amostras para análises moleculares ..................................20 4.5. Extração de DNA das amostras de lodo aclimatado ............................20 4.6. Amplificação dos genes RNAr 16S .......................................................21 4.7. Eletroforese em gel de gradiente desnaturante – DGGE ....................22 4.8. Sequenciamento massivo do gene RNAr 16S de bacteria e archaea 22 4.9. Análise dos dados de sequenciamento ................................................23 4.10. Flow-FISH ..............................................................................................24 5. Resultados e discussão .............................................................................26 5.1. Aclimatação à altas salinidades e nitrificação ......................................26 5.2. Extração de DNA e amplificação dos genes RNAr 16S de archaea e bacteria ..............................................................................................................26 5.3. DGGE .....................................................................................................28 5.4. Sequenciamento parcial da região RNAr 16S de bacteria e archaea .30 5.4.1. Composição da comunidade microbiana do lodo .............................32 5.4.1.1. Bactéria .......................................................................................32 5.4.1.2. Archaea .......................................................................................38 5.4.2. Remoção biológica de nitrogênio ......................................................41 5.4.2.1. Microrganismos nitrificantes convencionais ..............................41 5.4.2.2. Microrganismos ANAMMOX ......................................................43 5.4.2.3. Microrganismos nitrificantes heterotróficos ...............................43 5.4.3. Análise da diversidade microbiana....................................................45 5.4.3.1. Índices de diversidade ................................................................45 5.4.3.2. Análise de similaridade...............................................................47 5.4.3.3. Curvas de rarefação ...................................................................48 5.4.4. Flow-FISH ...........................................................................................50 6. Conclusões ..................................................................................................56 7. Referências ..................................................................................................57 8. Anexos ..........................................................................................................73 vii LISTA DE FIGURAS Figura 1. Esquema do sistema de lodos ativados ................................................5 Figura 2. Equilíbrio da amônia livre e do íon amônio em função do pH do meio. .................................................................................................................................6 Figura 3. Atividade biológica em resposta ao aumento da concentração salina ...............................................................................................................................10 Figura 4. Esquema representando amplicons de PCR de mesmo tamanho com sequências nucleotídicas diferentes analisados em: A) eletroforese em gel de agarose e B) eletroforese em gel de gradiente desnaturante ............................15 Figura 5. Esquema representando a desnaturação parcial e completa da dupla fita de DNA ao longo do gradiente desnaturante. ...............................................15 Figura 6. Extração de DNA total das amostras de lodo com 25, 50, 75, 100, 105, 115 e 125 g.L-1 de NaCl. ..............................................................................27
Recommended publications
  • Microbial Diversity and Impact on Carbonate Geochemistry Across a Changing Geochemical Gradient in a Karst Aquifer
    The ISME Journal (2013) 7, 325–337 & 2013 International Society for Microbial Ecology All rights reserved 1751-7362/13 www.nature.com/ismej ORIGINAL ARTICLE Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer Cassie J Gray1,2 and Annette S Engel1,3 1Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, USA; 2CH2M Hill, Baton Rouge, LA, USA and 3Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased.
    [Show full text]
  • Redalyc.Shallow-Water Hydrothermal Vents in the Azores (Portugal)
    Revista de Gestão Costeira Integrada - Journal of Integrated Coastal Zone Management E-ISSN: 1646-8872 [email protected] Associação Portuguesa dos Recursos Hídricos Portugal Couto, Ruben P.; Rodriguesa, Armindo S.; Neto, Ana I. Shallow-water hydrothermal vents in the Azores (Portugal) Revista de Gestão Costeira Integrada - Journal of Integrated Coastal Zone Management, vol. 15, núm. 4, 2015, pp. 495-505 Associação Portuguesa dos Recursos Hídricos Lisboa, Portugal Available in: http://www.redalyc.org/articulo.oa?id=388343047005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Gestão Costeira Integrada / Journal of Integrated Coastal Zone Management, 15(4):495-505 (2015) http://www.aprh.pt/rgci/pdf/rgci-584_Couto.pdf | DOI: 10.5894/rgci584 Shallow-water hydrothermal vents in the Azores (Portugal)* @, Ruben P. Couto@, a, b; Armindo S. Rodriguesa, c; Ana I. Netoa, d ABSTRACT The impact of global warming has been a major issue in recent years and will continue increasing in the future. Knowledge about the effects of ocean acidification on marine organisms and communities is crucial to efficient management. Island envi- ronments are particularly sensitive to externally induced changes and highly dependent on their coastal areas. This study summarises the published information on shallow-water hydrothermal vents of the Azores. These environments were reported to exhibit high metal concentration and acidified seawater due to the diffusion of acidic volcanic gases (mainly CO2) and a considerable temperature range.
    [Show full text]
  • Synthesis of Patterned Media by Self-Assembly of Magnetic
    Applied Sciences http://wjst.wu.ac.th https://doi.org/10.48048/wjst.2021.7306 Reductive Dechlorination of 1,2-dichloroethane to Ethylene by Anaerobic Enrichment Culture Containing Vulcanibacillus spp. Utumporn NGIVPROM1, Nipa MILINTAWISAMAI1,* and 2 Alissara REUNGSANG 1Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand 2Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand (*Corresponding author’s e-mail: [email protected]) Received: 10 August 2019, Revised: 26 March 2020, Accepted: 27 April 2020 Abstract Bioremediation has been widely used for clean-up of 1,2-dichloroethane (DCA) at contaminated sites. Only a small number of specific anaerobes, halorespiring bacteria (HRB), have been reported to degrade DCA. The goals of this research were the screening and isolation of HRB with capable dechlorination of DCA. HRB were screened and isolated from 7 enrichment cultures (ES1-ES7), from DCA-contaminated soils, on bicarbonate-buffered basal salts medium containing 10 mM acetate and 250 µM DCA under anaerobic conditions and analyzed by gas chromatography. The results showed that the mixed cultures of ES3 and ES5 could reductively dechlorinate DCA to ethylene via a direct reductive dihaloelimination pathway. In particular, ES5 showed rapid transformation of 250 µM DCA to ethylene within 6 days at 30 °C. Specific microbial populations of Vulcanibacillus spp., elucidated by polymerase chain reaction-denaturing gradient gel electrophoresis, were found only in ES3 and ES5, which was related to reductive dihaloelimination activities on DCA. A 16S rRNA gene analysis of isolate es5d8 from mixed culture ES5 revealed 2 strains of Vulcanibacillus spp.
    [Show full text]
  • Albirhodobacter Marinus Gen. Nov., Sp. Nov., a Member of the Family Rhodobacteriaceae Isolated from Sea Shore Water of Visakhapatnam, India
    Author version: Antonie van Leeuwenhoek, vol.103; 2013; 347-355 Albirhodobacter marinus gen. nov., sp. nov., a member of the family Rhodobacteriaceae isolated from sea shore water of Visakhapatnam, India Nupur1, Bhumika, Vidya1., Srinivas, T. N. R2,3, Anil Kumar, P1* 1Microbial Type Culture Collection and Gene bank, Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh - 160 036, INDIA 2National Institute of Oceanography (CSIR), Regional centre, P B No. 1913, Dr. Salim Ali Road, Kochi - 682018 (Kerala), INDIA Present Address: 3National Institute of Oceanography (CSIR), Regional centre, 176, Lawsons Bay Colony, Visakhapatnam - 530 017 (Andhra Pradesh), INDIA Address for correspondence* Dr. P. Anil Kumar Microbial Type Culture Collection and Gene bank Institute of Microbial Technology, Sector 39A, Chandigarh - 160 036, INDIA Email: [email protected] Phone: +91-172-6665170 1 Abstract A novel marine, Gram-negative, rod-shaped bacterium, designated strain N9T, was isolated from a water sample of the sea shore at Visakhapatnam, Andhra Pradesh (India). Strain N9T was found to be positive for oxidase and catalase activities. The fatty acids were found to be dominated by C16:0, C18:1 ω7c and summed in feature 3 (C16:1 ω7c and/or C16:1 ω6c). Strain N9T was determined to contain Q-10 as the major respiratory quinone and phosphatidylethanolamine, phosphatidylglycerol, two aminophospholipids, two phospholipids and four unidentified lipids as polar lipids. The DNA G+C content of the strain N9T was found to be 63 mol%. 16S rRNA gene sequence analysis indicated that Rhodobacter sphaeroides, Rhodobacter johrii, Pseudorhodobacter ferrugineus, Rhodobacter azotoformans, Rhodobacter ovatus and Pseudorhodobacter aquimaris were the nearest phylogenetic neighbours, with pair-wise sequence similarities of 95.43, 95.36, 94.24, 95.31, 95.60 and 94.74 % respectively.
    [Show full text]
  • Horizontal Operon Transfer, Plasmids, and the Evolution of Photosynthesis in Rhodobacteraceae
    The ISME Journal (2018) 12:1994–2010 https://doi.org/10.1038/s41396-018-0150-9 ARTICLE Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae 1 2 3 4 1 Henner Brinkmann ● Markus Göker ● Michal Koblížek ● Irene Wagner-Döbler ● Jörn Petersen Received: 30 January 2018 / Revised: 23 April 2018 / Accepted: 26 April 2018 / Published online: 24 May 2018 © The Author(s) 2018. This article is published with open access Abstract The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. 1234567890();,: 1234567890();,: The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA- like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae.
    [Show full text]
  • Limibaculum Halophilum Gen. Nov., Sp. Nov., a New Member of the Family Rhodobacteraceae
    TAXONOMIC DESCRIPTION Shin et al., Int J Syst Evol Microbiol 2017;67:3812–3818 DOI 10.1099/ijsem.0.002200 Limibaculum halophilum gen. nov., sp. nov., a new member of the family Rhodobacteraceae Yong Ho Shin,1 Jong-Hwa Kim,1 Ampaitip Suckhoom,2 Duangporn Kantachote2 and Wonyong Kim1,* Abstract A Gram-stain-negative, cream-pigmented, aerobic, non-motile, non-spore-forming and short-rod-shaped bacterial strain, designated CAU 1123T, was isolated from mud from reclaimed land. The strain’s taxonomic position was investigated by using a polyphasic approach. Strain CAU 1123T grew optimally at 37 C and at pH 7.5 in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CAU 1123T formed a monophyletic lineage within the family Rhodobacteraceae with 93.8 % or lower sequence similarity to representatives of the genera Rubrimonas, Oceanicella, Pleomorphobacterium, Rhodovulum and Albimonas. The major fatty acids were C18 : 1 !7c and 11-methyl C18 : 1 !7c and the predominant respiratory quinone was Q-10. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, two unidentified phospholipids, one unidentified aminolipid and one unidentified lipid. The DNA G+C content was 71.1 mol%. Based on the data from phenotypic, chemotaxonomic and phylogenetic studies, it is proposed that strain CAU 1123T represents a novel genus and novel species of the family Rhodobacteraceae, for which the name Limibaculumhalophilum gen. nov., sp. nov. The type strain is CAU 1123T (=KCTC 52187T, =NBRC 112522T). The family Rhodobacteraceae was first established by Garr- chemotaxonomic properties along with a detailed phyloge- ity et al.
    [Show full text]
  • Phylogenetic Diversity of Culturable Bacteria in Chaetoceros Gracilis Mass Culture System of a Marine Finfish Hatchery
    Available online at: www.mbai.org.in doi: 10.6024/jmbai.2017.59.2.2017-02 Phylogenetic diversity of culturable bacteria in Chaetoceros gracilis mass culture system of a marine finfish hatchery S. V. Sandhya, K. Preetha1, K. K. Vijayan2* ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O, PB No: 1603, Cochin, 682 018, Kerala, India. 1]School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India. 2Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, Raja Annamalai Puram, Chennai, Tamil Nadu, 600 028, India. *Correspondence e-mail: [email protected] Received: 12 Oct 2017 Accepted: 30 Dec 2017 Published: 10 Jan 2018 Original Article Abstract Keywords : Algal-bacterial association, live feed, culturable bacteria, Microalgae, a major live feed in aquaculture always coexist with aquaculture, molecular phylogeny associated bacteria. Hence a better understanding of algal-bacterial interaction is essential for maintaining a stable environment in intensive larval rearing tanks. Therefore, herein we attempted to determine the phylogenetic diversity of culturable bacteria associated with microalgal production system of a marine finfish hatchery with special Introduction reference to Chaetoceros gracilis mass culture. The sequencing of 16S rDNA of representative from each phylotypes revealed that the Aquaculture is the fastest growing food-producing sector in the associated microflora belong to the classesGammaproteo bacteria, world and it is estimated that 44.14 % of fish produced globally Alphaproteo bacteria, and Bacilli. In particular, members of Marinobacter is contributed by aquaculture (Dauda et al., 2018). Microalgae genus showed higher degree of association followed by Leisingera, are ideal candidates as major live feeds in aquaculture, especially Alteromonas, Nautella, Halomonas and Ruegeria.
    [Show full text]
  • Thermolongibacillus Cihan Et Al
    Genus Firmicutes/Bacilli/Bacillales/Bacillaceae/ Thermolongibacillus Cihan et al. (2014)VP .......................................................................................................................................................................................... Arzu Coleri Cihan, Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey Kivanc Bilecen and Cumhur Cokmus, Department of Molecular Biology & Genetics, Faculty of Agriculture & Natural Sciences, Konya Food & Agriculture University, Konya, Turkey Ther.mo.lon.gi.ba.cil’lus. Gr. adj. thermos hot; L. adj. Type species: Thermolongibacillus altinsuensis E265T, longus long; L. dim. n. bacillus small rod; N.L. masc. n. DSM 24979T, NCIMB 14850T Cihan et al. (2014)VP. .................................................................................. Thermolongibacillus long thermophilic rod. Thermolongibacillus is a genus in the phylum Fir- Gram-positive, motile rods, occurring singly, in pairs, or micutes,classBacilli, order Bacillales, and the family in long straight or slightly curved chains. Moderate alka- Bacillaceae. There are two species in the genus Thermo- lophile, growing in a pH range of 5.0–11.0; thermophile, longibacillus, T. altinsuensis and T. kozakliensis, isolated growing in a temperature range of 40–70∘C; halophile, from sediment and soil samples in different ther- tolerating up to 5.0% (w/v) NaCl. Catalase-weakly positive, mal hot springs, respectively. Members of this genus chemoorganotroph, grow aerobically, but not under anaer- are thermophilic (40–70∘C), halophilic (0–5.0% obic conditions. Young cells are 0.6–1.1 μm in width and NaCl), alkalophilic (pH 5.0–11.0), endospore form- 3.0–8.0 μm in length; cells in stationary and death phases ing, Gram-positive, aerobic, motile, straight rods. are 0.6–1.2 μm in width and 9.0–35.0 μm in length.
    [Show full text]
  • Identification of Microbiological Activities in Wet Flue Gas Desulfurization Systems
    fmicb-12-675628 June 23, 2021 Time: 17:59 # 1 ORIGINAL RESEARCH published: 28 June 2021 doi: 10.3389/fmicb.2021.675628 Identification of Microbiological Activities in Wet Flue Gas Desulfurization Systems Gregory Martin1†, Shagun Sharma1,2, William Ryan1, Nanda K. Srinivasan3 and John M. Senko1,2,4* 1 Department of Biology, The University of Akron, Akron, OH, United States, 2 Integrated Bioscience Program, The University of Akron, Akron, OH, United States, 3 Electric Power Research Institute, Palo Alto, CA, United States, 4 Department of Geosciences, The University of Akron, Akron, OH, United States Thermoelectric power generation from coal requires large amounts of water, much of Edited by: which is used for wet flue gas desulfurization (wFGD) systems that minimize sulfur Anna-Louise Reysenbach, emissions, and consequently, acid rain. The microbial communities in wFGDs and Portland State University, throughout thermoelectric power plants can influence system performance, waste United States processing, and the long term stewardship of residual wastes. Any microorganisms Reviewed by: Nils-Kaare Birkeland, that survive in wFGD slurries must tolerate high total dissolved solids concentrations University of Bergen, Norway (TDS) and temperatures (50–60◦C), but the inocula for wFGDs are typically from Hannah Schweitzer, UiT The Arctic University of Norway, fresh surface waters (e.g., lakes or rivers) of low TDS and temperatures, and whose Norway activity might be limited under the physicochemically extreme conditions of the wFGD. *Correspondence: To determine the extents of microbiological activities in wFGDs, we examined the John M. Senko microbial activities and communities associated with three wFGDs. O consumption [email protected] 2 ◦ † Present address: rates of three wFGD slurries were optimal at 55 C, and living cells could be detected Gregory Martin, microscopically, indicating that living and active communities of organisms were present Division of Plant and Soil Sciences, in the wFGD and could metabolize at the high temperature of the wFGD.
    [Show full text]
  • Albidovulum Xiamenense Sp. Nov., a Moderately Thermophilic Bacterium from a Terrestrial Hot Spring
    International Journal of Systematic and Evolutionary Microbiology (2012), 62, 1609–1612 DOI 10.1099/ijs.0.034454-0 Albidovulum xiamenense sp. nov., a moderately thermophilic bacterium from a terrestrial hot spring Decui Yin,1,2 Jing Xiao,2 Jingqun Ao,2 Chunxiang Ai1 and Xinhua Chen2 Correspondence 1School of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, Fujian, Xinhua Chen PR China [email protected] 2Laboratory of Marine Biogenetic Resources of State Oceanic Administration, Chunxiang Ai Third Institute of Oceanography, Xiamen 361005, Fujian, PR China [email protected] An aerobic, motile, moderately thermophilic, rod-shaped bacterium, strain YBY-7T, was isolated from a terrestrial hot spring of a garden exhibition located in Xiamen City, Fujian Province, People’s Republic of China. Cells of strain YBY-7T were Gram-negative, irregular rods, 2–6 mm long and 0.4–0.6 mm wide, with polar flagella, and the organism formed beige colonies. The temperature and pH ranges for growth of strain YBY-7T were 28–65 6C (optimum 50–58 6C) and pH 6.5–9.5 (optimum pH 7.5–8.5). Growth occurred in the presence of 5.5 % NaCl (optimum 3.0 %). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that Albidovulum inexpectatum FRR-10T was its closest neighbour (95.9 % similarity). Ubiquinone (Q-10) was the sole respiratory quinone and the DNA G+C content of strain YBY-7T was 70.6 mol%. The predominant polar lipids were phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids were C18 : 1v7c (29.3 %), C19 : 0 cyclo v8c (25.6 %), C18 : 0 (23.6 %) and C16 : 0 (9.6 %).
    [Show full text]
  • Amplicons’ from Whole-Metagenome Datasets
    Kelpie: generating full-length `amplicons' from whole-metagenome datasets Paul Greenfield1,2,3, Nai Tran-Dinh1 and David Midgley1 1 Commonwealth Scientific and Industrial Research Organisation, North Ryde, NSW, Australia 2 School of Biological Sciences, Macquarie University, Australia 3 School of Information Technologies, University of Sydney, Australia ABSTRACT Introduction. Whole-metagenome sequencing can be a rich source of information about the structure and function of entire metagenomic communities, but getting accurate and reliable results from these datasets can be challenging. Analysis of these datasets is founded on the mapping of sequencing reads onto known genomic regions from known organisms, but short reads will often map equally well to multiple regions, and to multiple reference organisms. Assembling metagenomic datasets prior to mapping can generate much longer and more precisely mappable sequences but the presence of closely related organisms and highly conserved regions makes metagenomic assembly challenging, and some regions of particular interest can assemble poorly. One solution to these problems is to use specialised tools, such as Kelpie, that can accurately extract and assemble full-length sequences for defined genomic regions from whole- metagenome datasets. Methods. Kelpie is a kMer-based tool that generates full-length amplicon-like se- quences from whole-metagenome datasets. It takes a pair of primer sequences and a set of metagenomic reads, and uses a combination of kMer filtering, error correction and assembly techniques to construct sets of full-length inter-primer sequences. Results. The effectiveness of Kelpie is demonstrated here through the extraction and assembly of full-length ribosomal marker gene regions, as this allows comparisons with conventional amplicon sequencing and published metagenomic benchmarks.
    [Show full text]
  • Novel Nitrite Reductase Domain Structure Suggests a Chimeric
    Novel nitrite reductase domain structure suggests a chimeric denitrification repertoire in Phylum Chloroflexi Sarah Schwartz1, Lily Momper1, L. Thiberio Rangel1, Cara Magnabosco2, Jan Amend3, and Gregory Fournier1 1Massachusetts Institute of Technology 2ETH Zurich 3University of Southern California June 11, 2021 Abstract Denitrification plays a central role in the global nitrogen cycle, reducing and removing nitrogen from marine and terrestrial ecosystems. The flux of nitrogen species through this pathway has a widespread impact, affecting ecological carrying capacity, agriculture, and climate. Nitrite reductase (Nir) and nitric oxide reductase (NOR) are the two central enzymes in this pathway. Here we present a previously unreported Nir domain architecture in members of Phylum Chloroflexi. Phylogenetic analyses of protein domains within Nir indicate that an ancestral horizontal transfer and fusion event produced this chimeric domain architecture. We also identify an expanded genomic diversity of a rarely reported nitric oxide reductase subtype, eNOR. Together, these results suggest a greater diversity of denitrification enzyme arrangements exist than have been previously reported. RESEARCH PAPER TITLE: Novel nitrite reductase domain structure suggests a chimeric denitrification repertoire in Phylum Chloroflexi SHORT TITLE: Novel Denitrification Architecture in Chloroflexi Sarah L. Schwartz1,2*, Lily M. Momper2,3, L. Thiberio Rangel2, Cara Magnabosco4, Jan P. Amend5,6, and Gregory P. Fournier2 1. Microbiology Graduate Program, Massachusetts Institute of Technology 2. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology 3. Exponent, Inc., Pasadena, CA 4. Department of Earth Sciences, ETH Zurich 5. Department of Earth Sciences, University of Southern California 6. Department of Biological Sciences, University of Southern California *Correspondence: [email protected], +1 (415) 497-1747 SUMMARY Denitrification plays a central role in the global nitrogen cycle, reducing and removing nitrogen from ma- rine and terrestrial ecosystems.
    [Show full text]