Radar Calibration Some Simple Approaches

Total Page:16

File Type:pdf, Size:1020Kb

Radar Calibration Some Simple Approaches RADAR CALIBRATION SOME SIMPLE APPROACHES BY DAVID ATLAS I - « In considering new and promising methods to calibrate radar, it is worth remembering some of the old and perhaps forgotten methods that were used over the last half century. uring the Radar Calibration Workshop at the shop. While formalizing these remarks in writing I 81st Annual Meeting of the American Meteo- thought it would be useful to elaborate upon them and Drological Society in Albuquerque, New Mexico, discuss some newer approaches. Thus this paper at- in January 2001,1 was surprised at the relatively little tempts to synthesize a range of techniques. A com- attention given to some of the simplest and proven mon thread that runs throughout is the calibration of methods. This stimulated some extemporaneous re- the overall system by use of standard or well-defined marks that I presented toward the end of the work- targets external to the radar. In part, I was troubled by the apparent lack of fa- miliarity of some of the younger generation with early AFFILIATION: ATLAS—NASA Goddard Space Flight Center, activities in this realm. I was also reacting to the re- Greenbelt, Maryland cent findings of the variability in the calibrations of CORRESPONDING AUTHOR: David Atlas, Distinguished Visiting Scientist, NASA Goddard Space Flight Center, Code 910, the Weather Surveillance Radars-1988 Doppler Greenbelt, MD 20771 (WSR-88Ds) around the nation that have been uncov- E-mail: [email protected] In final form 22 May 2002 Above: In the early 1970s, Atlas used BBs to cali- ©2002 American Meteorological Society brate the vertically pointing frequency modulated- continuous wave (FM-CW) radar. AMERICAN METEOROLOGICAL SOCIETY UnauthenticatedSEPTEMBE | DownloadedR 2002 10/01/21BAITS' I08:29 1313 PM UTC ered by comparison with the radar measurements of tenna. These frequencies are readily distinguished precipitation by the radar on board the Tropical Rain- from ground clutter and precipitation echoes. It is an fall Measuring Mission (TRMM); (Bolen and excellent calibration device because it is always avail- Chandrasekar 2000). The remarkable stability of the able regardless of the weather. TRMM precipitation radar has made it a traveling standard against which ground-based weather radars 88s. We first used BBs fired vertically from a BB pis- can be calibrated. tol as standard targets to calibrate the vertically point- There were a few papers presented at the work- ing frequency modulated-continuous wave (FM-CW) shop that resorted to the more traditional methods radar at the Naval Electronics Laboratory Center at such as calibration with a standard target. David Point Loma, California (Stratmann et al. 1971). After Brunkow of Colorado State University spoke about having failed to support a calibration sphere from a the use of a metal sphere. Ron Rinehart of the Uni- balloon in a stable position on the axis of the radar versity of North Dakota used an oscillating dihedral beam we searched for another approach. In a joking corner reflector. Also Isztar Zawadzki recounted his manner I suggested the use of a BB gun. Although work with rain gauges and a Joss-Waldvogel (J-W) there was no prior literature on the subject it was disdrometer. Surely, few of the participants were cheap, straightforward, and worth a try. We were very aware that the early workers in Canada (Stewart pleased by how well it worked. If enough BBs are used Marshall, Bob Langille, and Walter Palmer) and in (one at a time), the statistics of echo strength mimic my group at the Air Force Cambridge Research Labo- the radiation pattern of the beam. The maximum echo ratories (Vernon Plank, A1 Chmela, and I) used fil- corresponds to the antenna gain on the beam axis. ter papers powdered with Gentian violet dye (which When using a conventional radar, one should tilt the left purple stains on our clothes and teeth) to mea- beam close to the horizon outside the region of sure the sizes of tens of thousands of drops by hand ground clutter. With Doppler radar, the Doppler shift in the late 1940s and early 1950s (Hitschfeld 1986). can be used to distinguish the moving BBs from Oh what a blessing it was to display the drop size dis- clutter. tribution in a comfortable laboratory , while the J- W disdrometer was observing the size of each drop Metalized Ping-Pong balls. This is an extension of the automatically outdoors. BB method. One can fly a light aircraft across and Historically, it was the Weather Radar Group at the above a fixed radar beam and drop the balls sequen- Massachusetts Institute of Technology (MIT), under tially at about 10-15 m intervals so that only one tar- the leadership of Alan Bemis and the seminal work get is in the beam at any time. The metalized balls by Polly Austin and Ed Williams (1951), that found are good targets of known radar cross section. The the large underestimates of the radar echoes from successive echoes present a quantitative measure of gauge measurements of rain in comparison to the the antenna pattern. Tracking of the aircraft and then-available theory. It was this difference that mo- timing of each drop positions each target relative to tivated Richard Probert-Jones (1962) in England to the maximum echo on the beam axis. The Ping- formulate the proper radar equation for meteorologi- Pong balls are cheap and nonhazardous. One may cal scatterers (Hitschfeld 1986). For almost a decade also use metalized wiffle balls (with holes in them). we all struggled to understand the source of this dis- The idea is to prevent either type of ball from falling crepancy. And here we are today still struggling with fast enough to create a hazard. Note that either of the optimum methods of radar calibration. these types of balls may be within the Mie region depending on the radar wavelength so that their CALIBRATION METHODS. Frequency shift re- cross sections should be computed carefully. It is also flector (FSR). The FSR was invented by John Chisholm possible to release such targets sequentially from a (1963). It has been used mainly as a ground-based bucket carried on a constant-level balloon moving target for precise locations on airports and geographi- with the winds perpendicular to the fixed radar cal siting. It employs a parabolic reflector with a horn beam. A similar method was used to measure the at the focus that is shorted by a diode at a frequency/ cross section of a free-falling artificial hailstone re- (e.g., 30 or 60 MHz). The frequency/is generated by leased from a balloon and measured by a tracking a battery-driven modulator. The echo from the tar- radar (Willis et al. 1964). get is returned at F ±/, where F is the transmitted fre- quency. The echoes at ±f are exactly 6 dB below that Airborne modulated target. This approach combines the corresponding to the known cross section of the an- concepts in the frequency shift reflector (FSR) and 1314 | BAI1S- SEPTEMBER 2002 Unauthenticated | Downloaded 10/01/21 08:29 PM UTC Standard Target Radar (STADAR; Atlas 1967). from tethered balloons or kytoons. Some have used STADAR employs a rotating standard target on the three tethers to stabilize the position of the balloon. aircraft that modulated the total echo of the aircraft During experiments in England we used a tethered and the target at a frequency corresponding to the balloon with a standard 12 in. diameter metal sphere rotation frequency. The original idea was aimed at using and an ice ball (i.e., a simulated hailstone) of unknown a simple CW radar to detect the range to the target by cross section suspended below the balloon at a suffi- the intensity of the echo from the rotating target of cient vertical spacing to separate the known and un- known cross section using the radar equation to com- known targets. Swinging the beam from one to the pute the range. However, it would be greatly improved other allowed us to measure the cross section of the by using an FSR on board the aircraft so that the echo simulated hailstone with accuracy of better than -0.5 is returned at a frequency that is different from that of dB. This was more easily done at the time because of the carrier frequency and thus separated from the air- the use of relatively wide beam height-finder radars craft echoes. such as the MPS-4 and the TPS-10 (Atlas et al. 1960). For greater use it is best to do this in the light winds Balloon-borne or airborne standard target This is an old of early morning or evening. scheme that must go back to World War II. However, we first used it in 1953 when we suspended a metal- Use of a radar profiler and disdrometer. The use of a ized sphere below a helicopter and carried it across Doppler radar profiler (at vertical incidence) along- the beam of our 24-GHz radar in a study of the radar side a disdrometer allows the measurement of the characteristics of fog (Atlas et al. 1953). That study drop size distribution (DSD) at the surface, computa- was aimed at determining the relationship of the ra- tion of its associated value of reflectivity, and compari- dar reflectivity to the liquid water content and drop son to the reflectivity measured by the radar at heights sizes of fog. Many others have used this method but of 300-400 m just beyond the radar recovery time. found it difficult to track the target in a narrow beam. This calibrates the radar remarkably well. The method At the present time the use of the global positioning was first used by Joss et al.
Recommended publications
  • Contrails to Cirrus—Morphology, Microphysics, and Radiative Properties
    JANUARY 2006 ATLAS ET AL. 5 Contrails to Cirrus—Morphology, Microphysics, and Radiative Properties DAVID ATLAS Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland ZHIEN WANG* Goddard Earth Science and Technology Center, University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland DAVID P. DUDA National Institute of Aerospace, NASA Langley Research Center, Hampton, Virginia (Manuscript received 27 December 2004, in final form 30 June 2005) ABSTRACT This work is two pronged, discussing 1) the morphology of contrails and their transition to cirrus uncinus, and 2) their microphysical and radiative properties. It is based upon the fortuitous occurrence of an unusual set of essentially parallel contrails and the unanticipated availability of nearly simultaneous observations by photography, satellite, automated ground-based lidar, and a newly available database of aircraft flight tracks. The contrails, oriented from the northeast to southwest, are carried to the southeast with a com- ponent of the wind so that they are spread from the northwest to southeast. Convective turrets form along each contrail to form the cirrus uncinus with fallstreaks of ice crystals that are oriented essentially normal to the contrail length. Each contrail is observed sequentially by the lidar and tracked backward to the time and position of the originating aircraft track with the appropriate component of the wind. The correlation coefficient between predicted and actual time of arrival at the lidar is 0.99, so that one may identify both visually and satellite-observed contrails exactly. Contrails generated earlier in the westernmost flight cor- ridor occasionally arrive simultaneously with those formed later closer to the lidar to produce broader cirrus fallstreaks and overlapping contrails on the satellite image.
    [Show full text]
  • Radar in Meteorology Radar in Meteorology: Battan Memorial And
    RADAR IN METEOROLOGY RADAR IN METEOROLOGY: BATTAN MEMORIAL AND 40TH ANNIVERSARY RADAR METEOROLOGY CONFERENCE EDITED BY DAVID ATLAS American Meteorological Society Boston 1990 © American Meteorological Society 1990 Originally published by American Meteorological Society Boston in 1990 Softcover reprint of the hardcover 1st edition 1990 Permission to use figures, tables, and brief excerpts from this publication in scientific and educational works is hereby granted, provided the source is acknowledged. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. ISBN 978-0-933876-86-6 ISBN 978-1-935704-15-7 (eBook) DOI 10.1007/978-1-935704-15-7 Typeset and printed in the United States of America by Lancaster Press, Lancaster, Pennsylvania. Section openers designed by Helga Hardy. Published by the American Meteorological Society, 45 Beacon Street, Boston, MA 02176. Richard E. Hallgren, Executive Director Kenneth C. Spengler, Executive Director Emeritus Evelyn Mazur, Assistant Executive Director Arlyn S. Powell, Jr., Publications Manager Editorial support provided by Laura Westlund, Pamela Jones, Jon Feld, Linda Esche, Brenda Gray, Harold Nagel, and Susan McClung. Table of Contents Preface . 1x Acknowledgments . x1 Tribute to Professor Louis J. Battan Xlll I. HISTORY 1 Early Developments of Weather Radar during World War II . 3 ].0. Fletcher 2 Weather Radar in the United States Army's Fort Monmouth Laboratories . 7 Donald M. Swingle 3 Radar Meteorology at Radiation Laboratory, MIT, 1941 to 1947 . 16 Isadore Katz and Patrick f.
    [Show full text]
  • IN the SUPREME COURT of OHIO STATE of OHIO, Ex Rel. Michael T
    Supreme Court of Ohio Clerk of Court - Filed September 04, 2015 - Case No. 2015-1472 IN THE SUPREME COURT OF OHIO STATE OF OHIO, ex rel. Michael T. McKibben, Original Action in Mandamus an Ohio citizen, Relator, Case No. ____________________ vs. MICHAEL V. DRAKE, an Ohio public servant, Respondent. COMPLAINT FOR WRIT OF MANDAMUS Michael T. McKibben Michael V. Drake 1676 Tendril Court 80 North Drexel Columbus, Ohio 43229-1429 Bexley, Ohio 43209-1427 (614) 890-3141 614-292-2424 [email protected] [email protected] RELATOR, PRO SE RESPONDENT TABLE OF CONTENTS Case Caption ........................................................................................................................ i Table of Contents ................................................................................................................ ii Exhibits .............................................................................................................................. iii Table of Authorities .............................................................................................................v Ohio Cases ..................................................................................................................v California Cases ..........................................................................................................v Federal Cases ..............................................................................................................v Ohio Ethics Commission ............................................................................................v
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    https://ntrs.nasa.gov/search.jsp?R=19850007964 2020-03-20T20:30:44+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) i (NASA-TM-86167) SIMULTANEOUS OCEAN X85-16273 CROSS-SECTION AND RAItiFALL MEASUREMENTS FROM k SPACE WITH A NADIR-PCINTING RADAR ( NASA) 46 p HC A03/MF A01 CSCL 04B Unclaz G3/43 13002 N/` A Technical Memorandum 86167 SIMULTANEOUS OCEAN CROSS- SECTION AND RAINFALL MEASURE- MENTS FROM SPACE WITH A NADIR-POINTING RADAR Robert Meneghini and David Atlas NOVEMBER 1984 i t j 1 i National Aeronautics and Space Administration Goddard Space Flight Center i Greenbelt, Maryland 20771 i i 1 '. a Y MW_tom. v - TM-86167 SIMULTANEOUS OCEAN CROSS-SECTION AND RAINFALL MEASUREMENTS FROM SPACE WITH A NADIR-POINTING RADAR Robert Meneghini and David Atlas November 1984 I GODDARD SPACE FLIGHT CENTER Greenbelt.
    [Show full text]
  • 1 Discrimination of Bird and Insect Radar
    Discrimination of Bird and Insect Radar Echoes in Clear-Air Using High-Resolution Radars William J. Martin* Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma Alan Shapiro Center for Analysis and Prediction of Storms and School of Meteorology, University of Oklahoma, Norman, Oklahoma Submitted to Journal of Atmospheric and Oceanic Technology April, 2006 Revised August, 2006 Revised October, 2006 *Corresponding author address: Dr. William Martin Center for Analysis and Prediction of Storms National Weather Center, Suite 2500 120 David L. Boren Blvd. Norman, OK 73072 Phone: (405) 325-0402 E-mail: [email protected] 1 Abstract The source of clear-air reflectivity from operational and research meteorological radars has been a subject of much debate and study over the entire history of radar meteorology. Recent studies have suggested that bird migrations routinely contaminate wind profiles obtained at night, while historical studies have suggested insects as the main source of such nocturnal clear-air echo. This study analyzes two cases of nocturnal clear-air return using data from operational WSR-88D radars and X- and W-band research radars. The research radars have sufficient resolution to resolve the echo as point targets in some cases. By examining the radar cross-section of the resolved point targets, and by determining the target density, it is found for both cases of nocturnal clear-air echo, that the targets are almost certainly insects. The analysis of the dependence of the echo strength on radar wavelength also supports this conclusion. 2 1. Introduction Shortly after the invention of radar, radar echoes were received from optically clear air and scientists struggled to explain the source of these signals.
    [Show full text]
  • PATH to NEXRAD Doppler Radar Development at the National Severe Storms Laboratory
    PATH TO NEXRAD Doppler Radar Development at the National Severe Storms Laboratory BY RODGER A. BROWN AND JOHN M. LEWIS Evolution of events at the National Severe Storms Laboratory during the 1960s and 1970s played an important role in the U.S. government's decision to build the current national network of NEXRAD, or WSR-88D radars. n 1959, 31 people lost their lives in an airplane in developing important new guidelines for the safety accident over Maryland. The fuel tanks in the of flight in the vicinity of thunderstorms (e.g., Kessler IViscount aircraft were struck by lightning and 1990). the resulting explosion and fire led to the fatal crash. In 1962, NSSP placed a research Weather Sur- This event, and several other aircraft accidents that veillance Radar-1957 (WSR-57) radar in Norman, were associated with severe weather, led to the cre- Oklahoma, at the new field facility called the Weather ation of the National Severe Storms Project (NSSP) Radar Laboratory. The following year a decision in 1961 with Clayton Van Thullenar as director and was made to transfer the entire NSSP operation to Chester Newton as chief scientist (Galway 1992). As Norman, where it was reorganized as the National part of NSSP, which was headquartered in Kansas Severe Storms Laboratory (NSSL). Not only was the City, Missouri, Project Rough Rider was established operation of NSSP transferred, but a larger mission to fly instrumented aircraft into storms and compare was envisioned by the new U.S. Weather Bureau the relationship of radar echo strength with aircraft- (USWB) chief, Robert White.
    [Show full text]
  • CALL for PA??Jtf ANNOUNCEMENT Wide-Ranging Opportunities in the Association Representing Large and Eighth Annual AMS Student Con- Atmospheric and Related Sciences
    CALL FOR PA??jtf ANNOUNCEMENT wide-ranging opportunities in the association representing large and Eighth Annual AMS Student Con- atmospheric and related sciences. small reinsurance brokers and direct ference and Career Fair, 10-11 Janu- Important eligibility requirement: writer companies and U.S. subsidiar- ary 2009, Phoenix, Arizona You must be an AMS member or ies of foreign companies, will host student member in order to attend "Cat Modeling in Uncertain Times," Join us for the Eighth Annual AMS the conference. 17-20 February 2009 at the Grand Student Conference and Career Fair, Sessions will include invited Hyatt Tampa Bay in Tampa, Florida. "Weathering Your Career—Now speakers from the private, academic, The conference features provocative and in the Future," sponsored by the and government sectors. A career fair discussions from respected industry American Meteorological Society, and networking evening is scheduled leaders on topics such as modeling Saturday-Sunday, 10-11 January to provide a forum for students to comparison, the increasing uncer- 2009 as part of the 89th AMS An- personally interact with professionals tainty about model results and inter- nual Meeting in Phoenix, Arizona. who represent potential employers pretation, the growing debate about Registration, hotel, and general in- and graduate institutions. In addi- modeling regulation, and the degree formation is posted on the AMS Web tion to the conference sessions, Dr. to which underwriters should rely site (www.ametsoc.org). A registra- David Schultz, chief editor, Monthly on modeling output when making tion fee of $25 has been set for this Weather Review and professor, Uni- underwriting decisions.
    [Show full text]
  • Goddard Welcomes New Elcomes New Center Director Center
    Sept 2004 Issue 9 Vol 1 Goddard Welcomes New Center Director, Goddard Welcomes Weiler Front Dr. Ed Weiler Photo by Chris Gunn/293 NASA Partners with NFB ..... Pg 2 Dr. Ed Weiler e-Payroll Is A Go ................. Pg 3 By Nancy Neal Congressional Saffers Visit . Pg 4 After only a month on the job, Center Remembering Mr. Bandeen . Pg 5 Director Ed Weiler made time on his busy LDP Graduates Honored ...... Pg 7 schedule to sit down with Goddard News Explorer School Team Members to discuss his plans and goals for the Get Back to School .............. Pg 9 Center’s future. In the Safety Corner Backpack Injuries ............. Pg 10 Dr. Weiler is not a newcomer to the NASA family. Prior to becoming NASA Goddard’s NASA Goddard Center Director, Dr. Ed Weiler 2004 SHARP Program Concludes ......................... Pg 11 Center Director, he served as the Associate Administrator for NASA’s Space Science Enterprise from 1998 to 2004. Safety Alerts ...................... Pg 12 Under his leadership, the Enterprise had numerous successes, including the Chandra, EQUIS Campaign Goes to NEAR, WMAP, FUSE, Spitzer, Mars Odyssey, and Mars Exploration Rover missions. Kwajalein ........................... Pg 12 Employee Spotlight Below is a transcript of the interview with our new Center Director. Bill Townsend .................... Pg 13 Summer Interns ................ Pg 14 Based on NASA’s Transformation, where do you see NASA Goddard fitting into the New Vision? Solar Dynamics Observatory ....................... Pg 15 There are some obvious places where we fit into the Vision, for example the Robotic Workshop Gives Insight to Lunar Program; we have overall responsibility for the program.
    [Show full text]
  • Contrails of Small and Very Large Optical Depth
    SEPTEMBER 2010 A T L A S A N D W A N G 3065 Contrails of Small and Very Large Optical Depth DAVID ATLAS NASA Goddard Space Flight Center, Silver Spring, Maryland ZHIEN WANG Department of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming (Manuscript received 8 December 2009, in final form 27 April 2010) ABSTRACT This work deals with two kinds of contrails. The first comprises a large number of optically thin contrails near the tropopause. They are mapped geographically using a lidar to obtain their height and a camera to obtain azimuth and elevation. These high-resolution maps provide the local contrail geometry and the amount of optically clear atmosphere. The second kind is a single trail of unprecedentedly large optical thickness that occurs at a lower height. The latter was observed fortuitously when an aircraft moving along the wind direction passed over the lidar, thus providing measurements for more than 3 h and an equivalent distance of 620 km. It was also observed by Geostationary Operational Environmental Satellite (GOES) sensors. The lidar measured an optical depth of 2.3. The corresponding extinction coefficient of 0.023 km21 and ice water content of 0.063 g m23 are close to the maximum values found for midlatitude cirrus. The associated large radar reflectivity compares to that measured by ultrasensitive radar, thus providing support for the reality of the large optical depth. 1. Introduction 2. Photographic observations We have had a longstanding interest in the nature and Photographs were taken to the southwest and east of origin of contrails both from the point of view of the cloud the Atlas residence between 1451 and 1530 UTC (Times physics and from the continuing concern about their in- are rounded to the nearest minute; all times are in UTC.).
    [Show full text]
  • Downloaded 10/11/21 06:56 AM UTC Vol
    members ol commissions, boards, and committees* EXECUTIVE COMMITTEE** D. Atlas C. L. Hosier, Jr. D. S. Johnson W. H. Best, Jr. P. M. Austin E. S. Epstein K. C. Spengler D. F. Landrigan COMMITTEES OF THE EXECUTIVE COMMITTEE Awards Chairman: Dr. Cecil E. Leith, National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colo. 80303 Loren W. Crow, Certified Consulting Meteorologist, 2422 South Downing St., Denver, Colo. 80210 Willard S. Houston, Jr., Capt., USAF, Commander, Naval Weather Service Command Headquarters, Washington Navy Yard, Washington, D.C. 20374 Prof. Richard M. Schotland, Institute of Atmospheric Physics, University of Arizona, Tucson, Ariz. 85721 Dr. Frederick G. Shuman, Director, National Meteorological Center, NOAA, World Weather Building, 5200 Auth Road, Washington, D.C. 20233 * The Executive Director is an ex officio member of all commissions, boards and committees. * * Addresses listed on page 802. Bulletin American Meteorological Society 805 Unauthenticated | Downloaded 10/11/21 06:56 AM UTC Vol. 56, No. 8, August 1975 Nominating Chairman: Dr. Fred D. White, Head, Atmospheric Sciences Section, National Science Foundation, Washington, D.C. 20550 Prof. Donna W. Blake, Department of Meteorology, Florida State University, Talla- hassee, Fla. B2306 Paul W. Kadlec, Manager—Meteorology, Continental Airlines, Los Angeles Inter- national Airport, Los Angeles, Calif. 90009 Dr. Douglas H. Sargeant, Director, World Weather Program Office, NOAA, Rockville, Md. 20852 Dr. Warren M. Washington, National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colo. 80303 COMMITTEES OF THE COUNCIL Fellows and Chairman: Brig. Gen. William H. Best, Jr., USAF (Ret.), 105 Florence St., Lebanon, 111. Honorary Members 62254 Dr.
    [Show full text]
  • Downloaded 10/08/21 07:08 AM UTC Vol
    members ot commissions, boards, and committees EXECUTIVE COMMITTEE D. S. Johnson D. Atlas W. W. Kellogg F. G. Shuman W. H. Best P. D. McTaggart-Cowan K. C. Spengler D. F. Landrigan COMMITTEES OF THE EXECUTIVE COMMITTEE Awards Chairman: Dr. Helmut E. Landsberg, Institute for Fluid Dynamics and Applied Mathe- matics, University of Maryland, College Park, Md. 20742 Dr. Glenn R. Hilst, Aeronautical Research Associates of Princeton, Inc., 50 Washington Road, Princeton, N.J. 08540 Dr. Cecil E. Leith, Jr., National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colo. 80303 Thomas D. Potter, Col., USAF, 51 Harmon Drive, Lebanon, 111. 62254 Dr. Robert M. White, Administrator, National Oceanic and Atmospheric Administra- tion, U.S. Department of Commerce, Washington, D.C. 20230 Bulletin American Meteorological Society 947 Unauthenticated | Downloaded 10/08/21 07:08 AM UTC Vol. 55, No. 8, August 1974 Nominating Chairman: Dr. George S. Benton, Vice President, Homewood Divisions, The Johns Hopkins University, Baltimore, Md. 21218 William J. Kotsch, R. Adm., USN, 1772 Shaftsbury Ave., Crofton, Md. 21113 Dr. Margaret A. Lemone, National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colo. 80303 Silvio G. Simplicio, Director, Eastern Region, National Weather Service, NOAA, 585 Stewart Ave., Garden City, N.Y. 11530 Dr. Fred D. White, Head, Atmospheric Sciences Section, National Science Foundation, Washington, D.C. 20550 COMMITTEES OF THE COUNCIL Fellows and Chairman: Dr. Frederick G. Shuman, Director, National Meteorological Center, NOAA, Honorary Members Suitland, Md. 20023 Dr. Louis J. Battan, Institute of Atmospheric Physics, University of Arizona, Tucson, Ariz. 85721 William H. Best, Jr., Brig.
    [Show full text]
  • Laboratory for Atmospheres PHILOSOPHY, ORGANIZATION, MAJOR ACTIVITIES, and 2001 HIGHLIGHTS
    Laboratory for Atmospheres PHILOSOPHY, ORGANIZATION, MAJOR ACTIVITIES, AND 2001 HIGHLIGHTS January 2002 Impact of Simulated LIDAR Winds on Numerical Weather Prediction National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, MD 20771 NASA GODDARD SPACE FLIGHT CENTER Laboratory for Atmospheres PHILOSOPHY, ORGANIZATION, MAJOR ACTIVITIES, AND 2001 HIGHLIGHTS January 2002 Impact of Simulated LIDAR Winds on Numerical Weather Prediction The Laboratory for Atmospheres’ Data Assimilation Office (DAO) uses a modeling technique called OSSE (Observing System Simulation Experiment) to study atmospheric monitoring capabilities. In this unique approach, the OSSE synthesizes the observations of a proposed satellite instrument and uses them in a data assimilation to predict the instrument’s usefulness in forecasting. The cover shows simulations to evaluate various concepts for obtaining Doppler Wind Lidar (DWL) profiles from space. The drawing shows the cross-track coverage of a DWL in a 400 km orbit and the improved anomaly correlation for sea-level pressure in the southern hemisphere. The anomaly correlation shown on the ordinate in the chart indicates forecast accuracy. A perfect forecast has an anomaly correlation of 1.0, while the limit of useful forecast skill is about 0.6. Photo courtesy of R. Atlas, J. Ardizzone, J. Terry, and D. Bungato of the Data Assimilation Office; G.D. Emmitt of Simpson Weather Associates; and T. Carnahan and C. Congedo of the Mechanical Systems Analysis and Simulation Branch, NASA Goddard Space Flight Center. National Aeronautics and Space Administration Goddard Space Flight Center NASA Greenbelt, Maryland 20771 Laboratory Chief’s Summary Dear Reader: Welcome to the Laboratory for Atmospheres’ annual report for 2001.
    [Show full text]