Antioxidant Activity on Pigments of Bacterial Symbionts of Soft Coral from Jepara Sea

Total Page:16

File Type:pdf, Size:1020Kb

Antioxidant Activity on Pigments of Bacterial Symbionts of Soft Coral from Jepara Sea Indones. J. Nat. Pigm., Vol. 02, No. 2 (2020), 43–47 Antioxidant Activity on Pigments of Bacterial Symbionts of Soft Coral From Jepara Sea Ahmad Fuad Masduqia*, Yuvianti Dwi Franyotoa, Lia Kusmitaa, Sakti Muchlisinb, Prasetyo Abi Widyanantob, Sulistyanic, and Diah Permata Wijayantid a STIFAR Yayasan Pharmasi SemaranG, SemaranG 50193, Central Java, Indonesia b Tropical Marine BiotechnoloGy Laboratory, DiponeGoro University, SemaranG 50275, Central Java, Indonesia c Faculty of Public Health, DiponeGoro University, SemaranG 50275, Central Java, Indonesia d Faculty of Fisheries and Marine Science DiponeGoro University, SemaranG 50275, Central Java, Indonesia * CorrespondinG Authors: [email protected] Article History: Received 17 July 2020, Revised 28 August 2020, Accepted 28 August 2020, Available Online 31 August 2020 Abstract Soft corals have been known to produce secondary metabolites, some of them may have anticancer, antifouling, antibacterial and antioxidants activities. Symbiont bacteria on the soft coral can produce bioactive compounds that play an important role in chemical ecology as well as a marine natural product. Marine bacteria associated with soft coral collected from Jepara were successfully isolated on medium ZoBell 2216E and screened to synthesize the pigment. This approach has allowed the use of this organism as an environmentally friendly alternative source of natural pigment. This study found 25 bacteria have been isolated from 6 types of soft coral. Out of 25 bacterial isolates, only 3 bacteria (PCl 1, PS2 1, and PSa 2) positively contains pigments. Pigments analysis with UV- Vis spectrophotometric method showed the wavelength of pigments were in the range 300-600 nm. Moleculer identification was carried out by PCR using 16S rDNA while the preliminary antioxidant activity was tested with the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. From the results of molecular identification by 16S rDNA method, it was shown that bacterium PCl 1, PS2 1, and PSa 2 was closely related to Pseudomonas stutzeri, Ponticoccus Gilvus, Bacillus marisflavi with 99%, 99%, and 98% homology value. The antioxidant activity is as follows: PCl 1>PS2 1>PSA 2. Bacterial symbionts of Soft Coral from Jepara Sea: Three isolates, PCl 1, PS2 1, and PSa 2 have been succesfullt isolated. From the results of molecular identification by 16S rDNA method, it was shown that bacterium PCl 1, PS2 1, and PSa 2 was closely related to Pseudomonas stutzeri, Ponticoccus Gilvus, Bacillus marisflavi with 99%, 99%, and 98% homology value. Antioxidant activity is as follows: PCl 1>PS2 1>PSA 2. Cladiella Plexauride Sarcophyton © 2020 MRCPP Publishing. All rights reserved. http://doi.org/10.33479/ijnp.2020.02.2.43 Keywords: Bacterial Symbiont, Soft Coral, Carotenoid, Antioxidant Activity INTRODUCTION Symbionts bacteria can play a role as a potential new source for Antioxidant is a molecule that inhibits the oxidation of other carotenoid because of its environmentally friendly and can be mass- molecules. Oxidation is a chemical reaction that can produce free cultured in a relatively short amount of time [3]. Further, soft coral radicals, leading to chain reactions that may damage cells. Pigment and marine bacteria relationship are one of the good marine is natural antioxidants commonly found in the earth, one of which is symbiosis that would be potential as the carotenoid sources. Kusmita carotenoid. This pigment is a powerful antioxidant, protecting the et al. (2007) have examined the antioxidant activity of carotenoids cells of the body damage caused by free radical. It would have to from soft coral symbionts bacteria from Karimunjawa which have remove the free radical from the system either by reacting with them the potential as an antioxidant [4]. The huge diversity of these to yield a harmless product or by disrupting free radical chain marine organisms offers a tremendous opportunity for carotenoids reactions [1]. production as such a way due to their environmentally friendly Carotenoid is also found in microorganisms such as fungi and waste, more safety during the processing, and lower cost for pigment bacteria. Carotenoid research on bacteria symbionts was still few, production. This avenue would further be possible to gain new especially marine bacteria symbionts. Radjasa (2003) stated that findings in pigments discovery. This path will further make it symbiont bacteria produce pigment similar then the host [2]. possible to find new discoveries in pigment discovery. Especially Masduqi et al. (2020) 43 Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence Indones. J. Nat. Pigm., Vol. 02, No. 2 (2020), 43–47 pigments from marine symbiont microorganisms which are potential and continued by the successive denaturation at 94°C for 1 min. and do not damage the environment to explore them. Then, the annealing and extension processes were continued at The purpose of this study was to determine the antioxidant temperatures of 55°C for 1 min and 72°C for 2 mins, respectively. activity of the carotenoid pigments of soft coral symbionts. The Each of the above steps (denaturation, annealing, and extension) was antioxidant activity was seen from the% inhibition at the same repeated for 45 times [6]. The agarose 2% was utilized for the concentration. electrophoresis stage, followed by the sequencing processing [5]. The homology search and DNA data bank were provided by BLAST EXPERIMENTAL [7]. The samples consisted of soft coral were taken from Panjang Island, Indonesia. Firstly, the soft corals were collected and put into Activity Antioxidants a plastic bag, then kept temporarily in a cool box. The samples were Pigments extracts were dissolved with methanol and were made cleaned three times using sterile seawater to remove the bacteria that with 1,000 ppm concentration. Then 3 mL of the extract was added someway attached to the surface. Then, the sample surfaces were with 1 mL of 0.01 mM DPPH solution and let it stand for 30 minutes. homogenized and serially diluted from 10-1 until 10-5. From each Antioxidant activity was measured using spectrophotometer at 517 dilution, 1 mL sample was taken and transferred into petri dishes nm wavelength. Assays were done according to the method reported which had previously been poured with agar Zobell 2216E medium. by Panovska et.al. (2005) [8]. The percentage of antioxidant activity The dishes were subsequently incubated at 30°C for two days. was calculated using the following formula: Isolation bacteria was carried out by spreading method [5]. Colonies [DPPH] - [DPPH] displaying hues of yellow and orange were selected and purified. %Inhibitory= o s x 100 % (1) [DPPH]o Extraction of bacterial pigments whereas [DPPH]o = initial concentration of DPPH, and [DPPH]s = Zobell 2216E broth medium was employed to culture the remain concentration of DPPH. bacterial pigments, then followed by centrifugation of bacterial pellet. A total of five gram of pellets was collected and extracted with cold methanol using sonication as previously described [1]. RESULTS AND DISCUSSION Pigments were identified Results Raw pigments extracts obtained from extraction were analyzed The sample used in this study was photosynthetic bacteria that using Spektrofotometer UV-Vis. This analyzed showed the live symbiotically with soft coral. The isolation of bacteria on the wavelength of carotenoid were in the range 300-600 nm. culture media of Zobell 2216E indicated a good result with 25 isolates, in which 3 isolates produced pigments. These are PCl 1, DNA extraction and 16SrDNA PCR PS2 1, and PSa 2, which are from the different hosts. The bacterial symbiont PCl 1 comes from the Cladiella host, PS2 1 comes from Genomic DNA of the isolate SJ04 was performed based on Plexauridae host, and PSa 2 comes from Sarcophyton host. The host freeze and thaw method [13]. For PCR amplification, the universal of soft coral was shown in Figure 1 and the result of carotenoids primers 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and extraction in soft coral symbiont bacterial was shown in Figure 2. Eubacteria-specific primer 1492R (5'- To ensure that the extraction is carotenoid pigments type, TACGGYTACCTTGTTACGACTT-3') were employed as the therefore it is necessary to analyze the spectral pattern by using UV- primers for 16S rDNA PCR. The amplification process was started Vis spectrophotometer. The results of each bacterium analysis were by doing initial denaturation under a temperature of 94°C for 2 mins shown in the following Figure 3. (a) (b) (c) Figure 1. The host of soft coral from bacterial symbiont (a) (b) Figure 2. (a) Symbiont bacterial cultures that produce carotenoids and (b) carotenoids extract from bacterial symbionts Masduqi et al. (2020) 44 Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence Indones. J. Nat. Pigm., Vol. 02, No. 2 (2020), 43–47 0.20 0.20 0.15 0.15 0.10 0.10 Absorbance Absorbance 0.05 0.05 0.00 0.00 350 400 450 500 550 350 400 450 500 550 Wavelenght (nm) Wavelenght (nm) (a) (b) 0.30 0.25 0.20 0.15 Absorbance 0.10 0.05 0.00 350 400 450 500 550 Wavelenght (nm) (c) Figure 3. UV-Vis spectrum pattern of crude extract of bacterial carotenoid (a) PCl 1, (b) PS2 1, (c) PSa 2 Antioxidant activity assay from carotenoid bacterial symbionts using DPPH method. The antioxidant activity from carotenoid bacterial symbionts is presented in Figure 4. Figure 4. Inhibition percentage of pigments bacterial symbionts PCl 1, PS2 1, PSa 2 using DPPH method Figure 5. The electrophoresis result of 16S rDNA PCR single band. The presence of the bacterial DNA isolates of PCl 1, PS2 1, and PSa 2 were detected in DNA amplification using 16S rDNA PCR The relationship of the bacterial isolate with the other suggesting a positive result along with appropriate base length at microorganisms was expressed in the phylogenetic tree as shown in approximately 1500 bp, as illustrated in Figure 5.
Recommended publications
  • Which Organisms Are Used for Anti-Biofouling Studies
    Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E.
    [Show full text]
  • Roseovarius Azorensis Sp. Nov., Isolated from Seawater At
    Author version: Antonie van Leeuwenhoek, vol.105(3); 2014; 571-578 Roseovarius azorensis sp. nov., isolated from seawater at Espalamaca, Azores Raju Rajasabapathy • Chellandi Mohandass • Syed Gulam Dastager • Qing Liu • Thi-Nhan Khieu • Chu Ky Son • Wen-Jun Li • Ana Colaco Raju Rajasabapathy · Chellandi Mohandass* Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India. E-mail: [email protected] Syed Gulam Dastager NCIM Resource Center, CSIR-National Chemical Laboratory, Dr. Homi Bhabha road, Pune 411 008, India Qing Liu · Thi-Nhan Khieu · Wen-Jun Li Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, P.R. China Thi-Nhan Khieu · Chu Ky Son School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Vietnam Ana Colaco IMAR-Department of Oceanography and Fisheries, University Açores, Cais de Sta Cruz, 9901-862, Horta, Portugal Abstract A Gram-negative, motile, non-spore forming, rod shaped aerobic bacterium, designated strain SSW084T, was isolated from a surface seawater sample collected at Espalamaca (38°33’N; 28°39’W), Azores. Growth was found to occur from 15 – 40 °C (optimum 30 °C), at pH 7.0 – 9.0 (optimum pH 7.0) and with 25 to 100 % seawater or 0.5 – 7.0 % NaCl in the presence of Mg2+ and Ca2+; no growth was found with NaCl alone. Colonies on seawater nutrient agar (SWNA) were observed to be punctiform, white, convex, circular, smooth, and translucent. Strain SSW084T did not grow on Zobell Marine Agar (ZMA) and tryptic soy agar (TSA) even when seawater supplemented. The major respiratory quinone was found to be Q-10 and the G+C content was determined to be 61.9 mol%.
    [Show full text]
  • Molecular Profiling of Culturable Bacteria from Portable Drinking Water Filtration Systems and Tap Water in Three Cities of Metro Manila, Philippines
    International Journal of Philippine Science and Technology, Vol. 08, No. 2, 2015 24 ARTICLE Molecular profiling of culturable bacteria from portable drinking water filtration systems and tap water in three cities of Metro Manila, Philippines Edward A. Barlaan*, Janina M. Guarte, and Chyrene I. Moncada Molecular Diagnostics Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, 1101, Philippines Abstract—Many consumers drink filtered water from portable filtration system or directly from tap water. However, microbial community composition in portable drinking water filtration systems has not yet been investigated. This study determined the molecular profile of culturable bacteria in biofilms and filtered water from portable drinking water filtration systems and tap water in three key cities of Metro Manila, Philippines. A total of 97 isolates were obtained using different growth media and characterized based on 16S rRNA gene sequences. Most bacteria were isolated from biofilms, followed by filtered water and the least from tap water. Many isolates were affiliated with Proteobacteria (α, β, and γ), Actinobacteria, Firmicutes and Bacteriodetes; some had no matches or low affiliations in data bank. Many isolates were associated with bacteria that were part of normal drinking water flora. Some were affiliated with opportunistic bacterial pathogens, soil bacteria and activated sludge bacteria. The presence of soil and opportunistic bacteria may pose health risks when immunocompromised consumers directly drink the tap water. Some isolates had very low percentage homology with bacterial affiliates or without matches in the data bank suggesting different identities or novelty of the isolates. Further studies are needed for different portable filtration systems available in the market, drinking water quality status of other areas and functions of the isolated bacteria.
    [Show full text]
  • Behavioral Abnormalities of the Gut Microbiota Underlie Alzheimer’S Disease Development and Progression
    Journal of Research in Medical and Dental Science 2018, Volume 6, Issue 5, Page No: 246-263 Copyright CC BY-NC 4.0 Available Online at: www.jrmds.in eISSN No. 2347-2367: pISSN No. 2347-2545 The Gut Microbiota-brain Signaling: Behavioral Abnormalities of The Gut Microbiota Underlie Alzheimer’s Disease Development and Progression. Dictatorship or Bidirectional Relationship? Menizibeya O Welcome* Department of Physiology, College of Health Sciences, The Nile University of Nigeria, Nigeria ABSTRACT Over the past decades, renewed research interest revealed crucial role of the gut microbiota in a range of health abnormalities including neurodevelopmental, neurodegenerative and neuropsychiatric diseases such as multiple sclerosis, autism spectrum disorders, and schizophrenia. More recently, emerging studies have shown that dysfunctions in gut microbiota can trigger the development or progression of Alzheimer’s disease (AD), which is the most common neurodegenerative disease worldwide. This paper presents a state-of-the-art review of recent data on the association between dysfunctions of the gut microbiota and AD development and progression. The review stresses on the functional integrity and expression of sealing and leaky junctional complexes of the intestinal and blood-brain barriers as well as contemporary understanding of the multiple mechanisms that underlie the association between barrier dysfunctions and β-amyloid accumulation, resulting to neuro inflammation and subsequently, progressive decrease in cognitive functions. Key determinants of cerebral amyloid accumulation and abnormal gut microbiota are also discussed. Very recent data on the interaction of the gut microbiota and local/distant immunocytes as well as calcium signaling defects that predispose to AD are also discussed.
    [Show full text]
  • Quorum Sensing of Microalgae Associated Marine Ponticoccus Sp
    Chi et al. AMB Expr (2017) 7:59 DOI 10.1186/s13568-017-0357-6 ORIGINAL ARTICLE Open Access Quorum sensing of microalgae associated marine Ponticoccus sp. PD‑2 and its algicidal function regulation Wendan Chi1, Li Zheng1,2*, Changfei He1, Bin Han1, Minggang Zheng1, Wei Gao1, Chengjun Sun1,2, Gefei Zhou3 and Xiangxing Gao4 Abstract Quorum sensing (QS) systems play important roles in regulating many physiological functions of microorganisms, such as biofilm formation, bioluminescence, and antibiotic production. One marine algicidal bacterium, Ponticoc- cus sp. PD-2, was isolated from the microalga Prorocentrum donghaiense, and its N-acyl-homoserine lactone (AHL)- mediated QS system was verified. In this study, we analyzed the AHLs profile of strain PD-2. Two AHLs, 3-oxo-C8-HSL and 3-oxo-C10-HSL, were detected using a biosensor overlay assay and GC–MS methods. Two complete AHL-QS systems (designated zlaI/R and zlbI/R) were identified in the genome of strain PD-2. When expressed in Escherichia coli, both zlaI and zlbI genes could each produce 3-oxo-C8-HSL and 3-oxo-C10-HSL. Algicidal activity was investigated by evaluating the inhibitory rate (IR) of microalgae growth by measuring the fluorescence of viable cells. We found that the metabolites of strain PD-2 had algicidal activity against its host P. donghaiense (IR 84.81%) and two other red tide microalgae, Phaeocystis globosa (IR 78.91%) and Alexandrium tamarense (IR 67.14%). β-cyclodextrin which binds to AHLs and inhibits the QS system reduced the algicidal activity more than 50%. This indicates that inhibiting the QS system may affect the algicidal metabolites production of strain PD-2.
    [Show full text]
  • Cultivable Bacterial Diversity Along the Altitudinal Zonation and Vegetation Range of Tropical Eastern Himalaya
    Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical Eastern Himalaya Nathaniel A. Lyngwi1, Khedarani Koijam1, D. Sharma2 & S. R. Joshi1 1. Microbiology Laboratory, Department of Biotechnology & Bioinformatics North-Eastern Hill University, Shillong Meghalaya, India; [email protected], [email protected], [email protected], [email protected] 2. Research Officer, Regional Centre-NAEB, North-Eastern Hill University, Shillong, Meghalaya, India. Received 27-II-2012. Corrected 10-VIII-2012. Accepted 19-IX-2012. Abstract: The Northeastern part of India sprawls over an area of 262 379km2 in the Eastern Himalayan range. This constitutes a biodiversity hotspot with high levels of biodiversity and endemism; unfortunately, is also a poorly known area, especially on its microbial diversity. In this study, we assessed cultivable soil bacterial diversity and distribution from lowlands to highlands (34 to 3 990m.a.s.l.). Soil physico-chemical parameters and forest types across the different altitudes were characterized and correlated with bacterial distribution and diversity. Microbes from the soil samples were grown in Nutrient, Muller Hinton and Luria-Bertani agar plates and were initially characterized using biochemical methods. Parameters like dehydrogenase and urease activi- ties, temperature, moisture content, pH, carbon content, bulk density of the sampled soil were measured for each site. Representative isolates were also subjected to 16S rDNA sequence analysis. A total of 155 cultivable bacte- rial isolates were characterized which were analyzed for richness, evenness and diversity indices. The tropical and sub-tropical forests supported higher bacterial diversity compared to temperate pine, temperate conifer, and sub-alpine rhododendron forests. The 16S rRNA phylogenetic analysis revealed that Firmicutes was the most common group followed by Proteobacteria and Bacteroidetes.
    [Show full text]
  • Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
    Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju.
    [Show full text]
  • Aestuariicoccus Marinus Gen. Nov., Sp. Nov., Isolated from Sea-Tidal Flat Sediment
    TAXONOMIC DESCRIPTION Feng et al., Int J Syst Evol Microbiol 2018;68:260–265 DOI 10.1099/ijsem.0.002494 Aestuariicoccus marinus gen. nov., sp. nov., isolated from sea-tidal flat sediment Tingye Feng,1 Sang Eun Jeong,1 Kyung Hyun Kim,1 Hye Yoon Park1,2 and Che Ok Jeon1,* Abstract A Gram-stain-negative, strictly aerobic and halotolerant bacterial strain, designated strain NAP41T, was isolated from a sea tidal flat in the Yellow Sea of South Korea. Cells were non-motile cocci showing oxidase- and catalase-positive activities. Growth of strain NAP41T was observed at 15–40 C (optimum, 37 C), at pH 6.5–9.0 (optimum, pH 7.0–7.5) and in the presence of T 0.5–12 % (w/v) NaCl (optimum, 2 %). Strain NAP41 contained summed feature 8 (comprising C18 : !7c/C18 : 1!6c) and C18 : 0 as the major fatty acids and ubiquinone-10 as the sole isoprenoid quinone. Phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, an unidentified aminolipid and three unidentified lipids were detected as the polar lipids. The G+C content of the genomic DNA was 56.0 mol%. Strain NAP41T was most closely related to Primorskyibacter insulae SSK3-2T, Thalassococcus lentus YCS-24T and Roseivivax lentus DSM 29430T with 96.67, 96.39 and 96.39 % 16S rRNA gene sequence similarities, respectively, and formed a phylogenetic lineage distinct from closely related taxa within the family Rhodobacteraceae with low bootstrap values. On the basis of phenotypic, chemotaxonomic and molecular properties, strain NAP41T represents a novel species of a novel genus of the family Rhodobacteraceae, for which the name Aestuariicoccus marinus gen.
    [Show full text]
  • Forest Herb Pulmonaria Officinalis L
    Among-Population Variation in Microbial Community Structure in the Floral Nectar of the Bee-Pollinated Forest Herb Pulmonaria officinalis L Hans Jacquemyn1*, Marijke Lenaerts2,3, Rein Brys1, Kris Willems2,3, Olivier Honnay1, Bart Lievens2,3 1 Division of Plant Ecology and Systematics, Biology Department, KU Leuven, Heverlee, Belgium, 2 Laboratory for Process Microbial Ecology and Bioinspirational Management, Thomas Moore University College, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium, 3 Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium Abstract Background: Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition. Methodology/Principal Findings: We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0–4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2–13) OTUs0.03 and 7.9 (range 2–16) OTUs0.01 per population were found for bacteria.
    [Show full text]
  • Rhabdonatronobacter Sediminivivens Gen. Nov., Sp. Nov. Isolated from the Sediment of Hutong Qagan Soda Lake
    Rhabdonatronobacter Sediminivivens gen. nov., sp. nov. Isolated from the Sediment of Hutong Qagan Soda Lake Heng Zhou Institute of Microbiology Chinese Academy of Sciences Ming Yang Institute of Microbiology Chinese Academy of Sciences Qiong Xue Institute of Microbiology Chinese Academy of Sciences Shengjie Zhang Institute of Microbiology Chinese Academy of Sciences Jian Zhou Institute of Microbiology Chinese Academy of Sciences Dahe Zhao ( [email protected] ) Institute of Microbiology Chinese Academy of Sciences https://orcid.org/0000-0003-0312-6824 Hua Xiang Institute of Microbiology Chinese Academy of Sciences Research Article Keywords: Rhodobacteraceae, Rhabdonatronobacter, Soda lake, Whole genome sequence Posted Date: May 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-502262/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract A novel Gram-stain negative bacterium, designated IM2376T, was isolated from the sediment of Hutong Qagan Lake in Ordos, Inner Mongolia Autonomous Region of China. The strain IM2376T had the highest similarity with Roseinatronobacter thiooxidans DSM 13087T (96.18%) and Rhodobaca bogoriensis LBB1T (96.18%) of the family Rhodobacteraceae according to 16S rRNA gene sequence comparison. Genomic relatedness analyses showed that strain IM2376T was clearly distinguished from other species in the family Rhodobacteraceae, with average nucleotide identities, amino acid identities and in silico DNA-DNA hybridization values not more than 74.1%, 68.5% and 20.2%. The fatty acid was mainly composed of C18:1ω7c (64.86%), iso-C16:0 (16.33%) and C16: 1ω7c/C16:1ω6c (6.02%). The major polar lipid was diphosphatidyl glycerol, phosphatidylglycerol and phosphatidylcholine.
    [Show full text]
  • I Bacterial Classifications in the Genomic Era by Kevin Liang A
    ! ! #$%&'("$)!*)$++","%$&"-.+!".!&/'!0'.-1"%!2($! 34! ! 5'6".!7"$.8! ! ! ! 9!&/'+"+!+:31"&&';!".!<$(&"$)!,:),"))1'.&!-,!&/'!('=:"('1'.&+!,-(!&/'!;'8(''!-,! ! >$+&'(!-,!?%"'.%'! ".! >"%(-3"-)-84!$.;!#"-&'%/.-)-84! ! ! ! @'<$(&1'.&!-,!#"-)-8"%$)!?%"'.%'+! A."6'(+"&4!-,!9)3'(&$! ! ! ! B!5'6".!7"$.8C!DEDE! ! ! "! "#$%&'(%! ! #$%&'("$)!&$F-.-14!"+!$.!".&'8($)!<$(&!-,!$))!;"+%"<)".'+!G"&/".!&/'!,"');!-,!1"%(-3"-)-84C! $+!"&!$))-G+!('+'$(%/'(+!&-!%-11:."%$&'!('+:)&+!',,"%"'.&)4C!+&('$1)".".8!8)-3$)!%-))$3-($&"-.H!I/'! :)&"1$&'!8-$)!-,!3$%&'("$)!&$F-.-14!"+!&-!%('$&'!8(-:<+!-,!-(8$."+1+!3$+';!.-&!-.)4!-.!+/$(';! </'.-&4<"%!$.;!8'.-1"%!&($"&+C!3:&!$)+-!$!%-11-.!'6-):&"-.$(4!/"+&-(4H!I-!$%/"'6'!&/"+!8-$)C!&/'! <-)4</$+"%!$<<(-$%/C!G/"%/!'F$1".'+!</'.-&4<"%C!8'.-1"%!$.;!</4)-8'.'&"%!;$&$C!"+!,$6-(';H! 9)&/-:8/!&/'!&/(''!1$J-(!%-1<-.'.&+!-,!<-)4</$+"%!&$F-.-14!('1$".!:.%/$.8';!+".%'!"&!G$+! ,"(+&!<(-<-+';!".!KLMNC!&/'!1'&/-;+!".!G/"%/!G'!$++'++!&/'+'!$+<'%&+!/$6'!"1<(-6';!+"8.","%$.&)4! ;:'!&-!&/'!$3:.;$.%'!-,!G/-)'!8'.-1'!+'=:'.%'+!OP0?Q!$6$")$3)'H!R.!$;;"&"-.C!P0?!/$+!$)+-! +'(6';!$+!&/'!3$+"+!,-(!;'6')-<".8!/"8/S('+-):&"-.!+:3+<'%"'+!)'6')!%)$++","%$&"-.!&'%/."=:'+H!I/'! ('+'$(%/!<('+'.&';!".!&/"+!&/'+"+!&/'(',-('!,-%:+'+!-.!3-&/!$<<)4".8!1-;'(.!&'%/."=:'+!&-!&/'! <-)4</$+"%!$<<(-$%/!&-!&$F-.-14!$.;!;'6')-<".8!$!+&$.;$(;"T';C!'$+4S&-S:+'!/"8/S('+-):&"-.! +:3+<'%"'+!&4<".8!&'%/."=:'H! ! I($;"&"-.$))4C!&/'!KM?!(UV9!8'.'!/$+!3''.!:+';!&-!$++'++!8'.-1"%!$.;!</4)-8'.'&"%! (')$&"-.+/"<+!,-(!&$F-.-1"%!<:(<-+'+H!9)&/-:8/!"&!"+!.-G!G";')4!W.-G.!&/$&!KM?!(@V9!"+!.-&!
    [Show full text]
  • High-Throughput Sequencing Analysis of the Actinobacterial Spatial Diversity in Moonmilk Deposits
    antibiotics Article High-Throughput Sequencing Analysis of the Actinobacterial Spatial Diversity in Moonmilk Deposits Marta Maciejewska 1, Magdalena Całusi ´nska 2 ID , Luc Cornet 3, Delphine Adam 1, Igor S. Pessi 1, Sandrine Malchair 4, Philippe Delfosse 2, Denis Baurain 3, Hazel A. Barton 5, Monique Carnol 4 and Sébastien Rigali 1,* ID 1 InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liège, Belgium; [email protected] (M.M.); [email protected] (D.A.); [email protected] (I.S.P.) 2 Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg; [email protected] (M.C.); [email protected] (P.D.) 3 InBioS—PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, B-4000 Liège, Belgium; [email protected] (L.C.); [email protected] (D.B.) 4 InBioS—Plant and Microbial Ecology, Botany B22, University of Liège, B-4000 Liège, Belgium; [email protected] (S.M.); [email protected] (M.C.) 5 Department of Biology, University of Akron, Akron, OH 44325, USA; [email protected] * Correspondence: [email protected]; Tel.: +32-4-366-9830 Received: 12 February 2018; Accepted: 16 March 2018; Published: 21 March 2018 Abstract: Moonmilk are cave carbonate deposits that host a rich microbiome, including antibiotic-producing Actinobacteria, making these speleothems appealing for bioprospecting. Here, we investigated the taxonomic profile of the actinobacterial community of three moonmilk deposits of the cave “Grotte des Collemboles” via high-throughput sequencing of 16S rRNA amplicons. Actinobacteria was the most common phylum after Proteobacteria, ranging from 9% to 23% of the total bacterial population.
    [Show full text]