Gentian Mycorrhizae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
<I>Hydropus Mediterraneus</I>
ISSN (print) 0093-4666 © 2012. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/121.393 Volume 121, pp. 393–403 July–September 2012 Laccariopsis, a new genus for Hydropus mediterraneus (Basidiomycota, Agaricales) Alfredo Vizzini*, Enrico Ercole & Samuele Voyron Dipartimento di Scienze della Vita e Biologia dei Sistemi - Università degli Studi di Torino, Viale Mattioli 25, I-10125, Torino, Italy *Correspondence to: [email protected] Abstract — Laccariopsis (Agaricales) is a new monotypic genus established for Hydropus mediterraneus, an arenicolous species earlier often placed in Flammulina, Oudemansiella, or Xerula. Laccariopsis is morphologically close to these genera but distinguished by a unique combination of features: a Laccaria-like habit (distant, thick, subdecurrent lamellae), viscid pileus and upper stipe, glabrous stipe with a long pseudorhiza connecting with Ammophila and Juniperus roots and incorporating plant debris and sand particles, pileipellis consisting of a loose ixohymeniderm with slender pileocystidia, large and thin- to thick-walled spores and basidia, thin- to slightly thick-walled hymenial cystidia and caulocystidia, and monomitic stipe tissue. Phylogenetic analyses based on a combined ITS-LSU sequence dataset place Laccariopsis close to Gloiocephala and Rhizomarasmius. Key words — Agaricomycetes, Physalacriaceae, /gloiocephala clade, phylogeny, taxonomy Introduction Hydropus mediterraneus was originally described by Pacioni & Lalli (1985) based on collections from Mediterranean dune ecosystems in Central Italy, Sardinia, and Tunisia. Previous collections were misidentified as Laccaria maritima (Theodor.) Singer ex Huhtinen (Dal Savio 1984) due to their laccarioid habit. The generic attribution to Hydropus Kühner ex Singer by Pacioni & Lalli (1985) was due mainly to the presence of reddish watery droplets on young lamellae and sarcodimitic tissue in the stipe (Corner 1966, Singer 1982). -
Armillaria in Massachusetts Forests: Ecology, Species Distribution, and Population Structure, with an Emphasis on Mixed Oak Forests
University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 5-13-2011 Armillaria in Massachusetts Forests: Ecology, Species Distribution, and Population Structure, with an Emphasis on Mixed Oak Forests Nicholas Justin Brazee University of Massachusetts Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Plant Sciences Commons Recommended Citation Brazee, Nicholas Justin, "Armillaria in Massachusetts Forests: Ecology, Species Distribution, and Population Structure, with an Emphasis on Mixed Oak Forests" (2011). Open Access Dissertations. 402. https://scholarworks.umass.edu/open_access_dissertations/402 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. ARMILLARIA IN MASSACHUSETTS FORESTS: ECOLOGY, SPECIES DISTRIBUTION, AND POPULATION STRUCTURE, WITH AN EMPHASIS ON MIXED OAK FORESTS A Dissertation Presented by NICHOLAS JUSTIN BRAZEE Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirement for the degree of DOCTOR OF PHILOSOPHY May 2011 Plant, Soil, and Insect Sciences i © Copyright by Nicholas Justin Brazee 2011 All Rights Reserved ii ARMILLARIA IN MASSACHUSETTS FORESTS: ECOLOGY, SPECIES DISTRIBUTION, AND POPULATION STRUCTURE, -
A Nomenclatural Study of Armillaria and Armillariella Species
A Nomenclatural Study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae) by Thomas J. Volk & Harold H. Burdsall, Jr. Synopsis Fungorum 8 Fungiflora - Oslo - Norway A Nomenclatural Study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae) by Thomas J. Volk & Harold H. Burdsall, Jr. Printed in Eko-trykk A/S, Førde, Norway Printing date: 1. August 1995 ISBN 82-90724-14-4 ISSN 0802-4966 A Nomenclatural Study of Armillaria and Armillariella species (Basidiomycotina, Tricholomataceae) by Thomas J. Volk & Harold H. Burdsall, Jr. Synopsis Fungorum 8 Fungiflora - Oslo - Norway 6 Authors address: Center for Forest Mycology Research Forest Products Laboratory United States Department of Agriculture Forest Service One Gifford Pinchot Dr. Madison, WI 53705 USA ABSTRACT Once a taxonomic refugium for nearly any white-spored agaric with an annulus and attached gills, the concept of the genus Armillaria has been clarified with the neotypification of Armillaria mellea (Vahl:Fr.) Kummer and its acceptance as type species of Armillaria (Fr.:Fr.) Staude. Due to recognition of different type species over the years and an extremely variable generic concept, at least 274 species and varieties have been placed in Armillaria (or in Armillariella Karst., its obligate synonym). Only about forty species belong in the genus Armillaria sensu stricto, while the rest can be placed in forty-three other modem genera. This study is based on original descriptions in the literature, as well as studies of type specimens and generic and species concepts by other authors. This publication consists of an alphabetical listing of all epithets used in Armillaria or Armillariella, with their basionyms, currently accepted names, and other obligate and facultative synonyms. -
Checklist of Macro-Fungi from Baramati Area of Pune District, MS, India
Int.J.Curr.Microbiol.App.Sci (2019) 8(7): 2187-2192 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 07 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.807.265 Checklist of Macro-Fungi from Baramati Area of Pune District, MS, India Anuradha K. Bhosale*, Vivek Kadam, Prasad Bankar, Sandhya Shitole, Sourabh Chandankar, Sujit Wagh and M.B. Kanade P. G. Research Center, Department of Botany, Tuljaram Chaturchand College of Arts, Science and Commerce, Baramati, Dist. Pune - 413 102, Maharashtra, India *Corresponding author ABSTRACT Macro-fungi are the fungal species that produce fruiting bodies visible to naked eyes and occurs widely in the rainy season. The macro-fungi plays K e yw or ds important role in nutrient dynamics, soil health, as pollution indicator, Macro-fungi species mutualism and its interaction and even has its economic role in diversity carbon cycling and the mobilization of nitrogen and phosphorous. Present investigation emphasizes on study of macro-fungi from Baramati area of Article Info Pune district of Maharashtra. During the study frequent field visits, listing Accepted: of genera and their species, identification and photography has done. In the 17 June 2019 Available Online: checklist total 64 fungal species belonging to 37 genera, 03 sub-divisions, 10 July 2019 13 orders and 23 families were reported. The contribution of Basidiomycotina fungi was 90% followed by Ascomycotina (7.8%) and Zygomycotina (1.6%). Introduction than 27000 fungal species throughout the India. The number of mushroom species Fungi are amongst the most important alone, recorded in the world were 41,000 of organisms in the world, not only because of which approximately 850 species were their vital role in ecosystem functions recorded from India (Deshmukh, 2004) mostly (Blackwell, 2011) but also for their influence belonging to gilled mushrooms. -
And White-Rot in Wood-Decay -Omics Data of Two Armillaria Species
microorganisms Article Hallmarks of Basidiomycete Soft- and White-Rot in Wood-Decay -Omics Data of Two Armillaria Species Neha Sahu 1,2, Zsolt Merényi 1, Balázs Bálint 1, Brigitta Kiss 1, György Sipos 3,4 , Rebecca A. Owens 5 and László G. Nagy 1,6,* 1 Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; [email protected] (N.S.); [email protected] (Z.M.); [email protected] (B.B.); [email protected] (B.K.) 2 Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary 3 Research Center for Forestry and Wood Industry, Functional Genomics and Bioinformatics Group, University of Sopron, 9400 Sopron, Hungary; [email protected] 4 Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland 5 Department of Biology, Maynooth University, W23 F2H6 Kildare, Ireland; [email protected] 6 Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary * Correspondence: [email protected] Abstract: Wood-decaying Basidiomycetes are among the most efficient degraders of plant cell walls, making them key players in forest ecosystems, global carbon cycle, and in bio-based industries. Recent insights from -omics data revealed a high functional diversity of wood-decay strategies, especially among the traditional white-rot and brown-rot dichotomy. We examined the mechanistic bases of wood-decay in the conifer-specialists Armillaria ostoyae and Armillaria cepistipes using tran- scriptomic and proteomic approaches. Armillaria spp. (Fungi, Basidiomycota) include devastating pathogens of temperate forests and saprotrophs that decay wood. They have been discussed as white-rot species, though their response to wood deviates from typical white-rotters. -
Glimpses of Antimicrobial Activity of Fungi from World
Journal on New Biological Reports 2(2): 142-162 (2013) ISSN 2319 – 1104 (Online) Glimpses of antimicrobial activity of fungi from World Kiran R. Ranadive 1* Mugdha H. Belsare 2, Subhash S. Deokule 2, Neeta V. Jagtap 1, Harshada K. Jadhav 1 and Jitendra G. Vaidya 2 1Waghire College, Saswad, Pune – 411 055, Maharashtra, India 2Department of Botany, University of Pune, Pune (Received on: 17 April, 2013; accepted on: 12 June, 2013) ABSTRACT As we all know that certain mushrooms and several other fungi show some novel properties including antimicrobial properties against bacteria, fungi and protozoan’s. These properties play very important role in the defense against several severe diseases caused by bacteria, fungi and other organisms also. In the available recent literature survey, many interesting observations have been made regarding antimicrobial activity of fungi. In particular this study shows total 316 species of 150 genera from 64 Fungal families (45 Basidiomycetous and 21 Ascomycetous families {6 Lichenized, 15 Non-Lichenized and 3 Incertae sedis)} are reported so far from world showing antibacterial activity against 32 species of 18 genera of bacteria and 22 species of 13 genera of fungi. This data materialistically adds the hidden potential of these reported fungi and it also clears the further line of action for the study of unknown medicinal fungi useful in human life. Key Words: Fungi, antimicrobial activity, microbes INTRODUCTION Fungi and animals are more closely related to one In recent in vitro study, extracts of more than 75 another than either is to plants, diverging from plants percent of polypore mushroom species surveyed more than 460 million years ago (Redecker 2000). -
PROCEEDINGS of the 25Th ANNUAL WESTERN INTERNATIONAL FOREST DISEASE WORK CONFERENCE
PROCEEDINGS OF THE 25th ANNUAL WESTERN INTERNATIONAL FOREST DISEASE WORK CONFERENCE Victoria, British Columbia September 1977 Proceedings of the 25th Annual Western International Forest Disease Work Conference Victoria, British Columbia September 1977 Compiled by: This scan has not been edited or customized. The quality of the reproduction is based on the condition of the original source. Proceedings of the Twenty-Fifth Western International Forest Disease Work Conference Victoria, British Columbia September 1977 TABLE OF CONTENTS Page Forward Opening Remarks, Chairman Don Graham 2 Memorial Statement - Stuart R. Andrews 3 Welcoming Address: Forest Management in British Columbia with Particular Reference to the Province's Forest disease Problems Bill Young 5 Keynote Address: Forest Diseases as a Part of the Forest Ecosystem Paul Brett PANEL: REGULATORY FUNCTIONS OF DISEASES IN FOREST ECOSYSTEMS 10 Introduction to Regulatory Functions of Diseases in Forest Ecosystems J. R. Parmeter 11 Relationships of Tree Diseases and Stand Density Ed F. Wicker 13 Forest Diseases as Determinants of Stand Composition and Forest Succession Earl E. Nelson 18 Regulation of Site Selection James W. Byler 21 Disease and Generation Time J. R. Parmeter PANEL: INTENSIVE FOREST MANAGEMENT AS INFLUENCED BY FOREST DISEASES 22 Dwarf Mistletoe and Western Hemlock Management K. W. Russell 30 Phellinus weirii and Intensive Management Workshops as an aid in Reaching the Practicing Forester G. W. Wallis 33 Fornes annosus in Second-Growth Stands Duncan Morrison 36 Armillaria mellea and East Side Pine Management Gregory M. Filip 39 Thinning Second Growth Stands Paul E. Aho PANEL: KNOWLEDGE UTILIZATION IN WESTERN FOREST PATHOLOGY 44 Knowledge Utilization in Western Forest Pathology R Z. -
Workshop Meeting Agenda Monday, September 18, 2017, 7:00 PM City Hall Council Chambers, 898 Elk Drive, Brookings, OR 97415 1
Workshop Meeting Agenda Monday, September 18, 2017, 7:00 PM City Hall Council Chambers, 898 Elk Drive, Brookings, OR 97415 1. Call To Order 2. Roll Call 3. Topics a. Azalea Park Tree Removal Documents: AZALEA PARK TREE REMOVAL CWR.PDF AZALEA PARK TREE REMOVAL.ATT.A.ARBORIST REPORT.PDF AZALEA PARK TREE REMOVAL.ATT.B.COST ESTIMATE.PDF AZALEA PARK TREE REMOVAL.ATT.C.ARTICLE.PDF AZALEA PARK TREE REMOVAL.ATT.D.PRESS RELEASE.PDF b. Submitted Materials Documents: 1.2014 FIELD GUIDE FOR HAZARD TREE ID_STELPRD3799993.PDF 2.LONG RANGE PLANNING FOR DEVELOPED SITES.PDF 3.TRIGLIA INPUT EMAIL.PDF 4.TRIGLIA INPUT EMAIL ATTACHMENT.PDF 5.ASHDOWN QUESTIONS FOR FRENCH.PDF 4. Adjournment All public meetings are held in accessible locations. Auxiliary aids will be provided upon request with at least 72 hours advance notification. Please contact 469-1102 if you have any questions regarding this notice. for the greatest good Field Guide for Hazard-Tree Identification and Mitigation on Developed Sites in Oregon and Washington Forests 2014 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religión, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual’s income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/ or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency’s EEO Counselor (click the hyperlink for list of EEO counselors) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. -
Phellinus Sulphurascens and the Closely Related P
Mycologia, 86(1), 1994, pp. 121-130. Phellinus sulphurascens and the closely related P. weirii in North America Michael J. Larsen1 cedar as “perennial P. weirii. ” Clark (1958) deter- Francis F. Lombard mined that “cedar isolates” and “noncedar isolates” Joseph W. Clark may be separated on the basis of cultural character- U.S. Department ofAgriculture, Forest Service, Forest istics. However, Nobles (1948, 1965) did not distinguish Products Laboratory,2 One Gifford Pinchot Drive, the two forms in axenic culture. Angwin (1989) and Madison, Wisconsin 53705-2398 Angwin and Hansen (1989, in press) developed a back- pairing method to determine compatibility in mono- karyon-monokaryon and monokaryon-heterokaryon Abstract: Monokaryotic isolates of Phellinus sulphur- (di-mon) pairings and demonstrated a high degree of ascens, a fungus originally described from the Primorsk genetic isolation (incompatibility) between the western Territory, Russia, are compatible with monokaryotic redcedar and Douglas-fir forms. Protein banding pat- isolates of, what has been called in North America, terns obtained by polyacrylamide gel electrophoresis the Douglas-fir form of P. weirii. Phellinus weirii, orig- (SDS-PAGE) further demonstrated the genetic differ- inally described from Idaho as a root and stem decay ences between the two groups. However, because ex- fungus of western redcedar, is not compatible with amples of partial compatibility were observed in some monokaryotic isolates of P. sulphurascens or the Doug- monokaryon-monokaryon pairings, Angwin and Han- las-fir form of P. weirii. Differences between P. sul- sen (1989, in press) concluded that the groups are best phurascens and P. weirii are noted. Observations on referred to as “intersterility groups.” Banik et al. -
Laminated Root Rot in a Western Washington Plantation: 8-Year Mortality and Growth of Douglas-Fir As Related to Infected Stumps, Tree Density, and Fertilization
United States Department of Laminated Root Rot in a Western Agriculture Washington Plantation: 8-Year Forest Service Mortality and Growth of Douglas- Pacific Northwest Research Station Fir as Related to Infected Stumps, Research Paper PNW-RP-569 Tree Density, and Fertilization November 2006 Richard E. Miller, Timothy B. Harrington, Walter G. Thies, and Jeff Madsen The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the national forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, DC 20250-9410, or call (800) 795- 3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. -
Fungal Systematics and Evolution PAGES 1–12
VOLUME 4 DECEMBER 2019 Fungal Systematics and Evolution PAGES 1–12 doi.org/10.3114/fuse.2019.04.01 On the co-occurrence of species of Wynnea (Ascomycota, Pezizales, Sarcoscyphaceae) and Armillaria (Basidiomycota, Agaricales, Physalacriaceae) F. Xu, K.F. LoBuglio, D.H. Pfister* Harvard University Herbaria and Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA *Corresponding author: [email protected] Key words: Abstract: Species of the genus Wynnea are collected in association with a subterranean mass generally referred to as a sclerotium. Armillaria This is one of the few genera of the Sarcoscyphaceae not associated with plant material – wood or leaves. The sclerotium is symbiosis composed of hyphae of both Armillaria species and Wynnea species. To verify the existence of Armillaria species in the sclerotia of sclerotium those Wynnea species not previously examined and to fully understand the structure and nature of the sclerotium, molecular data Wynnea and morphological characters were analyzed. Using nuclear ITS rDNA sequences the Armillaria species co-occurring with Wynnea species were identified from all examined material. TheseArmillaria symbionts fall into two main Armillaria groups – the A. gallica- nabsnona-calvescens group and the A. mellea group. Divergent time estimates of the Armillaria and Wynnea lineages support a co-evolutionary relationship between these two fungi. Effectively published online: 9 April 2019. INTRODUCTION The ecological and life history function of these sclerotia has Editor-in-Chief Prof. dr P.W. Crous, Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. not been addressed. Thaxter (1905) speculated that its purpose E-mail: [email protected] Sclerotia are dense aggregations of tissue produced by some may be to supply moisture and nutriment to the developing fungi. -
Výroční Zpráva NP 2020
Výroční zpráva za rok 2020 Národní program konzervace a využívání genetických zdrojů mikroorganismů a drobných živočichů hospodářského významu Číslo jednací 51834/2017-MZE-17253 Koordinátor: Ing. Petr Komínek, Ph.D. Výzkumný ústav rostlinné výroby, v.v.i. Drnovská 507, 161 06 Praha 6 - Ruzyně, E-mail: [email protected] Výroční zpráva za rok 2020 Národní program konzervace a využívání genetických zdrojů mikroorganismů a drobných živočichů hospodářského významu Číslo jednací 51834/2017-MZE-17253 Doba řešení: 1. 1. – 31. 12. 2020 Koordinátor: Ing. Petr Komínek, Ph.D. Dne: 18.3. 2021 Pověřená osoba: Výzkumný ústav rostlinné výroby v.v.i., Drnovská 507, 161 06 Praha 6 - Ruzyně IČO: 00027006 Statutární zástupce: RNDr. Mikuláš Madaras, Ph.D. ředitel VÚRV, v.v.i. Čerpání finančních prostředků: Plán: 16 042 tis. Kč Skutečnost 16 042 tis. Kč 2 Souhrnná zpráva za NPGZM Obsah A) Souhrnná zpráva za Národní program konzervace a využívání genetických zdrojů mikroorganismů a drobných živočichů hospodářského významu ...................................................................................... 5 1. Shrnutí ............................................................................................................................................. 5 2. Aktivity koordinace NPGZM v členění dle Akčního plánu NPGZ ................................................. 9 3. Centrální laboratoř ......................................................................................................................... 15 4. Hodnotící část zprávy ...................................................................................................................