Annex 1. Institutional Information on the OECD/CERI Case Studies Respondents

Total Page:16

File Type:pdf, Size:1020Kb

Annex 1. Institutional Information on the OECD/CERI Case Studies Respondents ANNEX 1 – 227 Annex 1. Institutional information on the OECD/CERI case studies respondents Name of Mode of delivery Size Other characteristics institution Status Types Aoyama Campus Students: about 150 – Specialised in international Gakuin Private not for profit management and finance University Business school (graduate Academic staff: – Most of the students have working (Japan) school) about 70 experience and basic IT skills – Active in partnerships/consortium Asian Campus Students: 1 703 – Offers only graduate-level degrees as Institute of Public well as lifelong learning programmes Technology (intergovernmental) Academic staff: 176 – Does not have tenured faculty Technical institution – Funded by several countries and (graduate school) development agencies – Targeted for “professionals who will play a leading role in the sustainable development of the region” – Capacity building in the region – Active in partnerships – Provide off-shore face-to-face provision Carnegie Campus Students: about 8 500 – Offers diverse disciplines Mellon Private not for profit – Of 8 500 students, around 5 200 are University Research and teaching Academic staff: undergraduates (USA) about 1 400 – It has branch campus (Carnegie Mellon West near San Francisco and Athens Institute of Technology Campus in Greece) – Is actively involved in partnerships with overseas institutions Kyoto Campus Students: – Is in an early stage of e-learning University Public (changing from about 22 000 development (Japan) national institute to – It has numerous international independent governmental Academic staff: exchange agreements with overseas agency) about 2 800 universities, but is not really engaged Research and teaching in off-shore face-to-face provision nor off-shore online provision E-LEARNING IN TERTIARY EDUCATION: WHERE DO WE STAND? – ISBN 92-64-00920-5 © OECD 2005 228 – ANNEX 1 Name of Mode of delivery Size Other characteristics institution Status Types Monash Campus Students: – It has 6 campuses in Australia, University Public about 49 500 1 campus in Malaysia, 1 campus in (Australia) Teaching and research South Africa, 1 center in London, UK, Academic staff: and 1 center in Prato, Italy. And, it has about 2 500 numerous partnerships and franchises with overseas providers – It weighs on “strategic alliances” and “self-reliance” in its management Multimedia Campus The total number of – It has started only since 2001 and it Kontor Joint venture servicing the the 6 participating is still a “project” stage Hamburg e-learning development of institutions: (Germany) 6 publicly funded Students: 62 545 universities in Hamburg A service and Academic staff: 4 996 coordinating consortium University Campus Students: – It has a comprehensive e-strategy of British Public about 34 329 (FTE or (including e-learning) Columbia Research and teaching per head) – It has about 100 (or 10 FTE) off- (Canada) (900 FTE full-time, of shore students studying in their home which, 309 FTE country (mainly Canadians working entirely online) abroad) – It is involved in international Academic staff: activities; partnerships/joint master’s about 4 600 (FTE or programmes, etc. per head) University Campus Students: – It has a number of international of Public about 45 000 students on campus, but does not California, Research and teaching (of which 22 000 are deliver any to offshore students. Irvine continuing education (USA) students) Academic staff: about 1 700 University Campus Students: – It provides undergraduate/graduate of Paris- Public about 31 000 education, continuing education, and Nanterre Research and teaching distance education (about 6% of the (France) Academic staff: students) about 1 500 – 1 000 international students on campus University Campus Students: – It has 3 campuses in Sao Paulo and of Sao Public about 72 867 5 campuses in other Brazilian cities Paulo Teaching and research (Brazil) Academic staff: about 5 700 E-LEARNING IN TERTIARY EDUCATION: WHERE DO WE STAND? – ISBN 92-64-00920-5 © OECD 2005 ANNEX 1 – 229 Name of Mode of delivery Size Other characteristics institution Status Types Zurich Campus Students: – About 10% international students on University Public about 22 400 campus. It offers, very few, off-shore (Switzerland) Teaching and research online programmes. Academic staff: – It participates in the national Swiss about 2 000 e-learning initiative “Swiss Virtual Campus” University Mixed Students: – It focuses on entrepreneurship in its of Public about 87 200 management Maryland Teaching (The majority of the – It is committed to teaching working University students are working adults College adult, part-time – It has 23 locations throughout (USA) learners) Maryland and the Washington, D.C. region, and 150 US military Academic staff: installations throughout Europe, the about 2 500 Middle East, East Asia, and the Pacific – More than half of its students are outside the US University Mixed Students: – About 20% of its students are off- of South Public 21 383 (EFTSU) shore students Australia Teaching (flexible, – Roughly about 40% of the students (Australia) international, and Academic staff: are adult learners industry-focused), and 1 311 (EFTSU) – Roughly about 20 % are part-time research students – It is active in several partnerships Fern- Distance Students: – In 2002, 60% of the students were Universität Public About 56 000 part-time students, of which 80% were (Germany) Distance education, and (60% – part-time) working specialised research in – It is in the transitional period to ICT and media Academic staff: systematically convert the university about 980 into a Virtual University since 1999 – It is open to students outside Germany (having branch campuses in Austria, Switzerland, Latvia, Russia, and Hungary Open Distance Students: – It aims to offer “learner-centred”, Polytechnic Public about 30 000 “personalised”, “blended” learning of New Mainly teaching (mostly part-time) experiences Zealand (especially to meet the – Majority of the students are people (New needs of lifelong learning Academic staff: in the workforce and, thus, they have a Zealand) and vocational needs) and about 480 high percentage of students being adult research in open and learners and part-time learners distance learning E-LEARNING IN TERTIARY EDUCATION: WHERE DO WE STAND? – ISBN 92-64-00920-5 © OECD 2005 230 – ANNEX 1 Name of Mode of delivery Size Other characteristics institution Status Types Open Distance Students: – Distance education with the full University Private not for profit about 31 360 integration of ICT is the educational Catalunya (public initiative, but model of Open University Catalunya. (Spain) private structure to be Academic staff: 1 668 – It aims to meet the diversity of flexible) (majority of them – educational needs and learning styles Mainly teaching, with 1 438 – are adjunct or – Is engaged in several partnerships. some research contract faculty) Open Distance Students: – Students are all part-time except University Public with large 73 000 FTEs plus 800 285 PhD students UK autonomy (per head) doctoral – One of the aims is to widen (UK) Mainly teaching, but do students participation (esp. of those who are research in a number of disadvantaged) disciplines Academic staff: – It has 15% off-shore students about FTE 1 860 studying in their home country University Distance Students: – It specialises in continuing education of Public 56 256 (total – As for academic staff, the faculty California, (self-supporting division headcount) staff from UCLA counts only 5% LA, within a public research 100 143 (total while 58% are practitioners in the field Extension university) enrolment: majority in which they teach (USA) Teaching for lifelong are for professional – As for students, 94% are domestic; learning credits) 6% international Academic staff: about 2 000 Virtual Distance Students: 12 483 – It has 33 campuses, 18 mini University For-profit arm of a not- plus 67 778 campuses, and 19 receiving sites in Tec de for-profit private (continuing and Mexico, as well as sites in Central and Monterrey university special programme South America, the U.S., and Europe (Mexico) Teaching and some students) – “The Virtual University” is present research in all facilities in the university, and Academic staff: 258 delivers only distance learning including fully on-line delivery for graduated and extension programmes, and on-line combined with satellite broadcasting for some undergraduate and postgraduate courses E-LEARNING IN TERTIARY EDUCATION: WHERE DO WE STAND? – ISBN 92-64-00920-5 © OECD 2005 ANNEX 2 – 231 Annex 2. OECD/CERI case study questionnaire Introduction Thank you for agreeing to participate in the OECD study of international trends and good practice in e-learning in post-secondary education and training. The institutions selected for analysis come from a wide range of countries, and represent a diversity of institutional types and approaches to e-learning. The generic findings will be shared among participants and more widely, and are designed to inform institutional practice in post-secondary education worldwide. An important aspect of the study is an institutional survey. The survey is an attempt to elicit quantitative and qualitative information from participating institutions, and covers a range of issues under eight headings: • Institutional strategy and different forms of e-learning • Platforms and infrastructure • Students’ access to e-learning • Teaching and learning • Students and markets • Staff and materials • Funding and government • Organisational change,
Recommended publications
  • Esnet: Advanced NETWORKING for SCIENCE
    ENERGY SCIENCES NETWORK ESnet: Advanced NETWORKING for SCIENCE Researchers around the world using advanced computing for scientific discovery are connected via the DOE-operated Energy Sciences Network (ESnet). By providing a reliable, high-performance communications infrastructure, ESnet facilitates the large-scale, collaborative science endeavors fundamental to Office of Science missions. Energy Sciences Network tive science. These include: sharing of massive In many ways, the dramatic achievements of 21st amounts of data, supporting thousands of collab- century scientific discovery—often involving orators worldwide, distributed data processing enormous data handling and remote collabora- and data management, distributed simulation, tion requirements—have been made possible by visualization, and computational steering, and accompanying accomplishments in high-per- collaboration with the U.S. and international formance networking. As increasingly advanced research and education (R&E) communities. supercomputers and experimental research facil- To ensure that ESnet continues to meet the ities have provided researchers with powerful requirements of the major science disciplines a tools with unprecedented capabilities, advance- new approach and a new architecture are being ments in networks connecting scientists to these developed. This new architecture includes ele- tools have made these research facilities available ments supporting multiple, high-speed national to broader communities and helped build greater backbones with different characteristics—redun- collaboration within these communities. The dancy, quality of service, and circuit oriented DOE Office of Science (SC) operates the Energy services—all the while allowing interoperation of Sciences Network (ESnet). Established in 1985, these elements with the other major national and ESnet currently connects tens of thousands of international networks supporting science.
    [Show full text]
  • Annual Report
    2015 Annual Report ANNUAL 2015 REPORT CONTENTS i Letter from the President 4 ii NYSERNet Names New President 6 iii NYSERNet Members Institutions 8 iv Membership Update 9 v Data Center 10 vi VMWare Quilt Project 11 vii Working Groups 12 viii Education Services 13 ix iGlass 14 x Network 16 xi Internet Services 17 xii Board Members 18 xiii Our Staff 19 xiv Human Face of Research 20 LETTER FROM THE PRESIDENT Dear Colleagues, I am pleased to present to you NYSERNet’s 2015 Annual Report. Through more than three decades, NYSERNet’s members have addressed the education and research community’s networking and other technology needs together, with trust in each other guiding us through every transition. This spring inaugurates more change, as City. The terrible attack of Sept. 11, 2001, we welcome a new president and I will step complicated achievement of that goal, made down from that position to focus on the it more essential, and taught a sobering research community’s work and needs. lesson concerning the importance of communication and the need to harden the By itself, working with NYSERNet’s infrastructure that supports it. We invested extraordinary Board and staff to support in a wounded New York City, deploying fiber and building what today has become a global exchange point at “ These two ventures formed pieces 32 Avenue of the Americas. In the process, we forged partnerships in a puzzle that, when assembled, that have proved deep and durable. benefited all of New York and beyond.” Despite inherent risks, and a perception that New York City the collective missions of our members institutions might principally benefit, for the past 18 years has been a privilege NYSERNet’s Board unanimously supported beyond my imagining.
    [Show full text]
  • CANHEIT 2011 DI Presentation
    11-12-10 The New National Dream: A Vision for Digital Infrastructure in Canada Jonathan Schaeffer Rick Bunt University of Alberta University of Saskatchewan State of DI in Canada Today • DI is fundamental to contemporary research in almost all fields • No longer solely the sciences and engineering, but rapidly expanding into humanities and social sciences • DI is increasingly complex (and very expensive) • No university can provide everything their researchers need to be successful 1 11-12-10 State of DI in Canada Today • Our national organizations (CANARIE, Compute Canada) do good jobs on their respective pieces • Problems: • Policy gap, fragmented approaches, overlapping jurisdictions, multiple voices, inconsistent funding, focus is on equipment rather than people, … What’s Missing • A national vision for DI • A coordinated approach • A single locus of responsibility • Public policy • Funding to sustain success 2 11-12-10 Compute Canada National organization for high performance computing WestGrid (British Columbia, CLUMEQ (Quebec) Alberta, Saskatchewan, Manitoba) RQCHP (Quebec) SHARCNET (Ontario) ACEnet (Nova Scotia, New Brunswick, Prince Edward SciNet (Ontario) Island, Newfoundland and Labrador) HPCVL (Ontario) Compute Canada: Today CFI funding in 2002 was for half of the consortia Money has run out and the facilities are dated CFI funding in 2006 (National Platforms Fund) was for the other half All the money will be spent by the end of 2011 No new CFI NPF program on the horizon 3 11-12-10 Compute Canada: Plans September:
    [Show full text]
  • The HOPI Project
    The HOPI Project Rick Summerhill Associate Director, Backbone Network Infrastructure, Internet2 JET Roadmap Workshop Jefferson Lab Newport News, VA April 13, 2004 Outline Resources • Abilene • NLR • Experimental MAN LAN Facility • RONs The HOPI Project – Hybrid Optical and Packet Infrastructure • Architectures based on availability of optical infrastructure –Based on dark fiber acquisitions at the national, regional, local level 4/16/2004 2 Abilene Particulars Performance • 6.2 gpbs single flows across Abilene • Consistent 9.5 gbps traffic patterns during SC2003 from Phoenix • The performance is good, but we need to look to the future Agreement with Qwest ends in 2.5 years • How should we go forward? 4/16/2004 3 NLR Summary Largest higher-ed owned/managed optical networking & research facility in the world • ~10,000 route-miles of dark fiber • Four 10-Gbps λ’s provisioned at outset – One allocated to Internet2 – One an experimental IP network – One a national scale Ethernet – One a spare and quick start An experimental platform for research • Research committee integral in NLR governance • Advance reservation of λ capacity for research • Experimental support center 4/16/2004 4 NLR footprint and physical layer topology – Phase 1 SEA 4 1/0 POR BOI 4 4/0 /03 OGD CHI 11 4 /04 CLE 3/0 SVL 7 DEN 4 PIT 8/0 4 WDC 2/0 KAN RAL LAX 4 6/0 ATL 4 SAN 8/0 15808 Terminal JAC 15808 OADM 15808 Regen Fiber route Leased waves Note: California (SAN-LAX-SVL) routes shown are part of CalREN; NLR is adding waves to CalREN systems.
    [Show full text]
  • Illuminating Diverse Research
    An nren case study by illuminating diverse research It’s not easy to read when it’s dim; you need a bright light to see properly. The same is true for scanning the details of microscopic objects – the brighter the light the better, and the Canadian Light Source (CLS) in Saskatoon is one of the brightest light sources around. As a national research facility, CLS produces intense beams of X-ray, ultraviolet, and infrared light for research in a highly diverse set of fields: biomedicine, palaeontology, chemistry, anthropology, material science, biology, quantum research, and agriculture, to name a few. The light from CLS is one million times brighter than the sun and enables many scientific experiments to be run simultaneously. But capturing the giant amounts data created by these experiments has always been a challenge. Hard drive history Diverse discoveries Many CLS experiments create huge multi-dimension The exploration and big data science of CLS is being data sets of samples under study by capturing high- used to watch precisely how batteries chemically react, resolution views of an object at high speed. For example, helping improve their performance as well as reduce 3D imaging. This, as well as many other CLS datasets their failure rate. It’s examining the body’s reaction to – were too large to be effectively transferred over a cystic fibrosis in ways that are simply not possible with network. The precious experimental data would be placed a standard X-ray clinic. It’s helping probe the boundaries on hard drives and shipped back to the researcher’s home institution or tucked in someone’s carry-on luggage.
    [Show full text]
  • Nysernet Staff Sector, Like Energy, Climate, and Health Care, We Have Engaged New York’S Cor- Sharon M
    NYSERNet Board of Directors Jeanne Casares Voldemar Innus David E. Lewis Chief Information Officer Vice President & CIO Vice Provost & CIO Rochester Institute of Technology Buffalo State College University of Rochester Brian Cohen Robert W. Juckiewicz Marilyn McMillan Associate Vice Chancellor & CIO Vice President for IT Vice President for IT & Chief IT Officer City University of New York Hofstra University for NYU NY Campus, New York University Elias Eldayrie John E. Kolb Mark Reed Associate Vice President & CIO VP for Information Services and Associate Vice President for IT University at Buffalo Technology and CIO Binghamton University Rensselaer Polytechnic Institute Candace Fleming Richard Reeder Vice President & CIO Vace Kundakci Director of IT & CIO Columbia University Assistant Vice President Stony Brook University for IT & CIO Armand Gazes City College of New York Gary O. Roberts Director, Information Technology Director Information Technology Services Operations and Network Security Timothy L. Lance Alfred University The Rockefeller University President NYSERNet Christopher M. Sedore Christine Haile Vice President for IT & CIO Chief Information Officer Francis C. Lees Syracuse University University at Albany Chief Information Officer American Museum of Natural History David Sturm Vice President & CIO The New York Public Library William Thirsk Vice President for IT & CIO Marist College R. David Vernon Director of Information Technology Cornell University Robert Wood Director of Government Relations Clarkson University 2 Dear Colleagues, I am pleased to present NYSERNet’s 2009 annual report. One might ask why, in our silver anniversary year, this is the first such report. The answer lies in our evolution. From its beginning, NYSERNet has had an engaged, active Board.
    [Show full text]
  • A Nation Goes Online a Nation Goes Online Table of Contents
    A NATION GOES ONLINE A NATION GOES ONLINE TABLE OF CONTENTS Foreword 5 Acknowledgements 6 Introduction 8 Chapter 1 UNCERTAIN BEGINNINGS 12 Chapter 2 NETWORKING TAKES ROOT 24 Chapter 3 A NATIONAL NETWORK (…AT LAST) 45 Chapter 4 CANADA CATCHES UP 60 Chapter 5 THE BIRTH OF CA*NET 90 Chapter 6 FROM CA*NET TO INTERNET 104 Epilogue 128 FOREWORD A NATION GOES ONLINE More Canadians are connected to the Internet than any other country. This should come as no surprise, since we are global leaders in information communications technologies and Internet development. We did not get there by accident – we got there by innovation and establishing world class design expertise. Canada is proud of its advanced networking history. As this publication illustrates, we have built an Internet infrastructure which links Canadians to each other and rein- forces the economic and social underpinnings which define a modern nation. Canada’s networking success is one based on partnership and co-operation between the academic and research community and the public and private sectors. The story told in these pages is a testament to this successful approach. It is not the work of a single group rather that of a series of grass-roots efforts that took shape at universities and other institutions in regions across the country. These pioneers worked to connect a population scattered over immense distances, to create opportunity from potential isolation, and to develop regional collaboration and cohesion. That determination spurred much of the early networking research at Canadian universities and ultimately the national partnerships that led to the creation of CA*net, Canada’s first information highway.
    [Show full text]
  • Trends on Network Testbeds in the World
    2-3 Trends on Network Testbeds in the World MURASE Ichiro becoming to the infrastructure of any kinds of R&D. Internet2 in U.S. includes various strate- gic networks and projects. And in Europe there are collaboration among many network testbeds leaded by EU. Regarding characteristics on network testbeds, we have three issues. One is an adoption of photonic technology. Two is a focus on middle ware technology. Three is an attention on applica- tion technology. In the future, each network testbeds will have an originality, and they have many collaboration each other over the border. Keywords JGNⅡ, Internet, Network testbed, Next generation network, Photonic network 1 Introduction the network. (3) New network technologies are implement- The Japan Gigabit Network (JGN) began ed on the network. operations in 1999, and was hailed at the time However, the above three conditions are as the fastest network testbed in the world. Its not necessarily absolute; a network may be successor, the JGNⅡ, has been in operation regarded as a network testbed even if it fails to since 2004. Network testbeds are now operat- meet one of the conditions. It is widely known ing in North America, Europe, Asia, and else- that the JGNⅡ network is currently hosting a where, with the incorporation of photonic wide range of R&D, with numerous associated technology, middleware research and develop- research institutes linked to this network. The ment, and the investigation of a range of appli- network also incorporates the latest photonic cations. This paper provides an introduction to technology. these current trends in R&D of network test- Network testbeds are designed to provide beds.
    [Show full text]
  • GÉANT Global Connectivity
    GÉANT Global Connectivity June 2012 connect • communicate • collaborate GÉANT Global Connectivity: Index Slide No. Content Slide 3 Global Connectivity Map Slide 4 North America Slide 5 Latin America Slide 6 The Caribbean Slide 7 North Africa & the Middle East Slide 8 Sub-Saharan Africa Slide 9 South Caucasus & Central Asia Slide 10 Asia-Pacific Slide 11 Full list of NRENs outside Europe reached by GÉANT connect • communicate • collaborate GÉANT: At the heart of the Global R&E Village http://global.geant.net/ connect • communicate • collaborate Global Links: North America End A End B Capacity Type Connects to Amsterdam New York 3 x 10 Gbps IP CANARIE; ESnet; Internet2; NLR; SINET; TWAREN Frankfurt Washington DC 2 x 10 Gbps IP ESnet; Internet2; NISN Vienna New York 5 Gbps IP ESnet Paris New York 10 Gbps Point-to-point CANARIE; ESnet; Internet2 London New York 10 Gbps Point-to-point CANARIE; ESnet; Internet2 Amsterdam Chicago 10 Gbps Point-to-point ESnet; Internet2 connect • communicate • collaborate Global Links: Latin America End A End B Capacity Type Connects to Madrid Sao Paulo, Brazil 2.5 Gbps IP RedCLARA Latin American NRENs connected to RedCLARA are: NREN Country NREN Country INNOVA|Red Argentina RAGIE Guatemala RNP Brazil CUDI Mexico REUNA Chile RedCyT Panama RENATA Colombia RAAP Peru Red CONARE Costa Rica RAU Uruguay CEDIA Ecuador REACCIUN Venezuela RAICES El Salvador connect • communicate • collaborate Global Links: Caribbean End A End B Capacity Type Connects to Paris Santo Domingo, 155 Mbps IP C@ribNET Dominican Republic Caribbean Countries Connected to C@ribNET Anguilla Jamaica Antigua Montserrat Barbados St.
    [Show full text]
  • Formal Knowledge Networks: a Study of Canadian Experiences
    IISD Knowledge cover 1/18/99 12:46 Page 1 Formal Knowledge Networks: A Study of Canadian Experiences FormalFormal KnowledgeKnowledge NetworksNetworks A Study of Canadian Experiences Howard C. Clark INTERNATIONAL INSTITUTE FOR IISD SUSTAINABLE DEVELOPMENT INSTITUT INTERNATIONAL DU DÉVELOPPEMENT DURABLE IISD IISD Knowledge cover 1/18/99 12:46 Page 2 Copyright © IISD 1998 Published by the International Institute for Sustainable Development All Rights Reserved Printed in Canada This publication is printed on recycled paper. International Institute for Sustainable Development 161 Portage Avenue East – 6th Floor Winnipeg, Manitoba, Canada R3B 0Y4 Tel: 1-204-958-7700 Fax: 1-204-958-7710 E-mail: [email protected] Internet: http://iisd.ca IISD-Knowledge Net (Clark) 1/18/99 12:44 Page i FormalFormal KnowledgeKnowledge NetworksNetworks A Study of Canadian Experiences Howard C. Clark INTERNATIONAL INSTITUTE FOR SUSTAINABLE DEVELOPMENT INSTITUT INTERNATIONAL DU DÉVELOPPEMENT DURABLE IISD i IISD-Knowledge Net (Clark) 1/18/99 12:44 Page ii Formal Knowledge Networks ACKNOWLEDGEMENT Formal Knowledge Networks: A Study of Canadian Experiences was produced with the aid of a grant from the International Development Research Centre, Ottawa, Canada. ii IISD-Knowledge Net (Clark) 1/18/99 12:44 Page iii A Study of Canadian Experiences CONTENTS A Note v Executive Summary 1 Introduction 7 Formal Knowledge Networks 9 Canada’s Experiments and Experiences 15 Conclusion 31 Suggested Actions 35 Appendix 39 Canadian Bacterial Diseases Network 41 Canadian Genetic Diseases Network
    [Show full text]
  • Press Release
    ® Press Release Wednesday, November 8, 2006 For more information contact: For Immediate Release Greg D. Kubiak www.sura.org Director of Relations and Communications 202-408-7872 * [email protected] AtlanticWave Improves International Research Collaboration Washington, D.C. – The AtlanticWave service, officially launched by the Southeastern Universities Research Association (SURA) and a group of collaborating not-for-profit organizations, is a distributed international research network exchange and peering facility along the Atlantic coast of North and South America. The main goal of AtlanticWave is to facilitate research and education (R&E) collaborations between U.S. and Latin American institutions. AtlanticWave will provide R&E network exchange and peering services for existing networks that interconnect at key exchange points along the Atlantic Coast of North and South America, including MAN LAN in New York City, MAX GigaPOP and NGIX-East in Washington D.C., SoX GigaPOP in Atlanta, AMPATH in Miami, and the São Paulo, Brazil exchange point operated by the Academic Network of São Paulo (ANSP). AtlanticWave supports the GLIF (Global Lambda Integrated Facility - www.glif.is) Open Lightpath Exchange (GOLE) model. AtlanticWave was proposed as an integral component of the successful proposal submitted to the National Science Foundation International Research Network Connections (IRNC) program by Florida International University (FIU) and the Corporation for Education Network Initiatives in California (CENIC). SURA has played a vital role in the actual creation of AtlanticWave, by providing the initial funds needed to purchase a 10-Gigabit Ethernet wave on the National LambdaRail (NLR) and the Florida LambdaRail (FLR) to interconnect the four east coast U.S.
    [Show full text]
  • 2016 Annual Report for the Northern Tier Network
    NORTHERN TIER NETWORK NORTH DAKOTA FY16 North Dakota State University, University of North Dakota and North Dakota Information Technology Department /////////////////////////////////////////////////////INDEX FY16 ANNUAL REPORT 3 KEY ELEMENTS 4 LOOKING AHEAD–CRITICAL UPGRADES FOR NEXT GENERATION APPLICATIONS 4 OVERVIEW 5 FY16 FINANCIAL SUMMARY 9 21ST CENTURY COLLABORATIVE RESEARCH AND ACADEMICS 10 LOCAL AND GLOBAL IMPACT 14 MILESTONES 15 NTN-ND PARTNERS 18 REFERENCES 19 2 | NORTHERN TIER NETWORK FY16 ANNUAL REPORT The report will provide an update on the operations and maintenance of the Northern Tier Network – North Dakota (NTN-ND) for the fiscal year 2016 aligned to the intent of the network as described in the North Dakota Century Code. Contents of this report include a description of the functions of the network and its service to the research and education activities in North Dakota, along with its role in the larger regional, ///////////////////////////////////////////////////// national and global research and education (R&E) network community. This report is intended to inform NTN-ND stakeholders across North Dakota, especially those beneficiaries of the exemplary resources that connection to this global community provides. These include students, faculty and staff located at higher education institutions and Tribal Colleges, and the K-12 community. An overview of NTN-ND and its role within the larger regional, national and global R&E network environment is followed by a current financial report, examples of 21st century collaborative research and academics, highlights of major milestones in the evolution of the R&E network community, and NTN-ND partners. EVALUATION PROCEDURES Data gathered and analyzed for this document included a review of current financial records, annual operations, recent R&E network traffic summaries, and current trends in use cases of R&E networks.
    [Show full text]