Inhalational Inducing Agents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Callistephin Enhances the Protective Effects of Isoflurane on Microglial Injury Through Downregulation of Inflammation and Apoptosis
802 MOLECULAR MEDICINE REPORTS 20: 802-812, 2019 Callistephin enhances the protective effects of isoflurane on microglial injury through downregulation of inflammation and apoptosis LILI ZHAO, SHIBIAO CHEN, TIANYIN LIU, XIUHONG WANG, HAIJIN HUANG and WEICHENG LIU Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China Received June 18, 2018; Accepted March 15, 2019 DOI: 10.3892/mmr.2019.10282 Abstract. Microglia are the major immune cells in the central enhanced the effects of isoflurane. Callistephin may therefore nervous system. Microglial activation can be beneficial or constitute a candidate drug agent that may target inflammatory detrimental depending on the stimuli and the physiopathological and growth regulatory signaling pathways, thus ameliorating environment. Microglial activation is involved in a variety certain aspects of neurodegenerative diseases. of neurodegenerative disorders. Different anesthetic agents have exhibited diverse effects on microglial activation and Introduction the engulfment process. The anthocyanin callistephin has been demonstrated to have antioxidant and anti‑inflammatory Microglial cells are the major immune cell in the central properties, and these were assessed in the present study, with a nervous system (CNS), responding against types of endog- focus on its effect on microglial activation. Mouse microglial enous and exogenous stimuli, including infection by bacteria, cells C8-4B were treated with 100 ng/µl lipopolysaccharide viruses, prions and β-amyloid plaques (1). Microglia are (LPS) and 1 ng/µl interferon-γ. Cells were subsequently treated activated upon exposure to different stimuli and, depending with 2% isoflurane, 100 µM callistephin or both. LPS promoted on the environmental context, this may be beneficial or detri- apoptosis in C8-B4 cells, and this was reduced following mental to the functionality and physiology of the CNS (2). -
Unesco – Eolss Sample Chapters
PHARMACOLOGY – Vol. II - Anesthetics - Amanda Baric and David Pescod. ANESTHETICS Amanda Baric and David Pescod. Department of Anesthesia and Perioperative medicine, The Northern Hospital, Melbourne, Australia. Keywords: Anesthesia, pharmacology, inhalational, neuromuscular blockade, induction agent, local anesthetic. Contents 1. Inhalation agents 1.1. Introduction 1.2. Pharmacokinetics and Pharmacodynamics 1.3. Specific Agents 1.3.1. Diethyl Ether (Ether) 1.3.2. Chloroform 1.3.3. Cyclopropane 1.3.4. Trichloroethylene 1.3.5. Halogenated Alkanes and Ethers 1.3.6. Nitrous Oxide. 1.3.7. Xenon 2. Neuromuscular blocking agents. 2.1. Introduction 2.2. Non-Depolarizing Muscle Relaxants 2.2.1. Tubocurarine (1935) 2.2.2. Metocurine (dimethyl tubocurarine chloride/bromide) 2.2.3. Alcuronium (1961) 2.2.4. Gallamine (1948) 2.2.5. Pancuronium (1968) 2.2.6. Vecuronium (1983) 2.2.7. Atracurium (1980s) 2.2.8. Cis-atracurium (1995) 2.2.9. Mivacurium (1993) 2.2.10. Rocuronium (1994) 2.2.11. SugammadexUNESCO (2003) – EOLSS 2.2.12. Rapacuronium 2.3. Reversal Drugs (Anticholinesterase) 2.4. DepolarizingSAMPLE Muscle Relaxants (Suxamethonium CHAPTERS or Succinylcholine) 3. Local anesthetics 3.1. Introduction 3.2. Pharmacokinetics and Pharmacodynamics 3.3. Toxicity 3.4. Specific Agents 3.4.1. Cocaine 3.4.2. Procaine 3.4.3 Chloroprocaine 3.4.4. Tetracaine (Amethocaine) ©Encyclopedia of Life Support Systems (EOLSS) PHARMACOLOGY – Vol. II - Anesthetics - Amanda Baric and David Pescod. 3.4.5. Lidocaine 3.4.6. Prilocaine 3.4.7. Mepivacaine 3.4.8. Bupivacaine 3.4.9. Ropivacaine 3.4.10. Eutectic Mixture of Local Anesthetics (EMLA) 4. Intravenous Induction Agents 4.1. -
Pharmacology – Inhalant Anesthetics
Pharmacology- Inhalant Anesthetics Lyon Lee DVM PhD DACVA Introduction • Maintenance of general anesthesia is primarily carried out using inhalation anesthetics, although intravenous anesthetics may be used for short procedures. • Inhalation anesthetics provide quicker changes of anesthetic depth than injectable anesthetics, and reversal of central nervous depression is more readily achieved, explaining for its popularity in prolonged anesthesia (less risk of overdosing, less accumulation and quicker recovery) (see table 1) Table 1. Comparison of inhalant and injectable anesthetics Inhalant Technique Injectable Technique Expensive Equipment Cheap (needles, syringes) Patent Airway and high O2 Not necessarily Better control of anesthetic depth Once given, suffer the consequences Ease of elimination (ventilation) Only through metabolism & Excretion Pollution No • Commonly administered inhalant anesthetics include volatile liquids such as isoflurane, halothane, sevoflurane and desflurane, and inorganic gas, nitrous oxide (N2O). Except N2O, these volatile anesthetics are chemically ‘halogenated hydrocarbons’ and all are closely related. • Physical characteristics of volatile anesthetics govern their clinical effects and practicality associated with their use. Table 2. Physical characteristics of some volatile anesthetic agents. (MAC is for man) Name partition coefficient. boiling point MAC % blood /gas oil/gas (deg=C) Nitrous oxide 0.47 1.4 -89 105 Cyclopropane 0.55 11.5 -34 9.2 Halothane 2.4 220 50.2 0.75 Methoxyflurane 11.0 950 104.7 0.2 Enflurane 1.9 98 56.5 1.68 Isoflurane 1.4 97 48.5 1.15 Sevoflurane 0.6 53 58.5 2.5 Desflurane 0.42 18.7 25 5.72 Diethyl ether 12 65 34.6 1.92 Chloroform 8 400 61.2 0.77 Trichloroethylene 9 714 86.7 0.23 • The volatile anesthetics are administered as vapors after their evaporization in devices known as vaporizers. -
An Overview on “Stages of Anesthesia and Some Novel General Anesthetics Drug”
Rohit Jaysing Bhor. et al. /Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 5(4), 2017, 132-140. Review Article ISSN: 2349 – 7106 Asian Journal of Research in Chemistry and Pharmaceutical Sciences Journal home page: www.ajrcps.com AN OVERVIEW ON “STAGES OF ANESTHESIA AND SOME NOVEL GENERAL ANESTHETICS DRUG” Rohit Jaysing Bhor *1 , Bhadange Shubhangi 1, C. J. Bhangale 1 1* Department of Pharmaceutical Chemistry, PRES’s College of Pharmacy Chincholi, Tal-Sinner, Dist-Nasik, Maharashtra, India. ABSTRACT Anesthesia is a painless performance of medical producers. There are both major and minor risks of anesthesia. Anesthesia is a state of temporary induced loss of sensation or awareness. It gives analgesia i.e. relief from pain or prevention of pain and paralysis. General anaesthesia is a medically induced state of unconsciousness. It gives loss of protective reflux. It is carried out to allow medical procedures or medical surgery. It can be classified into 3 types like Intravenous Anesthetics Drug; Miscellaneous Drug; and Inhalational anesthetic Drug. Sodium thiopental is an ultra-short-acting barbiturate and has been used commonly in the induction phase of anesthesia. Methohexital is an example of barbiturates derivatives. It is classified as short-acting, and has a rapid onset of action. KEYWORDS Anesthesia, Sodium thiopental, Methohexital and Propofol. Author for Correspondence: INTRODUCTON Anesthesia is a state of temporary induced loss of sensation or awareness. It gives analgesia i.e. relief 1 Rohit Jaysing Bhor, from pain or prevention of pain and paralysis . A patient under the effects of anesthetic drug is known Department of Pharmaceutical Chemistry, as anesthetized. -
Visualizing Anesthesia-Induced Vasodilation of Cerebral Vasculature Using Multi-Exposure Speckle Imaging
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.26.174227; this version posted June 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Visualizing anesthesia-induced vasodilation of cerebral vasculature using multi-exposure speckle imaging Colin T. Sullendera, Lisa M. Richardsa, Fei Heb, Lan Luanb,c, Andrew K. Dunna,* aDepartment of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street Stop C0800, Austin, Texas, 78712, United States bDepartment of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, United States cDepartment of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, United States Abstract. Anesthetized animal models are used extensively during neurophysiological and behavioral studies despite systemic effects from anesthesia that undermine both accurate interpretation and translation to awake human physi- ology. In this paper, we characterize the impact of isoflurane on cerebral blood flow (CBF) during the induction of general anesthesia in awake mice using multi-exposure speckle imaging (MESI). We highlight the large anatomical changes caused by the vasodilatory inhalant with wide-field imagery and quantify the cortical hemodynamics with MESI across multiple subjects and imaging sessions. Compared to the awake state, we measured, on average, an 18% increase in surface vessel diameter accompanied by a 135% increase in vascular flux and 92% increase in parenchyma perfusion. These large alterations to the cortical vasculature and CBF are unrepresentative of normal physiology and provide further evidence that neuroscience experiments would benefit from transitioning to un-anesthetized awake animal models. -
Pharmacological Classification of the Abuse-Related Discriminative
Ashdin Publishing Journal of Drug and Alcohol Research ASHDIN Vol. 3 (2014), Article ID 235839, 10 pages publishing doi:10.4303/jdar/235839 Research Article Pharmacological Classification of the Abuse-Related Discriminative Stimulus Effects of Trichloroethylene Vapor Keith L. Shelton and Katherine L. Nicholson Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, P.O. Box 980613, Richmond, VA 23298, USA Address correspondence to Keith L. Shelton, [email protected] Received 10 December 2013; Revised 2 January 2014; Accepted 27 January 2014 Copyright © 2014 Keith L. Shelton and Katherine L. Nicholson. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Inhalants are distinguished as a class primarily based upon common means of administration suggests a homogeneity of a shared route of administration. Grouping inhalants according to mechanism and behavioral effects that may be scientifically their abuse-related in vivo pharmacological effects using the drug unwarranted. As an illustration of the inadequacy of this discrimination procedure has the potential to provide a more relevant classification scheme to the research and treatment community. simplistic taxonomic approach, consider the fact that if a Mice were trained to differentiate the introceptive effects of the similar system was applied to other common drugs of abuse, trichloroethylene vapor from air using an operant procedure. then tobacco, crack cocaine, and marijuana would be treated Trichloroethylene is a chlorinated hydrocarbon solvent once used as a single category. Instead, other classes of abused drugs as an anesthetic as well as in glues and other consumer products. -
Zebrafish Behavioural Profiling Identifies GABA and Serotonin
ARTICLE https://doi.org/10.1038/s41467-019-11936-w OPEN Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation Matthew N. McCarroll1,11, Leo Gendelev1,11, Reid Kinser1, Jack Taylor 1, Giancarlo Bruni 2,3, Douglas Myers-Turnbull 1, Cole Helsell1, Amanda Carbajal4, Capria Rinaldi1, Hye Jin Kang5, Jung Ho Gong6, Jason K. Sello6, Susumu Tomita7, Randall T. Peterson2,10, Michael J. Keiser 1,8 & David Kokel1,9 1234567890():,; Anesthetics are generally associated with sedation, but some anesthetics can also increase brain and motor activity—a phenomenon known as paradoxical excitation. Previous studies have identified GABAA receptors as the primary targets of most anesthetic drugs, but how these compounds produce paradoxical excitation is poorly understood. To identify and understand such compounds, we applied a behavior-based drug profiling approach. Here, we show that a subset of central nervous system depressants cause paradoxical excitation in zebrafish. Using this behavior as a readout, we screened thousands of compounds and identified dozens of hits that caused paradoxical excitation. Many hit compounds modulated human GABAA receptors, while others appeared to modulate different neuronal targets, including the human serotonin-6 receptor. Ligands at these receptors generally decreased neuronal activity, but paradoxically increased activity in the caudal hindbrain. Together, these studies identify ligands, targets, and neurons affecting sedation and paradoxical excitation in vivo in zebrafish. 1 Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143, USA. 2 Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. -
The Cardiovascular and Respiratory Effects of Isoflurane-Nitrous Oxide Anaesthesia
THE CARDIOVASCULAR AND RESPIRATORY EFFECTS OF ISOFLURANE-NITROUS OXIDE ANAESTHESIA WILLIAM M. DOLAN, M.D.S, WENDELL C. STEVENS, M.D.,O EDMOND I. EGER, II, M.D.,* TnOlX~AS H. CROMWELL, M.D,, c* MICHAEL J. HALSEY, PH.D.,C* THOMAS F. SHAKESPEAlqE, Ik~.D.,c* AND RONALD D. MILLER, M.D. c* INTRODUCTION ISOFLURAnE (Forane| 1 chloro-2-2-2 trifluoroethyl, difluoromethyl ether), is a halogenated ether currently being evaluated for use as an inhalational anaesthetic. Its favourable properties include non-flammability, 1 relatively low blood and fat solubilities (blood-gas and oil-gas partitions of 1.4 and 99, respectively), 1,2 mole- cular stability resulting in resistance to dehydrohalogenation and hepatic meta- bolism, 1,~ lack of sensitization of the heart to catecholamines, 4 and favourable depression of neuromuscular function and potentiation of muscle relaxants. ~ However, isoflurane can produce profound depression of ventilation and blood pressure. ~ Since the concurrent use of nitrous oxide with halothane attenuates the hypotension and ventilatory depression caused by halothane, s,'~,l~ we asked whether nitrous oxide would produce similar changes towards awake values dur- ing isoflurane anaesthesia. METHODS We studied the cardiovascular and respiratory effects of anaesthesia with iso- flurane and 70 per cent nitrous oxide in eight healthy, unpremedicated volun- teers. The volunteers were 25 --4- 1 (SD) years of age and were informed of the purposes, procedures, and hazards of the study. The protocol was approved by the Committee on Human Experimentation of the University of California, San Francisco. A normal medical history, physical examination, chest roentgenogram, complete blood count, serum glutamic oxaloacetic transanainase and lactic de- hydrogenase were required before a volunteer was accepted for anaesthesia. -
Synthetic Method for Fluoromethylation Of
Europäisches Patentamt *EP001286941B1* (19) European Patent Office Office européen des brevets (11) EP 1 286 941 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C07C 43/12, C07C 41/16, of the grant of the patent: C07C 41/22, C07C 41/28, 20.07.2005 Bulletin 2005/29 C07C 41/52, C07C 43/313 (21) Application number: 01939633.2 (86) International application number: PCT/US2001/017348 (22) Date of filing: 30.05.2001 (87) International publication number: WO 2001/092193 (06.12.2001 Gazette 2001/49) (54) SYNTHETIC METHOD FOR FLUOROMETHYLATION OF HALOGENATED ALCOHOLS VERFAHREN ZUR FLUORMETHYLIERUNG VON HALOGENIERTEN ALKOHOLEN PROCEDE DE SYNTHESE DE FLUOROMETHYLATION D’ALCOOLS HALOGENES (84) Designated Contracting States: (72) Inventors: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU • BIENIARZ, Christopher MC NL PT SE TR Highland Park, IL 60035 (US) Designated Extension States: • RAMAKRISHNA, Kornepati, V. RO SI Libertyville, IL 60048 (US) (30) Priority: 01.06.2000 US 587421 (74) Representative: Modiano, Guido, Dr.-Ing. et al Modiano, Josif, Pisanty & Staub, (43) Date of publication of application: Baaderstrasse 3 05.03.2003 Bulletin 2003/10 80469 München (DE) (73) Proprietor: Abbott Laboratories (56) References cited: Abbott Park, IL 60064-6050 (US) EP-A- 0 822 172 GB-A- 1 250 928 Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. -
Pharmacokinetics and Pharmacology of Drugs Used in Children
Drug and Fluid Th erapy SECTION II Pharmacokinetics and Pharmacology of Drugs Used CHAPTER 6 in Children Charles J. Coté, Jerrold Lerman, Robert M. Ward, Ralph A. Lugo, and Nishan Goudsouzian Drug Distribution Propofol Protein Binding Ketamine Body Composition Etomidate Metabolism and Excretion Muscle Relaxants Hepatic Blood Flow Succinylcholine Renal Excretion Intermediate-Acting Nondepolarizing Relaxants Pharmacokinetic Principles and Calculations Atracurium First-Order Kinetics Cisatracurium Half-Life Vecuronium First-Order Single-Compartment Kinetics Rocuronium First-Order Multiple-Compartment Kinetics Clinical Implications When Using Short- and Zero-Order Kinetics Intermediate-Acting Relaxants Apparent Volume of Distribution Long-Acting Nondepolarizing Relaxants Repetitive Dosing and Drug Accumulation Pancuronium Steady State Antagonism of Muscle Relaxants Loading Dose General Principles Central Nervous System Effects Suggamadex The Drug Approval Process, the Package Insert, and Relaxants in Special Situations Drug Labeling Opioids Inhalation Anesthetic Agents Morphine Physicochemical Properties Meperidine Pharmacokinetics of Inhaled Anesthetics Hydromorphone Pharmacodynamics of Inhaled Anesthetics Oxycodone Clinical Effects Methadone Nitrous Oxide Fentanyl Environmental Impact Alfentanil Oxygen Sufentanil Intravenous Anesthetic Agents Remifentanil Barbiturates Butorphanol and Nalbuphine 89 A Practice of Anesthesia for Infants and Children Codeine Antiemetics Tramadol Metoclopramide Nonsteroidal Anti-infl ammatory Agents 5-Hydroxytryptamine -
Dcanesthesiamanualvo
ii Any or all parts of this manual may be reproduced, provided the parts reproduced are free- not for sale. For commercial purposes, no part of this manual may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, without permission in writing from the publisher. The intent of this manual is to be freely used, copied, and distributed in Developing Countries for the teaching and promotion of basic anesthesia knowledge/skills. The purpose of this manual is to provide developing countries with a copyright free basic anesthesia manual. This manual can be freely copied and translated into a native language for the promotion of basic anesthesia knowledge/skills. Contributors with credited pictures and illustrations have graciously given permission for their material to be used for this specific purpose. The author and publishers of this manual cannot accept liability from the use of this manual or errors in translation. It is up to each translator to ensure that the translation is correct. Knowledge about the art and science of anesthesia continues to change. It is up to each anesthesia provider to continue to learn and upgrade their knowledge. This manual only contains basic knowledge and is not a replacement for more comprehensive anesthesia information. iii “Every prudent man acts out of knowledge.” Proverbs 13:15 Soli Deo Gloria iv Acknowledgements This project would not have been possible without the help of many. The World Health Organization and Michael B. Dobson MD kindly gave permission to utilize illustrations from the publication Anaesthesia at the District Hospital, WHO, Geneva, 2000 for two earlier editions, published in Afghanistan and Cambodia. -
Preoperative Evaluation, Premedication, and Induction of Anesthesia ELIZABETH A
Preoperative Evaluation, Premedication, and Induction of Anesthesia ELIZABETH A. GHAZAL, MARISSA G. VADI, LINDA J. MASON, 4 AND CHARLES J. COTÉ Preparation of Children for Anesthesia Rectal Induction Fasting Full Stomach and Rapid-Sequence Induction Piercings Special Problems Primary and Secondary Smoking The Fearful Child Psychological Preparation of Children for Surgery Autism History of Present Illness Anemia Past/Other Medical History Upper Respiratory Tract Infection Laboratory Data Obesity Pregnancy Testing Obstructive Sleep Apnea Syndrome Premedication and Induction Principles Asymptomatic Cardiac Murmurs General Principles Fever Medications Postanesthesia Apnea in Former Preterm Infants Induction of Anesthesia Hyperalimentation Preparation for Induction Diabetes Inhalation Induction Bronchopulmonary Dysplasia Intravenous Induction Seizure Disorder Intramuscular Induction Sickle Cell Disease Preparation of Children for Anesthesia clear fluids from the stomach is approximately15 minutes (Fig. 4.1); as a result, 98% of clear fluids exit the stomach in children FASTING by 1 hour. Clear liquids include water, fruit juices without pulp, Infants and children are fasted before sedation and anesthesia to carbonated beverages, clear tea, and black coffee. Although fasting minimize the risk of pulmonary aspiration of gastric contents. In for 2 hours after clear fluids ensures nearly complete emptying a fasted child, only the basal secretions of gastric juice should be of the residual volume, extending the fasting interval to 3 hours present