Optic Nerve Hypoplasia

Total Page:16

File Type:pdf, Size:1020Kb

Optic Nerve Hypoplasia The Syndrome of Optic Nerve Hypoplasia Mark Borchert, MD, and Pamela Garcia-Filion, MPH Corresponding author In 1941, Reeves [4] identified absence of the septum Mark Borchert, MD The Vision Center at Childrens Hospital Los Angeles; pellucidum in a 7-month-old girl with bilateral optic Departments of Ophthalmology and Neurology, USC / Keck School nerve hypoplasia. Fifteen years later, de Morsier [5] of Medicine, 4650 Sunset Boulevard, MS #88, Los Angeles, CA described an association of absent septum pellucidum 90027, USA. with malformation of the optic chiasm in a single E-mail: [email protected] pathologic case of an 84-year-old woman. He provided Current Neurology and Neuroscience Reports 2008, 8:395–403 no description of vision problems or ophthalmoscopic Current Medicine Group LLC ISSN 1528-4042 abnormalities, but he noted that the corpus callosum Copyright © 2008 by Current Medicine Group LLC was normal. He also found a coexistence of unilateral or bilateral optic nerve abnormalities (or anophthalmia) with agenesis of the septum pellucidum in eight other The congenital malformation known as optic nerve radiology or pathology cases from the literature. He hypoplasia (ONH) has been recognized in the past termed the association septo-optic dysplasia, despite the 30 years as an epidemic cause of congenital blind- fact that descriptions of the optic nerve abnormalities ness. It was believed to occur either as an isolated were vague. It is important to note that de Morsier was anomaly or as a component of the syndrome of collecting pathology cases of agenesis of the septum pel- septo-optic dysplasia, which has evolved to include lucidum and that ONH was coincidentally found in 1 of midline brain malformations and hypopituitarism. his 36 cases. Nonetheless, agenesis of the septum pel- Evidence now suggests that ONH infrequently occurs lucidum was ascribed exaggerated clinical significance in in isolation. Most afflicted children will have hypo- much of the subsequent literature. It is now clear that thalamic dysfunction and/or neurodevelopmental absence of the septum pellucidum imparts no increased impairment, regardless of MRI findings or severity of risk for the myriad of problems associated with ONH. ONH. Adverse outcomes can often be ameliorated It is also clear that these associated problems are largely with early intervention. Thus, the syndrome of ONH due to miswiring of the brain, especially in the hypothal- should be suspected in all infants with signs of hypo- amus, that may not be detectable with neuroimaging. It thalamic dysfunction or vision impairment. is therefore suggested that the term septo-optic dysplasia be replaced with syndrome of optic nerve hypoplasia. In 1970, Hoyt et al. [6] noted an association of pitu- Introduction itary dwarfism in nine cases of ONH, four of whom were Optic nerve hypoplasia (ONH) is a congenital abnormal- found to be missing the septum pellucidum. They resur- ity characterized by small optic discs affecting one or rected de Morsier’s concept of septo-optic dysplasia and both eyes. It can occur in isolation or in combination with linked hypopituitarism to the syndrome. That same year, a myriad of functional and anatomic abnormalities of the a similar case was described by Ellenberger and Runyan central nervous system. Recently, ONH has been recog- [7], and a series of 25 cases of ONH had numerous nized as an increasingly frequent problem. Concomitantly, neurologic impairments without any described endo- our understanding of this epidemic of neuronal dysgenesis crine defects [8]. Because these reports preceded the era and its diverse impact on growth and development has of CT scans, the prevalence of midline brain defects in evolved considerably. these cases was unknown. In a subsequent large series of cases, hypopituitarism occurred at a high frequency and was present almost exclusively in bilateral severe cases, History and Epidemiology with or without agenesis of the septum pellucidum [9]. Because of insufficient documentation, it is uncertain Other studies disputed whether or not laterality of ONH when the first case of ONH without associated microph- or radiographic evidence of midline brain abnormalities thalmos or other ocular malformation was described. It affects the risk for hypopituitarism [7,10–16]. Reports dates to at least 1915 [1], but it may have been consider- also recognized the frequent association of other prob- ably earlier [2]. Nonetheless, prior to 1970, fewer than lems, including seizures, mental retardation, behavioral 30 cases had been reported in the English literature [3]. problems, speech and motor deficits, neonatal jaundice, 396 Neuro-ophthalmology and hypoglycemia [17,18]. Most of these reports suffered All ethnic groups are impacted by ONH, but in the from selection bias and incomplete clinical documenta- United States the prevalence is lower in persons of Asian tion, making it difficult to distinguish definite from descent [43,44••]. To date, there have been few reports coincidental associations. from Asian countries [45,46], so whether this is related to The prevalence of ONH in North America is relative genetic protection or differences in environment unknown. Prior to 1970, it was considered rare. In fact, or diet related to culture is uncertain. prior to 1962, only one case had been diagnosed (in Brit- Both male [47,48] and female [19,49] gender predis- ish Columbia), but 20 cases were subsequently diagnosed position have been reported in some studies, whereas by 1974, for an estimated prevalence of 1.8 per 100,000 other studies have reported no sexual predilection for [19]. Many authors have noted an increased incidence of ONH [17,43,44••] reported cases [20,21]. In 1981, Acers [20] estimated an incidence of 2 per 100,000 live births. ONH was identi- Gestational and exposure history fied in 12% of blind infants in Harris County in Texas Numerous perinatal and prenatal risk factors for ONH in the early 1980s [21]. Surveys of schools for the blind have been reported: preterm birth; low birth weight in the United States reveal a prevalence of ONH of [41,49]; intrauterine growth restriction [11]; twin-twin 5.7% to 12.9% in blind students [22,23]. Such surveys transfusion syndrome [50]; young maternal age [3,49]; underestimate the actual prevalence, because cognitive primiparity [3,49]; prenatal exposure to smoking [49], or behavioral impairments exclude most individuals with alcohol [51], recreational drugs [52,53], antidepressants ONH from schools for the blind. [11,18,49], anticonvulsants [54], antiemetics [14], antifun- In 1997, ONH surpassed retinopathy of prematurity gal agents, infertility treatment [49], and quinine [45,55]; as the single leading cause of infant blindness in Sweden, and prenatal complications [53] including gestational with a prevalence of 6.3 per 100,000 [24]. Only cortical diabetes [56], toxemia [3,19,50], viral infection [50], and visual impairment was more common than ONH in blind maternal anemia [14,50]. All of these reports are retro- children. But cortical visual impairment can be caused by spective or anecdotal and impacted by selection bias. many conditions, including trauma, ischemia, seizures, Although a broad spectrum of risk factors has been and hydrocephalus. The prevalence from each of these suggested, a paucity of maternal characteristics persists as causes does not appear to exceed that of ONH. Between potentially significant. The predominant enduring char- 1980 and 1999, the prevalence of ONH in Sweden rose acteristics are young maternal age and primiparity [49]. fourfold to 7.2 per 100,000. This occurred while all other The association of primiparity was reported by Tornqvist causes of childhood blindness declined [25]. By 2006, et al. [49] as a risk factor independent of maternal age. the prevalence of ONH in England had risen to 10.9 per Gestational diabetes, a well-described risk factor, is firmly 100,000 [26]. It is impossible to confirm whether or not related to a unique and uncommon form of ONH known the apparent increasing incidence of ONH in the past as superior segmental ONH [56]. Some researchers specu- two decades is caused by increasing detection sensitivity. late about the role of lifestyle factors in the development of This seems unlikely because increasing prevalence has ONH [26,41,49] These purported associations are suspect been reported from the same centers [25]. In addition, because of isolated cases of exposures and the limitations ONH is easily distinguishable by direct ophthalmoscopy, of using nonsystematically collected data. The role of nutri- the method used almost exclusively prior to 1960, when tion in the pathogenesis of ONH has not yet been studied. ONH was rarely detected. Diagnosis Prenatal Risk Factors The diagnosis of ONH is made by ophthalmoscopic Genetic risks confirmation of a small optic disc. Morphometric tech- Gene mutations affecting growth and transcription fac- niques have been described for measurement of the optic tors have been shown to have some impact on optic nerve disc based on photographs. Most of these have relied on or hypothalamic–pituitary axis development in humans measurement of disc area or diameter relative to other and mice. These gene mutations affect netrin, POUF1, landmarks, such as retinal vessels or distance to the mac- PROP1, SF-1, PITX2, NeuroD1, GATA-2, LHX3, ula. In all normal children, the ratio of the horizontal disc TPIT, SOX3, SOX2, and HESX1 [27–39]. Of these diameter (DD) to the distance between the macula and mutations, only HESX1 is reported to affect optic nerve the temporal edge of the disc (DM) has been greater than development as well as anterior pituitary gland forma- 0.35 (Fig. 1) [43,57,58]. DD/DM ratios less than 0.35 are tion in humans [40]. However, HESX1 mutations were generally described as ONH, although some patients with found to be present in less than 1% of a large sample of DD/DM ratios of 0.30 to 0.35 have normal vision.
Recommended publications
  • Bass – Glaucomatous-Type Field Loss Not Due to Glaucoma
    Glaucoma on the Brain! Glaucomatous-Type Yes, we see lots of glaucoma Field Loss Not Due to Not every field that looks like glaucoma is due to glaucoma! Glaucoma If you misdiagnose glaucoma, you could miss other sight-threatening and life-threatening Sherry J. Bass, OD, FAAO disorders SUNY College of Optometry New York, NY Types of Glaucomatous Visual Field Defects Paracentral Defects Nasal Step Defects Arcuate and Bjerrum Defects Altitudinal Defects Peripheral Field Constriction to Tunnel Fields 1 Visual Field Defects in Very Early Glaucoma Paracentral loss Early superior/inferior temporal RNFL and rim loss: short axons Arcuate defects above or below the papillomacular bundle Arcuate field loss in the nasal field close to fixation Superotemporal notch Visual Field Defects in Early Glaucoma Nasal step More widespread RNFL loss and rim loss in the inferior or superior temporal rim tissue : longer axons Loss stops abruptly at the horizontal raphae “Step” pattern 2 Visual Field Defects in Moderate Glaucoma Arcuate scotoma- Bjerrum scotoma Focal notches in the inferior and/or superior rim tissue that reach the edge of the disc Denser field defects Follow an arcuate pattern connected to the blind spot 3 Visual Field Defects in Advanced Glaucoma End-Stage Glaucoma Dense Altitudinal Loss Progressive loss of superior or inferior rim tissue Non-Glaucomatous Etiology of End-Stage Glaucoma Paracentral Field Loss Peripheral constriction Hereditary macular Loss of temporal rim tissue diseases Temporal “islands” Stargardt’s macular due
    [Show full text]
  • Hyperplasia (Growth Factors
    Adaptations Robbins Basic Pathology Robbins Basic Pathology Robbins Basic Pathology Coagulation Robbins Basic Pathology Robbins Basic Pathology Homeostasis • Maintenance of a steady state Adaptations • Reversible functional and structural responses to physiologic stress and some pathogenic stimuli • New altered “steady state” is achieved Adaptive responses • Hypertrophy • Altered demand (muscle . hyper = above, more activity) . trophe = nourishment, food • Altered stimulation • Hyperplasia (growth factors, . plastein = (v.) to form, to shape; hormones) (n.) growth, development • Altered nutrition • Dysplasia (including gas exchange) . dys = bad or disordered • Metaplasia . meta = change or beyond • Hypoplasia . hypo = below, less • Atrophy, Aplasia, Agenesis . a = without . nourishment, form, begining Robbins Basic Pathology Cell death, the end result of progressive cell injury, is one of the most crucial events in the evolution of disease in any tissue or organ. It results from diverse causes, including ischemia (reduced blood flow), infection, and toxins. Cell death is also a normal and essential process in embryogenesis, the development of organs, and the maintenance of homeostasis. Two principal pathways of cell death, necrosis and apoptosis. Nutrient deprivation triggers an adaptive cellular response called autophagy that may also culminate in cell death. Adaptations • Hypertrophy • Hyperplasia • Atrophy • Metaplasia HYPERTROPHY Hypertrophy refers to an increase in the size of cells, resulting in an increase in the size of the organ No new cells, just larger cells. The increased size of the cells is due to the synthesis of more structural components of the cells usually proteins. Cells capable of division may respond to stress by undergoing both hyperrtophy and hyperplasia Non-dividing cell increased tissue mass is due to hypertrophy.
    [Show full text]
  • Optic Nerve Hypoplasia Plus: a New Way of Looking at Septo-Optic Dysplasia
    Optic Nerve Hypoplasia Plus: A New Way of Looking at Septo-Optic Dysplasia Item Type text; Electronic Thesis Authors Mohan, Prithvi Mrinalini Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 22:50:06 Item License http://rightsstatements.org/vocab/InC/1.0/ Link to Item http://hdl.handle.net/10150/625105 OPTIC NERVE HYPOPLASIA PLUS: A NEW WAY OF LOOKING AT SEPTO-OPTIC DYSPLASIA By PRITHVI MRINALINI MOHAN ____________________ A Thesis Submitted to The Honors College In Partial Fulfillment of the Bachelors degree With Honors in Physiology THE UNIVERSITY OF ARIZONA M A Y 2 0 1 7 Approved by: ____________________________ Dr. Vinodh Narayanan Center for Rare Childhood Disorders Abstract Septo-optic dysplasia (SOD) is a rare congenital disorder that affects 1/10,000 live births. At its core, SOD is a disorder resulting from improper embryological development of mid-line brain structures. To date, there is no comprehensive understanding of the etiology of SOD. Currently, SOD is diagnosed based on the presence of at least two of the following three factors: (i) optic nerve hypoplasia (ii) improper pituitary gland development and endocrine dysfunction and (iii) mid-line brain defects, including agenesis of the septum pellucidum and/or corpus callosum. A literature review of existing research on the disorder was conducted. The medical history and genetic data of 6 patients diagnosed with SOD were reviewed to find damaging variants.
    [Show full text]
  • Polymicrogyria (PMG) ‘Many–Small–Folds’
    Polymicrogyria Dr Andrew Fry Clinical Senior Lecturer in Medical Genetics Institute of Medical Genetics, Cardiff [email protected] Polymicrogyria (PMG) ‘Many–small–folds’ • PMG is heterogeneous – in aetiology and phenotype • A disorder of post-migrational cortical organisation. PMG often appears thick on MRI with blurring of the grey-white matter boundary Normal PMG On MRI PMG looks thick but the cortex is actually thin – with folded, fused gyri Courtesy of Dr Jeff Golden, Pen State Unv, Philadelphia PMG is often confused with pachygyria (lissencephaly) Thick cortex (10 – 20mm) Axial MRI 4 cortical layers Lissencephaly Polymicrogyria Cerebrum Classical lissencephaly is due Many small gyri – often to under-migration. fused together. Axial MRI image at 7T showing morphological aspects of PMG. Guerrini & Dobyns Malformations of cortical development: clinical features and genetic causes. Lancet Neurol. 2014 Jul; 13(7): 710–726. PMG - aetiology Pregnancy history • Intrauterine hypoxic/ischemic brain injury (e.g. death of twin) • Intrauterine infection (e.g. CMV, Zika virus) TORCH, CMV PCR, [+deafness & cerebral calcification] CT scan • Metabolic (e.g. Zellweger syndrome, glycine encephalopathy) VLCFA, metabolic Ix • Genetic: Family history Familial recurrence (XL, AD, AR) Chromosomal abnormalities (e.g. 1p36 del, 22q11.2 del) Syndromic (e.g. Aicardi syndrome, Kabuki syndrome) Examin - Monogenic (e.g. TUBB2B, TUBA1A, GPR56) Array ation CGH Gene test/Panel/WES/WGS A cohort of 121 PMG patients Aim: To explore the natural history of PMG and identify new genes. Recruited: • 99 unrelated patients • 22 patients from 10 families 87% White British, 53% male ~92% sporadic cases (NB. ascertainment bias) Sporadic PMG • Array CGH, single gene and gene panel testing - then a subset (n=57) had trio-WES.
    [Show full text]
  • Reportable BD Tables Apr2019.Pdf
    April 2019 Georgia Department of Public Health | Division of Health Protection | Maternal and Child Health Epidemiology Unit Reportable Birth Defects with ICD-10-CM Codes Reportable Birth Defects in Georgia with ICD-10-CM Diagnosis Codes Table D.1 Brain Malformations and Neural Tube Defects ICD-10-CM Diagnosis Codes Birth Defect ICD-10-CM 1. Brain Malformations and Neural Tube Defects Q00-Q05, Q07 Anencephaly Q00.0 Craniorachischisis Q00.1 Iniencephaly Q00.2 Frontal encephalocele Q01.0 Nasofrontal encephalocele Q01.1 Occipital encephalocele Q01.2 Encephalocele of other sites Q01.8 Encephalocele, unspecified Q01.9 Microcephaly Q02 Malformations of aqueduct of Sylvius Q03.0 Atresia of foramina of Magendie and Luschka (including Dandy-Walker) Q03.1 Other congenital hydrocephalus (including obstructive hydrocephaly) Q03.8 Congenital hydrocephalus, unspecified Q03.9 Congenital malformations of corpus callosum Q04.0 Arhinencephaly Q04.1 Holoprosencephaly Q04.2 Other reduction deformities of brain Q04.3 Septo-optic dysplasia of brain Q04.4 Congenital cerebral cyst (porencephaly, schizencephaly) Q04.6 Other specified congenital malformations of brain (including ventriculomegaly) Q04.8 Congenital malformation of brain, unspecified Q04.9 Cervical spina bifida with hydrocephalus Q05.0 Thoracic spina bifida with hydrocephalus Q05.1 Lumbar spina bifida with hydrocephalus Q05.2 Sacral spina bifida with hydrocephalus Q05.3 Unspecified spina bifida with hydrocephalus Q05.4 Cervical spina bifida without hydrocephalus Q05.5 Thoracic spina bifida without
    [Show full text]
  • CONGENITAL ABNORMALITIES of the CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles Ffrench-Constant *I3
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_1.i3 on 1 March 2003. Downloaded from CONGENITAL ABNORMALITIES OF THE CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles ffrench-Constant *i3 J Neurol Neurosurg Psychiatry 2003;74(Suppl I):i3–i8 dvances in genetics and molecular biology have led to a better understanding of the control of central nervous system (CNS) development. It is possible to classify CNS abnormalities Aaccording to the developmental stages at which they occur, as is shown below. The careful assessment of patients with these abnormalities is important in order to provide an accurate prog- nosis and genetic counselling. c NORMAL DEVELOPMENT OF THE CNS Before we review the various abnormalities that can affect the CNS, a brief overview of the normal development of the CNS is appropriate. c Induction—After development of the three cell layers of the early embryo (ectoderm, mesoderm, and endoderm), the underlying mesoderm (the “inducer”) sends signals to a region of the ecto- derm (the “induced tissue”), instructing it to develop into neural tissue. c Neural tube formation—The neural ectoderm folds to form a tube, which runs for most of the length of the embryo. c Regionalisation and specification—Specification of different regions and individual cells within the neural tube occurs in both the rostral/caudal and dorsal/ventral axis. The three basic regions of copyright. the CNS (forebrain, midbrain, and hindbrain) develop at the rostral end of the tube, with the spinal cord more caudally. Within the developing spinal cord specification of the different popu- lations of neural precursors (neural crest, sensory neurones, interneurones, glial cells, and motor neurones) is observed in progressively more ventral locations.
    [Show full text]
  • TUBB3 M323V Syndrome Presents with Infantile Nystagmus
    G C A T T A C G G C A T genes Case Report TUBB3 M323V Syndrome Presents with Infantile Nystagmus Soohwa Jin 1, Sung-Eun Park 2, Dongju Won 3, Seung-Tae Lee 3, Sueng-Han Han 2 and Jinu Han 4,* 1 Department of Opthalmology, Yonsei University College of Medicine, Seoul 03722, Korea; [email protected] 2 Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; [email protected] (S.-E.P.); [email protected] (S.-H.H.) 3 Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; [email protected] (D.W.); [email protected] (S.-T.L.) 4 Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea * Correspondence: [email protected]; Tel.: +82-2-2019-3445 Abstract: Variants in the TUBB3 gene, one of the tubulin-encoding genes, are known to cause congenital fibrosis of the extraocular muscles type 3 and/or malformations of cortical development. Herein, we report a case of a 6-month-old infant with c.967A>G:p.(M323V) variant in the TUBB3 gene, who had only infantile nystagmus without other ophthalmological abnormalities. Subsequent brain magnetic resonance imaging (MRI) revealed cortical dysplasia. Neurological examinations did not reveal gross or fine motor delay, which are inconsistent with the clinical characteristics of patients with the M323V syndrome reported so far. A protein modeling showed that the M323V mutation in the TUBB3 gene interferes with αβ heterodimer formation with the TUBA1A gene.
    [Show full text]
  • Classification of Congenital Abnormalities of the CNS
    315 Classification of Congenital Abnormalities of the CNS M. S. van der Knaap1 A classification of congenital cerebral, cerebellar, and spinal malformations is pre­ J . Valk2 sented with a view to its practical application in neuroradiology. The classification is based on the MR appearance of the morphologic abnormalities, arranged according to the embryologic time the derangement occurred. The normal embryology of the brain is briefly reviewed, and comments are made to explain the classification. MR images illustrating each subset of abnormalities are presented. During the last few years, MR imaging has proved to be a diagnostic tool of major importance in children with congenital malformations of the eNS [1]. The excellent gray fwhite-matter differentiation and multi planar imaging capabilities of MR allow a systematic analysis of the condition of the brain in infants and children. This is of interest for estimating prognosis and for genetic counseling. A classification is needed to serve as a guide to the great diversity of morphologic abnormalities and to make the acquired data useful. Such a system facilitates encoding, storage, and computer processing of data. We present a practical classification of congenital cerebral , cerebellar, and spinal malformations. Our classification is based on the morphologic abnormalities shown by MR and on the time at which the derangement of neural development occurred. A classification based on etiology is not as valuable because the various presumed causes rarely lead to a specific pattern of malformations. The abnor­ malities reflect the time the noxious agent interfered with neural development, rather than the nature of the noxious agent. The vulnerability of the various structures to adverse agents is greatest during the period of most active growth and development.
    [Show full text]
  • 16P11.2 Deletion and Duplication: Characterizing Neurologic Phenotypes in a Large Clinically Ascertained Cohort Kyle J
    ORIGINAL ARTICLE 16p11.2 Deletion and Duplication: Characterizing Neurologic Phenotypes in a Large Clinically Ascertained Cohort Kyle J. Steinman,1* Sarah J. Spence,2 Melissa B. Ramocki,3 Monica B. Proud,4 Sudha K. Kessler,5 Elysa J. Marco,6 LeeAnne Green Snyder,7 Debra D’Angelo,8 Qixuan Chen,8 Wendy K. Chung,9 and Elliott H. Sherr,6 on behalf of the Simons VIP Consortium 1University of Washington and Seattle Children’s Research Institute, Seattle, Washington 2Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 3University Otolaryngology, Providence, Rhode Island 4Baylor College of Medicine, Houston, Texas 5Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 6University of California, San Francisco, San Francisco, California 7Clinical Research Associates, New York, New York 8Mailman School of Public Health, Columbia University, New York, New York 9Columbia University Medical Center, New York, New York Manuscript Received: 12 August 2015; Manuscript Accepted: 13 June 2016 Chromosome 16p11.2 deletions and duplications are among the most frequent genetic etiologies of autism spectrum How to Cite this Article: disorder (ASD) and other neurodevelopmental disorders, Steinman KJ, Spence SJ, Ramocki MB, but detailed descriptions of their neurologic phenotypes Proud MB, Kessler SK, Marco EJ, Green have not yet been completed. We utilized standardized ex- Snyder LA, D’Angelo D, Chen Q, Chung amination and history methods to characterize a neurologic WK, Sherr EH, on behalf of the Simons phenotype in 136 carriers of 16p11.2 deletion and 110 carriers VIP Consortium. 2016. 16p11.2 Deletion of 16p11.2 duplication—the largest cohort to date of uni- and Duplication: Characterizing neurologic formly and comprehensively characterized individuals with phenotypes in a large clinically ascertained the same 16p copy number variants (CNVs).
    [Show full text]
  • Multiple Ocular Developmental Defects in Four Closely Related Alpacas
    Veterinary Ophthalmology (2018) 1–8 DOI:10.1111/vop.12540 CASE REPORT Multiple ocular developmental defects in four closely related alpacas Kelly E. Knickelbein,* David J. Maggs,§ Christopher M. Reilly,†,1 Kathryn L. Good*,2 and Juliet R. Gionfriddo‡,3 *The Veterinary Medical Teaching Hospital, University of California, Davis, CA 95616, USA; §Department of Surgical and Radiological Sciences, University of California, Davis, CA 95616 USA; †Department of Pathology Microbiology, and Immunology, University of California, Davis, CA 95616, USA; and ‡The College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80528, USA Address communications to: Abstract D. J. Maggs Objective To describe the clinical, gross pathologic, and histopathologic findings for a Tel.: (530) 752-3937 visually impaired 5.8-year-old female alpaca with multiple ocular abnormalities, as well Fax: (530) 752-6042 as the clinical findings for three closely related alpacas. e-mail: [email protected] Animals studied Four alpacas. Present addresses: 1Insight Procedures Ophthalmic examination was performed on a 16-month-old female alpaca Veterinary Specialty Pathology, following observation of visual impairment while hospitalized for an unrelated illness. Austin, TX 78752, USA Following acute systemic decline and death 4.5 years later, the alpaca’s brain, optic 2Department of Surgical and Radiological Sciences, nerves, and eyes were examined grossly and histologically. Ophthalmic examination of University of California, Davis, three closely related alpacas was subsequently performed. CA 95616, USA Results The 16-month-old female alpaca (Alpaca 1) had ophthalmoscopic findings sug- 3 Red Feather Lakes, CO 80545, gestive of a coloboma or hypoplasia of the retinal pigment epithelium (RPE) and chor- USA oid, and suspected optic nerve hypoplasia OU.
    [Show full text]
  • MR Imaging of N Euronal Migration Anomaly
    대 한 방 사 선 의 학 회 지 1991; 27(3) : 323~328 Journal of Korean Radiological Society. May. 1991 MR Imaging of N euronal Migration Anomaly Hyun Sook Hong, M.D., Eun Wan Choi, M.D., Dae Ho Kim, M.D., Moo Chan Chung, M.D., Kuy Hyang Kwon, M.D., Ki Jung Kim, M.D. Department o[ RadíoJogy. Col1ege o[ Medícine. Soonchunhyang University patients ranged in age from 5 months to 42 years with Introduction a mean of 16 years. The mean age was skewed by 2 patients with schizencephaly who were 35 and 42 Abnormalities of neuronal migration Sl re years old. characterized by anectopic location of neurons in the MR was performed with a 0:2T permanent type cerebral cortex (1-9). This broad group of anomalies (Hidachi PRP 20). Slice thickness was 5mm with a includes agyria. pachygyria. schizencephaly. 2.5mm interslice gap or 7.5mm thickness. Spin echo unilateral megalencephaly. and gray matter axial images were obtained. including Tl weighted hcterotopia. Patients with this anomaly present images (TIWI) with a repetition time (TR) of clinically with a variety of symptoms which are pro­ 400-500ms and echo time (TE) of 25-40ms. in­ portional to the extent of the brain involved. These termediate images of TR/TE 2000/38. and T2 abnormalities have been characterized pathologically weighted images (T2Wl) with a TR/TE of 2000/110. in vivo by sonography and CT scan (2. 3. 10-14. Occasionally. sagittal and coronal images were ob­ 15-21). tained. Gd-DTPA enhanced Tl WI were 려 so obtain­ MR appears to be an imaging technique of choice ed in 6 patients.
    [Show full text]
  • Chapter 1 Cellular Reaction to Injury 3
    Schneider_CH01-001-016.qxd 5/1/08 10:52 AM Page 1 chapter Cellular Reaction 1 to Injury I. ADAPTATION TO ENVIRONMENTAL STRESS A. Hypertrophy 1. Hypertrophy is an increase in the size of an organ or tissue due to an increase in the size of cells. 2. Other characteristics include an increase in protein synthesis and an increase in the size or number of intracellular organelles. 3. A cellular adaptation to increased workload results in hypertrophy, as exemplified by the increase in skeletal muscle mass associated with exercise and the enlargement of the left ventricle in hypertensive heart disease. B. Hyperplasia 1. Hyperplasia is an increase in the size of an organ or tissue caused by an increase in the number of cells. 2. It is exemplified by glandular proliferation in the breast during pregnancy. 3. In some cases, hyperplasia occurs together with hypertrophy. During pregnancy, uterine enlargement is caused by both hypertrophy and hyperplasia of the smooth muscle cells in the uterus. C. Aplasia 1. Aplasia is a failure of cell production. 2. During fetal development, aplasia results in agenesis, or absence of an organ due to failure of production. 3. Later in life, it can be caused by permanent loss of precursor cells in proliferative tissues, such as the bone marrow. D. Hypoplasia 1. Hypoplasia is a decrease in cell production that is less extreme than in aplasia. 2. It is seen in the partial lack of growth and maturation of gonadal structures in Turner syndrome and Klinefelter syndrome. E. Atrophy 1. Atrophy is a decrease in the size of an organ or tissue and results from a decrease in the mass of preexisting cells (Figure 1-1).
    [Show full text]