<<

Europäisches Patentamt *EP001286941B1* (19) European Patent Office

Office européen des brevets (11) EP 1 286 941 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention (51) Int Cl.7: C07C 43/12, C07C 41/16, of the grant of the patent: C07C 41/22, C07C 41/28, 20.07.2005 Bulletin 2005/29 C07C 41/52, C07C 43/313 (21) Application number: 01939633.2 (86) International application number: PCT/US2001/017348 (22) Date of filing: 30.05.2001 (87) International publication number: WO 2001/092193 (06.12.2001 Gazette 2001/49)

(54) SYNTHETIC METHOD FOR FLUOROMETHYLATION OF HALOGENATED VERFAHREN ZUR FLUORMETHYLIERUNG VON HALOGENIERTEN ALKOHOLEN PROCEDE DE SYNTHESE DE FLUOROMETHYLATION D’ALCOOLS HALOGENES

(84) Designated Contracting States: (72) Inventors: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU • BIENIARZ, Christopher MC NL PT SE TR Highland Park, IL 60035 (US) Designated Extension States: • RAMAKRISHNA, Kornepati, V. RO SI Libertyville, IL 60048 (US)

(30) Priority: 01.06.2000 US 587421 (74) Representative: Modiano, Guido, Dr.-Ing. et al Modiano, Josif, Pisanty & Staub, (43) Date of publication of application: Baaderstrasse 3 05.03.2003 Bulletin 2003/10 80469 München (DE)

(73) Proprietor: Abbott Laboratories (56) References cited: Abbott Park, IL 60064-6050 (US) EP-A- 0 822 172 GB-A- 1 250 928

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 1 286 941 B1

Printed by Jouve, 75001 PARIS (FR) EP 1 286 941 B1

Description

Field of the Invention

5 [0001] The present invention is directed to a method for fluoromethylation of halogenated alcohols that utilizes tran- sient halomethyl intermediates. Treatment of an with a dihalomethane under basic conditions yields (transiently) a halomethyl ether intermediate which is reacted with a fluorinating agent to form the desired fluoride. The method may be used to synthesize from hexafluoroisopropanol in a single reaction vessel. A method for synthesizing a stable acetal precursor to sevoflurane is also disclosed 10 Background of the Invention

[0002] belong to a class of biochemical depressant drugs which affect the vital functions of cells. Anes- thetics generally produce analgesia, loss of consciousness, diminished reflex activity, and muscular relaxation, with 15 minimal depression of the vital functions. Anesthetics may be gaseous (volatile) or fixed (non-volatile). Gaseous an- esthetics are inhaled and enter the bloodstream through the lungs while fixed anesthetics are administrated parenterally or through the alimentary canal. [0003] Many currently used gaseous anesthetics are halogenated compounds. These compounds tend to cause less metabolic disturbance and are less flammable than traditional gaseous compounds such as ether and 20 . Examples of halogenated anesthetic compounds include (CF3CHBrCl) and (Cl2C=CHCl)as well as halogenated ether compounds such as (CHF2OCF2CHClF), (CF3CH2OCH=CH2), (Cl2CHCF2OCH3) and (CF3CHClOCHF2). [0004] A particularly useful halogenated ether anesthetic is sevoflurane, (CF3)2CHOCH2F, also known as 2-(fluor- omethoxy)- 1,1,1,3,3,3,-hexafluoropropane or fluoromethyl-1,1,1,3,3,3-hexafluoro-2-propyl ether. Sevoflurane is today 25 one of the most important and widely used general anesthetics. Sevoflurane combines various characteristics that are most desirable in an inhalation anesthetic, including the lowest blood/gas partition coefficient of 0.63, smooth induction and recovery from , minimal irritation to the upper respiratory tract, low metabolic rate, and rapid elimination. In addition, sevoflurane is suitable for out-patient surgery use. Although sevoflurane's definitive mechanism of action has not been elucidated, it has recently been shown that sevoflurane interacts with nicotinic acetylcholine receptors 30 by affecting the open and closed state of the ion channels at clinical and lower concentrations. Sevoflurane may also effect reversible modulation of GABA and receptors. The above suggest that at least part of the anesthetic action of sevoflurane may be due to interactions between sevoflurane and specific voltage-gated ion channels. [0005] The preparation of fluorinated compounds such as sevoflurane tends to be difficult because of the limited number of selective fluorination reactions available. Direct fluorination of organic compounds to replace is 35 statistical, non-selective, and generally accompanied by the formation of many side products. Hence, fluorinated com- pounds are usually prepared by first synthesizing a substituted organic intermediate. wherein the substituent group is at the site to be fluorinated, and then displacing the substituent group with a fluoride ion. Metal fluorides, for example, have been used to displace substituent groups. [0006] Several synthetic routes to sevoflurane employ hexafluoroisopropyl alcohol (HFIP) as a starting material. For 40 example, U.S. Patent No. 3,683,092 discloses a method for synthesizing sevoflurane involving the methylation of hexafluoroisopropyl alcohol followed by fluorination with either (a) trifluoride, or (b) chlorine gas, followed by potassium fluoride. U.S. Patent No. 4,469,898 discloses a method for synthesizing sevoflurane which includes the mixing of hexafluoroisopropyl alcohol, formaldehyde, hydrogen fluoride, and a protonating, dehydrating and fluoride ion generating agent. U.S. Patent No. 4,250,334 discloses a method for synthesizing sevoflurane by adding HFIP to 45 a mixture of a stoichiometric excess of paraformaldehyde and hydrogen fluoride, plus sufficient sulfuric acid to seques- ter most of the water produced by the reaction. U.S. Patent No. 4,314,087 discloses a method for synthesizing sevoflu- rane by reacting HFIP with hydrogen fluoride and a formaldehyde. EP-A-0 822 172 discloses a method of producing 1 2 fluoromethyl 1,1,1,3,3,3-hexafluoroisopropyl ether by bringing a polyether represented by the formula R O(CH2O)nR into contact with a medium comprising hydrogen fluoride and a dehydrator such as concentrated sulfuric acid where 50 R1 and R2 are independently hydrogen, or haloalkyl groups, where is , chlorine or bromine, n is an integer from 1 to 10, and R1 and R2 are not both hydrogen. An example of such polyether is bis(1,1,1,3,3,3-hex- afluoroisopropoxy)methane which may be produced by contacting fuming sulfuric acid and paraformaldehyde with 1,1,1,3,3,3-hexafluoroisopropyl alcohol. [0007] The routes disclosed in the referenced patents can result in unwanted byproducts which may be difficult to 55 separate from sevoflurane produced by the synthesis. Moreover, the use of corrosive materials in these synthetic routes requires specialized equipment and special handling precautions. [0008] Other methods used to make hexafluoroisopropyl include the conversion of 1,1,1,3,3,3-hexachloroi- sopropyl ethers to 1,1,1,3,3,3-hexafluoroisopropyl ethers. For example, methyl 1,1,1,3,3,3-hexachloroisopropyl ether

2 EP 1 286 941 B1

and chloromethyl 1,1,1,3,3,3-hexachloroisopropyl ether can be converted to sevoflurane by reaction of each of the above compounds with bromine trifluoride. Hexafluoroisopropyl ethers also can be made by reacting each of these chlorinated compounds with hydrogen fluoride, followed by reaction with bromine trifluoride. U.S. Patent No. 4,874,901 discloses a method for fluorinating halogenated ether compounds, wherein compounds such as sevoflurane can be 5 prepared by reacting chloromethyl hexafluoroisopropyl ether with either potassium fluoride or sodium fluoride. However, the chlorine replacement methods are not desirable because large volumes of chloride are released in the synthetic process, the yields are low, and multiple chloro-fluoro intermediates are formed. The intermediates must be removed to obtain the final ether product, sevoflurane. The purification processes increase the difficulty and cost of synthesis of 1,1,1,3,3,3-hexafluoroisopropyl ethers by these methods. 10 [0009] Hexafluoropropanes alternatively have been synthesized from malononitrile in the presence of bromine trif- luoride, as disclosed in U.S. Patent Nos. 5,789,630 and 5,705,710. [0010] Another potential route to sevoflurane is by fluorodecarboxylation. Patrick et al.,J. Org. Chem. 48, 4158-4159 (1983), reports that alklyl carboxylic acids can undergo fluorodecarboxylation with xenon difluoride (XeF2) in the pres- ence of hydrogen fluoride. Although the use of xenon difluoride on a small scale can be effective, the cost of xenon 15 difluoride makes its use impractical on a large scale. Furthermore, when alkoxyacetic acids are fluorodecarboxylated with xenon difluoride, significant amounts of side products are formed. Replacement of a carboxylic acid group with a fluorine group has also been disclosed in U.S. Patent No. 4,996,371 and in RE 35,568 which teach a reaction of hydrogenated aliphatic carboxylic acid compounds with bromine trifluoride; and in U.S. Patent No. 4,847,427, which teaches a method for preparing fluorocarbon polyethers by neutralizing a perfluorinated carboxylic acid by heating with 20 fluorine in the presence of metal fluoride to replace the carboxylic acid group. [0011] While the above-discussed methods are useful for preparing certain fluorinated compounds, these methods can be complex, expensive, and often provide fluorinated products in low yield together with considerable amounts of side products. Hence there is a need for improved procedures for the preparation of fluorinated compounds. [0012] The present invention provides an improved procedure for preparing fluorinated compounds from the corre- 25 sponding carboxylic acids in high yield and purity. More specifically, the present invention provides an improved pro- cedure for the preparation of sevoflurane and other similar types of fluorinated anesthetics.

Summary of the Invention

30 [0013] The invention is directed to a novel method for fluoromethylation of a halogenated alcohol. The method in- cludes the steps of:

(a) combining a halogenated alcohol with a dihalomethane selected from CH2Br2,CH2I2and CH2Cl2 under basic conditions in the presence of a first solvent, e.g., polyethylene glycol, to form a. transient halomethyl ether; and 35 (b) fluorinating the transient halomethyl ether with a fluorinating agent.

[0014] Another aspect of the invention is directed to a method for synthesizing a bis-(1,1,1,3,3,3-hexahaloisopropoxy) methane comprising the step of combining a 1, 1,1,3,3,3-hexahaloisopropanol and a dihalomethane of the formula CX2H2 (where X is a halogen) in the presence of a solvent under basic conditions. 40 [0015] Preferably, the halogenated alcohol in the above methods is refluxed with the dihalomethane. [0016] Yet another aspect of the invention is a method for synthesizing sevoflurane including the steps of:

(a) reacting 1,1,1,3,3,3-hexafluoroisopropanol with a dihalomethane selected from CH2Br2,CH2I2and CH2Cl2 under basic conditions in a first solvent to form a transient halomethylhexafluoroisopropyl ether; and 45 (b) fluorinating the transient halomethylhexafluoroisopropyl ether with a fluorinating agent.

[0017] Preferably, both steps in the latter method are carried out under reflux.

Detailed Description of the Invention 50 [0018] As used herein, the term "alkyl" means straight or branched, saturated or unsaturated carbon chains having up to 10, preferably up to 6, and more preferably up to 4 carbon . This term is also meant to encompass alkenyl and alkynyl groups. [0019] The method of the present invention can be performed in a single pot, although it will be appreciated that the 55 described method can be practiced in multiple pots. A "single pot" process is a process that can be performed in a single reaction vessel. It will be appreciated by those of ordinary skill that single pot processes provide certain advan- tages over multiple pot processes. For example, single pot processes require less handling and/or transfer of compo- nents, thereby reducing the risk of accident or mistake. Single pot processes also tend to be less expensive than

3 EP 1 286 941 B1

multiple pot processes as a result of the reduction in handling and transfer of reaction ingredients. [0020] In accordance with one embodiment of the method of the present invention, a halogenated alcohol, e.g., a 1 1 1 halogenated alcohol of the formula R C(CX 3)2OH (where R is selected from the group consisting of hydrogen and alkyl groups and X1 is selected from the group consisting of , bromine, fluorine, and chlorine), is refluxed with a 5 2 2 dihalomethane of the formula CH2X 2 where X 2 i s selected from the group consi sti ng of I2 ,Br2and Cl2 under basic 1 1 2 conditions and in the presence of a first solvent to form a transient halomethyl ether of the formula R C(CX 3)2CH2X . It will be appreciated that X1 and X2 can be the same or different in this reaction scheme. [0021] The resulting transient halomethyl ether is fluorinated using a fluorinating agent, thereby producing a fluor- omethylated alcohol. It will be appreciated that fluorination can be performed simultaneously with the formation of the 10 transient halomethyl ether, i.e., the method of the present invention produces the desired fluorinated compound in a single-step, single pot process. In the preferred embodiment of the method of the present invention, fluorination of the transient halomethyl ether is performed concurrently with the formation of the transient halomethyl ether. [0022] One example of an appropriate halogenated alcohol useful in accordance with the method of the present invention is hexafluoroisopropanol (HFIP). However, it will be appreciated that other halogenated alcohols can be used. 15 For example, secondary halogenated alcohols of the following formula are useful in accordance with the method of the present invention:

20

25

where n is an integer from 0-2 (inclusive), m is an integer from 1-3 (inclusive), and X is fluorine, chlorine, bromine, or iodine. In addition, primary alcohols of the formula C(H)nXmCH2OH (where n is an integer from 0-2 (inclusive), m is an integer from 1 - 3 (inclusive), and X is fluorine, chlorine, bromine, or iodine) are also useful in accordance with the 30 method of the present invention. [0023] An example of an appropriate dihalomethane useful in accordance with the method of the present invention is dibromomethane. However, it will be appreciated that CH2I2 and CH2Cl2 can be used. [0024] Basic conditions may be attained using known methods such as by the addition of K2CO3;Na2CO3;Cs2CO3; Ba2CO3; or Li2CO3 to the reaction vessel. Persons of ordinary skill in the relevant art will appreciate that there are a 35 large number of alternative methods for attaining basic conditions, including, but not necessarily limited to, the addition of bicarbonates to the reaction vessel. [0025] In one embodiment of the method of the present invention, the reaction is conducted in the presence of a first solvent having the formula HO-(CH2CH2O)nH wherein n is an integer from one to twenty (inclusive), and preferably wherein n is an integer from seven to ten (inclusive). In an exemplary embodiment of the method of the present inven- 40 tion, the first solvent is polyethylene glycol (PEG), preferably PEG 400, i.e., polyethylene glycol having a molecular weight of approximately 400. Other possible first solvents include dimethyl formamide (DMF); n-methyl pyrrolidone (IVMP); and dimethyl sulfoxide (DMSO). [0026] A co-solvent, e.g., water, can be used. For example, a co-solvent may be present in an amount of 0.1% to 5% weight/weight relative to the first solvent. 45 [0027] It will be appreciated that a variety of fluorinating agents can be used in connection with the method of the present invention, including, but not limited to, KF, NaF, KF•HF, and NaF·HF. In a preferred embodiment, KF is used as the fluorinating agent. [0028] The disclosed reaction can take place over a wide range of temperatures. For example, the disclosed reaction can be performed efficiently at a temperature from 60° C to 150° C. In a preferred embodiment, the reaction occurs at 50 a temperature between 90° C and 100° C. An exemplary temperature is 95° C. [0029] The time required for the reaction may vary widely depending upon many factors, most notably the temperature at which the reaction takes place. For example, reaction times may vary from 1 hour to 20 hours when the reaction is allowed to proceed at a temperature from 60° C to 150° C. The reaction time is approximately 18 hours at a temperature of approximately 95° C. 55 [0030] After completion of the reaction, the resulting compound can be isolated using a variety of known techniques. For example, the resulting compound can be isolated by adding water to the resulting mixture, partitioning, and then distilling the desired compound from the vessel in which the reaction occurred. This method is particularly useful when the resulting compound is sevoflurane. That is, because sevoflurane is not soluble in water, it will separate into a lower

4 EP 1 286 941 B1

layer in the vessel. In contrast, impurities and solvents present in the resulting mixture are soluble in water, thus allowing the added water and the impurities to be separated easily from the desired sevoflurane. [0031] Another aspect of the invention is directed to a method for synthesizing a bis (1,1,1,3,3,3-haloisopropoxy) methane by refluxing a 1,1,1,3,3,3-hexahaloisopropanol in a first solvent under basic conditions in the presence of a 5 dihalomethane. Appropriate first solvents include, but are not necessarily limited to, PEGs, including PEG400, , and acetone nitrile, as above-discussed. The resulting bis (1,1,1,3,3,3-haloisopropoxy) methane can be converted to sevoflurane using a fluorinating agent such as KF, NaF, KF•HF, and NaF•HF. [0032] In another aspect of the method of the present invention, sevoflurane is synthesized by reacting 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) with a dihalomethane under basic conditions to form a halomethylhexafluor- 10 oisopropyl ether by refluxing in a first solvent. Appropriate first solvents include, but are not necessarily limited to, PEGs, including PEG400, acetone, and acetone nitrile, as above-discussed. The halomethylhexafluoroisopropyl ether is fluorinated by refluxing it in the presence of a fluorinating agent. The dihalomethane, fluorinating agent, and reaction conditions used in this aspect of the invention are selected as above-discussed with respect to the first aspect of the method of the present invention. 15 [0033] It is contemplated that other ingredients such as solvents, catalysts, diluents, and other materials may also be present in the reaction mixture if desired, as long as the added extraneous materials do not materially change the nature of the reaction described above, e.g., ingredients added to promote the reaction, suppress side reactions, or improve the purification step of the synthesis. [0034] The following examples are presented for illustrative purposes only, and are not intended to limit the scope 20 of the invention, which is as defined in the claims below. All analyses were conducted by gas chromatography. All percentages are provided in mole percent.

Example 1

25 [0035] Bis (1,1,1,3,3,3-hexafluoroisopropoxy)methane was synthesized according to Reaction Scheme I as follows: [0036] To a solution 1,1,1,3,3,3-hexafluoroisopropanol (1.5 mL, 15 mmol) and dibromomethane (1.6 mL, 23 mmol) in acetone (5.0 mL) was added K2CO3 (3.15 gm, 23 mmol) and the reaction was heated under reflux. After 18 hours, the reaction mixture was cooled and filtered to remove the solids. The filtrate was distilled to provide bis(l, 1,1,3,3,3-hex- afluoroisopropoxy)methane (1.5 g, 52%). This stable acetal precursor to sevoflurane can be deprotectively fluorinated 30 using fluorination procedures known to those skilled in the art.

35

40

45

50 Example 2

[0037] Sevoflurane was synthesized according to Reaction Scheme II as follows: [0038] To a solution 1,1,1,3,1,3-hexafluoroisopropanol (15 mL, 150 mmol) and dibromomethane (16 mL, 40 mmol) in PEG-400 (60 mL), K2CO3(31.5 g, 228 mmol) and KF (17.5 g, 300 mmol) were added and the reaction mixture was 55 heated to 100° C. After 18 hours, gas chromatographic (GC) analysis of the reaction mixture indicated 92% conversion of HFIP to sevoflurane. The reaction mixture was diluted with water (100 mL) and the lower organic layer was separated and distilled to provide sevoflurane (12 g, 40%).

5 EP 1 286 941 B1

5

10

15

20 Claims

1. A method for fluoromethylating a halogenated alcohol comprising the steps of: combining a halogenated alcohol with a dihalomethane selected from CH2Br2,CH2I2and CH2Cl2 under basic conditions in the presence of a first solvent to form a halomethyl ether; and fluorinating said halomethyl ether using a fluorinating agent. 25 2. A method in accordance with claim 1, wherein said first solvent is poly( glycol).

1 1 3. A method in accordance with claim 1, wherein said halogenated alcohol has a formula R C(CX3)2OH, where R selected from the group consisting of hydrogen and straight or branched alkyl, alkenyl or alkynyl groups having 30 up to 10 carbon atoms, and where X is selected from the group consisting of iodine, bromine, fluorine, and chlorine.

4. A method in accordance with claim 1, wherein said halogenated alcohol has a formula C(H)nXmCH2OH, where n is an integer from 0 to 2 inclusive, where m is an integer from 1 to 3 inclusive, and where X is selected from the group consisting of iodine, bromine, fluorine, and chlorine. 35 5. A method in accordance with claim 1, wherein said halogenated alcohol has a formula (I),

40

45

where n is an integer from 0 to 2 inclusive, m is an integer from 1 to 3 inclusive, and where X is selected from the group consisting of iodine, bromine, fluorine, and chlorine.

50 6. A method for synthesizing a bis(1,1,1,3,3,3-hexahalo-isopropoxy) methane comprising: combining 1,1,1,3,3,3-hex- ahaloisopropanol and a dihalomethane in a solvent under basic conditions.

7. A method in accordance with claim 6, wherein said bis(1,1,1,3,3,3-hexahaloisopropoxy)methane is bis (1,1,1,3,3,3-hexafluoroisopropoxy)methane which is obtained by refluxing 1,1,1,3,3,3-hexahaloisopropanol in a 55 solvent under basic conditions in the presence of a dihalomethane.

8. A method for synthesizing sevoflurane, said method comprising: reacting 1,1,1,3,3,3-hexafluoroisopropanol with dihalomethane selected from CH2Br2,CH2I2and CH2Cl2 under basic conditions in a first solvent to form a halom-

6 EP 1 286 941 B1

ethylhexafluoroisopropyl ether; and fluorinating said halomethylhexafluoroisopropyl ether with a fluorinating agent.

9. A method in accordance with claim 1or 8, wherein said fluorinating agent and said dihalomethane are added concurrently to 1,1,1,3,3,3-hexafluoroisopropanol. 5 10. A method in accordance with claim 1 or 8, wherein said fluorinating agent is selected from the group consisting of KF, NaF, KF·HF, and NaF·HF.

11. A method in accordance with claim 1 or 10 wherein said first solvent is of the formula HO-(CH2CH2O)nH wherein 10 n is an integer from one to twenty inclusive.

12. A method in accordance with claim 1 or 8, wherein said dihalomethane is dibromomethane.

13. A method in accordance with claim 1 or 6, wherein the halogenated alcohol is refluxed with the dihalomethane. 15 14. A method in accordance with claim 8, wherein both reaction steps are carried out under reflux.

Patentansprüche 20 1. Ein Verfahren zur Fluormethylierung eines halogenierten Alkohols, das die folgenden Schritte umfaßt: Kombinieren eines halogenierten Alkohols mit einem Dihalomethan gewählt aus CH2Br2,CH2I2und CH2Cl2 unter basischen Bedingungen in der Anwesenheit eines ersten Lösungsmittels, um einen Halomethylether zu bilden; und Fluorie- rung des Halomethylethers unter Verwendung eines Fluorierungsmittels. 25 2. Ein Verfahren in Übereinstimmung mit Anspruch 1, worin das erste Lösungsmittel Poly(ethylenglycol) ist.

1 3. Ein Verfahren in Übereinstimmung mit Anspruch 1, worin der halogenierte Alkohol eine Formel R C(CX3)2OH hat, worin R1 gewählt ist aus der Gruppe bestehend aus Wasserstoff und geraden oder verzweigten Alkyl-, Alkenyl- 30 oder Alkinylgruppen, die bis zu 10 Kohlenstoffatome haben, und worin X gewählt ist aus der Gruppe bestehend aus Jod, Brom, Fluor und Chlor.

4. Ein Verfahren in Übereinstimmung mit Anspruch 1, worin der halogenierte Alkohol eine Formel C(H)nXmCH2OH hat, worin n eine ganze Zahl von 0 bis 2 (einschließlich) ist, worin m eine ganze Zahl von 1 bis 3 (einschließlich) 35 ist, und worin X gewählt ist aus der Gruppe bestehend aus Jod, Brom, Fluor und Chlor.

5. Ein Verfahren in Übereinstimmung mit Anspruch 1, worin der halogenierte Alkohol eine Formel (I) hat,

40

45

worin n eine ganze Zahl von 0 bis 2 (einschließlich) ist , m eine ganze Zahl von 1 bis 3 (einschließlich) ist, und 50 worin X gewählt ist aus der Gruppe bestehend aus Jod, Brom, Fluor und Chlor.

6. Ein Verfahren zur Synthetisierung eines bis(1,1,1,3,3,3-Hexahalo-isopropoxy)methans, das folgendes umfasst: Kombinieren von 1,1,1,3,3,3-Hexahaloisopropanol und einem Dihalomethan in einem Lösungsmittel unter basi- schen Bedingungen. 55 7. Ein Verfahren in Übereinstimmung mit Anspruch 6, worin das bis (1,1,1,3,3,3-Hexahaloispropoxy)methan bis (1,1,1,3,3,3-Hexafluorisopropoxy)methan ist, welches durch Erhitzen unter Rückfluß von 1,1,1,3,3,3-Hexahaloi- sopropanol in einem Lösungsmittel unter basischen Bedingungen in der Anwesenheit eines Dihalomethans erhal-

7 EP 1 286 941 B1

ten wurde.

8. Ein Verfahren zur Synthetisierung von Sevofluran, wobei das Verfahren folgendes umfaßt: Reagieren von 1,1,1,3,3,3-Hexafluorisopropanol mit Dihalomethan gewählt aus CH2Br2,CH2I2und CH2Cl2 unter basischen Be- 5 dingungen in einem ersten Lösungsmittel, um einen Halomethylhexafluorisopropylether zu bilden; und Fluorieren des Halomethylhexafluorisopropylethers mit einem Fluorierungsmittel.

9. Ein Verfahren in Übereinstimmung mit Anspruch 1 oder 8, worin das Fluorierungsmittel und das Dihalomethan gleichzeitig zu 1,1,1,3,3,3-Hexafluorisopropanol hinzugefügt werden. 10 10. Ein Verfahren in Übereinstimmung mit Anspruch 1 oder 8, worin das Fluorierungsmittel gewählt ist aus der Gruppe bestehend aus KF, NaF, KF·HF und NaF·HF.

11. Ein Verfahren in Übereinstimmung mit Anspruch 1 oder 10, worin das erste Losungsmittel von der Formel 15 HO-(CH2CH2O)nH ist, woirn n eine ganze Zahl von eins bis zwanzig (einschließlich) ist.

12. Ein Verfahren in Übereinstimmung mit Anspruch 1 oder 8, worin das Dihalomethan Dibrommethan ist.

13. Ein Verfahren in Übereinstimmung mit Anspruch 1 oder 6, worin der halogenierte Alkohol mit dem Dihalomethan 20 unter Rückfluß erhitzt wird.

14. Ein Verfahren in Übereinstimmung mit Anspruch 8, worin beide Reaktionsschritte unter Rückfluß durchgeführt werden.

25 Revendications

1. Procédé de fluorométhylation d'un alcool halogéné comprenant les étapes consistant à : combiner un alcool halogéné à un dihalogénométhane choisi parmi CH2Br2,CH2I2et CH2CI2 dans des conditions basiques en pré- 30 sence d'un premier solvant pour former un halogénométhyl éther ; et à fluorer ledit halogénométhyl éther en uti- lisant un agent de fluoration.

2. Procédé selon la revendication 1, dans lequel ledit premier solvant est le poly(éthylène glycol).

35 1 3. Procédé selon la revendication 1, dans lequel ledit alcool halogéné a une formule R C(CX3)2OH, dans laquelle R1 est choisi dans le groupe constitué par l'hydrogène et des groupes alkyle, alcényle ou alcynyle linéaires ou ramifiés ayant jusqu'à 10 atomes de carbone, et dans laquelle X est choisi dans le groupe constitué par l'iode, le brome, le fluor et le chlore.

40 4. Procédé selon la revendication 1, dans lequel ledit alcool halogéné a une formule C(H)nXmCH2OH, dans laquelle n est un entier valant 0 à 2 inclus, dans laquelle m est un entier valant 1 à 3 inclus, et dans laquelle X est choisi dans le groupe constitué par l'iode, le brome, le fluor et le chlore.

5. Procédé selon la revendication 1, dans lequel ledit alcool halogéné a une formule (I), 45

50

55 dans laquelle n est un entier valant 0 à 2 inclus, m est un entier valant 1 à 3 inclus, et dans laquelle X est choisi dans le groupe constitué par l'iode, le brome, le fluor et le chlore.

6. Procédé pour synthétiser un bis(1,1,1,3,3,3-hexahalogéno-isopropoxy)méthane comprenant: la combinaison du

8 EP 1 286 941 B1

1,1,1,3,3,3-hexahalogéno-isopropanol et d'un dihalogénométhane dans un solvant dans des conditions basiques.

7. Procédé selon la revendication 6, dans lequel ledit bis(1,1,1,3,3,3-hexahalogéno-isopropoxy)méthane est le bis (1,1,1,3,3,3-hexafluoro-isopropoxy)méthane qui est obtenu en portant à reflux le 1,1,1,3,3,3-hexahalogéno-iso- 5 propanol dans un solvant dans des conditions basiques en présence d'un dihalogénométhane.

8. Procédé pour synthétiser du sévoflurane, ledit procédé comprenant : la réaction du 1,1,1,3,3,3-hexafluoro-iso- propanol avec un dihalogénométhane choisi parmi CH2Br2,CH2I2et CH2Cl2 dans des conditions basiques dans un premier solvant pour former un halogénométhylhexafluoro-isopropyl éther ; et la fluoration dudit halogénomé- 10 thylhexafluoro-isopropyl éther avec un agent de fluoration.

9. Procédé selon la revendication 1 ou 8, dans lequel ledit agent de fluoration et ledit dihalogénométhane sont ajoutés en même temps au 1,1,1,3,3,3-hexafluoro-isopropanol.

15 10. Procédé selon la revendication 1 ou 8, dans lequel ledit agent de fluoration est choisi dans le groupe constitué par KF, NaF, KF·HF et NaF·HF.

11. Procédé selon la revendication 1 ou 10, dans lequel ledit premier solvant est de formule HO-(CH2CH2O)nH, dans laquelle n est un entier valant un à vingt inclus. 20 12. Procédé selon la revendication 1 ou 8, dans lequel ledit dihalogénométhane est le dibromométhane.

13. Procédé selon la revendication 1 ou 6, dans lequel l'alcool halogéné est porté à reflux avec le dihalogénométhane.

25 14. Procédé selon la revendication 8, dans lequel les deux étapes réactionnelles sont réalisées à reflux.

30

35

40

45

50

55

9