CLAW Hypothesis - Wikipedia, the Free Encyclopedia 6/16/12 3:16 PM CLAW Hypothesis from Wikipedia, the Free Encyclopedia

Total Page:16

File Type:pdf, Size:1020Kb

CLAW Hypothesis - Wikipedia, the Free Encyclopedia 6/16/12 3:16 PM CLAW Hypothesis from Wikipedia, the Free Encyclopedia CLAW hypothesis - Wikipedia, the free encyclopedia 6/16/12 3:16 PM CLAW hypothesis From Wikipedia, the free encyclopedia The CLAW hypothesis proposes a feedback loop that operates between ocean ecosystems and the Earth's climate.[1] The hypothesis specifically proposes that particular phytoplankton that produce dimethyl sulfide are responsive to variations in climate forcing, and that these responses lead to a negative feedback loop that acts to stabilise the temperature of the Earth's atmosphere. The CLAW hypothesis was originally proposed by Robert Charlson, James Lovelock, Meinrat Andreae and Stephen Warren, and takes its acronym from the first letter of their surnames.[2] Contents 1 The CLAW hypothesis 2 The Anti-CLAW hypothesis 3 See also 4 References 5 External links The CLAW hypothesis The hypothesis describes a feedback loop that begins with an increase in the available energy from the sun acting to increase the growth rates of phytoplankton by either a physiological effect (due to elevated temperature) or enhanced photosynthesis (due to increased irradiance). Certain phytoplankton, such as coccolithophorids, synthesise dimethylsulfoniopropionate (DMSP), and their enhanced growth increases the production of this osmolyte. In turn, this leads to an increase in the concentration of its breakdown product, dimethyl sulfide (DMS), in first seawater, and then the atmosphere. DMS is oxidised in the atmosphere to form sulfur dioxide, and this leads to the production of sulfate aerosols. Schematic diagram of the CLAW These aerosols act as cloud condensation nuclei and increase cloud droplet hypothesis (Charlson et al., number, which in turn elevate the liquid water content of clouds and cloud 1987)[1] area. This acts to increase cloud albedo, leading to greater reflection of incident sunlight, and a decrease in the forcing that initiated this chain of events. The figure to the right shows a summarising schematic diagram. Note that the feedback loop can operate in the reverse direction, such that a decline in solar energy leads to reduced cloud cover and thus to an increase in the amount of solar energy reaching the Earth's surface. A significant feature of the chain of interactions described above is that it creates a negative feedback loop, whereby a change to the climate system (increased/decreased solar input) is ultimately counteracted and damped by the loop. As such, the CLAW hypothesis posits an example of planetary-scale homeostasis or complex adaptive system, consistent with the Gaia hypothesis framed by one of the original authors of the CLAW hypothesis, James Lovelock.[3] Some subsequent studies of the CLAW hypothesis have uncovered evidence to support its mechanism,[2][4] http://en.wikipedia.org/wiki/CLAW_hypothesis Page 1 of 3 CLAW hypothesis - Wikipedia, the free encyclopedia 6/16/12 3:16 PM although this is not unequivocal.[5] Other researchers have suggested that a CLAW-like mechanism may operate in the Earth's sulfur cycle without the requirement of an active biological component.[6] The Anti-CLAW hypothesis In his 2006 book, The Revenge of Gaia, Lovelock proposed that instead of providing negative feedback in the climate system, the components of the CLAW hypothesis may act to create a positive feedback loop.[7] Under future global warming, increasing temperature may stratify the world ocean, decreasing the supply of nutrients from the deep ocean to its productive euphotic zone. Consequently, phytoplankton activity will decline with a concommitant fall in the production of DMS. In a reverse of the CLAW hypothesis, this decline in DMS production will lead to a decrease in cloud condensation nuclei and a fall in cloud albedo. The Schematic diagram of the anti- consequence of this will be further climate warming which may lead to CLAW hypothesis (Lovelock, even less DMS production (and further climate warming ...). The figure to 2006)[7] the right shows a summarising schematic diagram. Evidence for the anti-CLAW hypothesis is constrained by similar uncertainties as those of the sulfur cycle feedback loop of the CLAW hypothesis. However, researchers simulating future oceanic primary production have found evidence of declining production with increasing ocean stratification.[8] See also Cloud Coccolithophorid Dimethyl sulfide Dimethylsulfoniopropionate Earth science Geophysiology Phytoplankton References 1. ^ a b Charlson, R. J., Lovelock, J. E., Andreae, M. O. and Warren, S. G. (1987). "Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate" (http://www.nature.com/nature/journal/v326/n6114/abs/326655a0.html) . Nature 326 (6114): 655–661. Bibcode 1987Natur.326..655C (http://adsabs.harvard.edu/abs/1987Natur.326..655C) . DOI:10.1038/326655a0 (http://dx.doi.org/10.1038%2F326655a0) . http://www.nature.com/nature/journal/v326/n6114/abs/326655a0.html. 2. ^ a b Andreae, M. O., Elbert, W. and Demora, S. J. (1995). "Biogenic sulfur emissions and aerosols over the tropical South Atlantic, 3. Atmospheric dimethylsulfide, aerosols and cloud condensation nuclei" (http://www.agu.org/pubs/crossref/1995/94JD02828.shtml) . J. Geophys. Res. 100: 11335–56. Bibcode 1995JGR...10011335A (http://adsabs.harvard.edu/abs/1995JGR...10011335A) . DOI:10.1029/94JD02828 (http://dx.doi.org/10.1029%2F94JD02828) . http://www.agu.org/pubs/crossref/1995/94JD02828.shtml. 3. ^ Lovelock, J.E. (2000) [1979]. Gaia: A New Look at Life on Earth (3rd ed.). Oxford University Press. ISBN 0-19- 286218-9. 4. ^ Cropp, R.A., Gabric, A.J., McTainsh, G.H., Braddock, R.D. and Tindale, N. (2005). "Coupling between ocean biota and atmospheric aerosols: Dust, dimethylsulphide, or artifact?" http://en.wikipedia.org/wiki/CLAW_hypothesis Page 2 of 3 CLAW hypothesis - Wikipedia, the free encyclopedia 6/16/12 3:16 PM (http://www.agu.org/pubs/crossref/2005/2004GB002436.shtml) . Global Biogeochemical Cycles 19 (4): GB4002. Bibcode 2005GBioC..19.4002C (http://adsabs.harvard.edu/abs/2005GBioC..19.4002C) . DOI:10.1029/2004GB002436 (http://dx.doi.org/10.1029%2F2004GB002436) . http://www.agu.org/pubs/crossref/2005/2004GB002436.shtml. 5. ^ Vallina, S. M., Simo, R., Gasso, S., De Boyer-Montegut, C., del Rio, E., Jurado, E. and Dachs, J. (2007). "Analysis of a potential "solar radiation dose-dimethylsulfide-cloud condensation nuclei" link from globally mapped seasonal correlations" (http://www.agu.org/pubs/crossref/2007/2006GB002787.shtml) . Global Biogeochemical Cycles 21 (2): GB2004. Bibcode 2007GBioC..21.2004V (http://adsabs.harvard.edu/abs/2007GBioC..21.2004V) . DOI:10.1029/2006GB002787 (http://dx.doi.org/10.1029%2F2006GB002787) . http://www.agu.org/pubs/crossref/2007/2006GB002787.shtml. 6. ^ Shaw, G.E., Benner, R.L., Cantrell, W. and Clarke, A.D. (1998). "The regulation of climate: A sulfate particle feedback loop involving deep convection — An editorial essay" (http://www.ingentaconnect.com/content/klu/clim/1998/00000039/00000001/00164320) . Climate Change 39: 23–33. DOI:10.1023/A:1005341506115 (http://dx.doi.org/10.1023%2FA%3A1005341506115) . http://www.ingentaconnect.com/content/klu/clim/1998/00000039/00000001/00164320. 7. ^ a b Lovelock, James (2007). The Revenge of Gaia. Penguin. ISBN 0-14-102597-2. 8. ^ Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. (2000). "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model" (http://www.nature.com/nature/journal/v408/n6809/abs/408184a0.html) . Nature 408 (6809): 184–7. DOI:10.1038/35041539 (http://dx.doi.org/10.1038%2F35041539) . PMID 11089968 (//www.ncbi.nlm.nih.gov/pubmed/11089968) . http://www.nature.com/nature/journal/v408/n6809/abs/408184a0.html. External links Gaia and CLAW (http://www.atmosphere.mpg.de/enid/1w1.html) , Max Planck Institute for Chemistry, Mainz DMS and climate (http://saga.pmel.noaa.gov/review/dms_climate.html) , Pacific Marine Environmental Laboratory, Seattle Retrieved from "http://en.wikipedia.org/w/index.php?title=CLAW_hypothesis&oldid=495799085" Categories: Atmospheric radiation Climate feedbacks Particulates Satellite meteorology and remote sensing This page was last modified on 3 June 2012 at 17:16. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of use for details. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. http://en.wikipedia.org/wiki/CLAW_hypothesis Page 3 of 3.
Recommended publications
  • Earths Climate Crisis and the Fate of Humanity PDF Book
    REVENGE OF GAIA: EARTHS CLIMATE CRISIS AND THE FATE OF HUMANITY PDF, EPUB, EBOOK James Lovelock | 208 pages | 05 Jun 2007 | The Perseus Books Group | 9780465041695 | English | New York, United States Revenge of Gaia: Earths Climate Crisis and the Fate of Humanity PDF Book It is running a fever born of increased atmospheric greenhouse gases. Ratings and Reviews Write a review. Bibcode : Natur. Lovelock therefore fears - nay, predicts, even - a 'tipping point' in climate is approaching, one which will push the climate beyond Gaia's ability to moderate sufficiently to be compatible with our the Western world's lifestyle. Lovelock proposed that instead of providing negative feedback in the climate system, the components of the CLAW hypothesis may act to create a positive feedback loop. Cancel Submit. James Lovelock, one of the giants of environmental thinking, argues passionately and poetically that, although global warming is now inevitable, we are not yet too late to save at least part of human civilization. Buy It Now. Your question required. Thus appropriate urgent action life support is required to keep the natural systems working temporarily whilst we find and adapt to workable long-term solutions. Walmart April 17, From Wikipedia, the free encyclopedia. Put simply the global natural ecosystem is in bad health. Peterson Paperback 4. It is already too late, Lovelock says, to prevent the global climate from "flipping" into an entirely new equilibrium that will threaten civilization as we know it. To ensure we are able to help you as best we can, please include your reference number:. The book contained some surprising ideas: support for nuclear energy, disapproval of organic farming.
    [Show full text]
  • ADVERTIMENT. L'accés Als Continguts D'aquesta Tesi Doctoral I La Seva Utilització Ha De Respectar Els Drets De La Persona Autora
    ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.
    [Show full text]
  • Uts Marine Biology Fact Sheet
    UTS MARINE BIOLOGY FACT SHEET Topic: Phytoplankton and Cloud Formation 1.The CLAW Hypothesis Background: In 1987 four people (Charlson, Lovelock, Andrea, & Warren) introduced a theory that a natural gas called Dimethylsulfide (DMS), produced by microscopic plants in the ocean (phytoplankton), was a major contributor to the formation of clouds in the atmosphere. This theory was named the CLAW Hypothesis (from the first letter of each of their surnames). Fast facts: . Phytoplankton produce DMSP (dimethylsulphoniopropionate), an organic sulphur compound, which is converted to DMS in the ocean. The majority of this DMS is consumed by bacteria but around 10% escapes into the atmosphere. When DMS is released into the air, a chemical reaction takes place (called an oxidation reaction) and sulphate aerosols are formed – a gas which acts as cloud condensation nuclei (CCN). This means it combines with water droplets in the atmosphere to form clouds. As a result, more clouds increase the reflectivity of the sun’s rays (earth albedo) which decreases the amount of light reaching the earth’s surface, and contributes to cooling the overall climate. A decrease in light causes a decrease in phytoplankton productivity of DMS. (Phytoplankton are primary producers which rely on light to function). This sequence of events is called a Negative Feedback Loop, because phytoplankton increase DMS production but DMS forms clouds which lowers the amount of light reaching the earth, resulting in less phytoplankton and less DMS. DMS emissions are a key step in the global sulphur cycle, which circulates sulphur throughout the earth, oceans, and atmosphere. It is an essential component in the growth of all living things.
    [Show full text]
  • M1 Project: Climate - Biosphere Interactions Using ODE Models
    M1 Project: Climate - Biosphere interactions using ODE models Jan Rombouts Erasmus Mundus Master in Complex Systems Science Ecole´ Polytechnique, Paris Supervisors: Michael Ghil, Regis Ferri`ere Ecole´ Normal Sup´erieure,Paris June 30, 2014 Abstract There are many examples of the complex interactions of climate and vegetation through various feedback mechanisms. Climatic models have begun to take into ac- count vegetation as an important player in the evolution of the climate. Climate models range from complicated, large scale GCMs to simple conceptual models. It is this last type of modeling that I looked at in my project. Conceptual models usually use differential equations and techniques from dynamical systems theory to investi- gate basic mechanisms in the climate system. They have in particular been applied to investigate glacial-interglacial cycles. These models have not often included vege- tation as one of their variables, and this is what I've looked at in the project. First I investigate a simple, two equation model, and show that even in such a simple model, interesting oscillatory behaviour can be observed. Then I go on to study models with three equations, based on an existing model for temperature and ice sheet evolution. I extend this model in two ways: by adding a vegetation variable, and by adding a carbon dioxide variable. Again, oscillations are observed, but the existence depends on parameters that are linked to the vegetation. Finally I put it all together in a model with four equations. These models show that vegetation is an important factor, and can account for some specific features of glacial-interglacial cycles.
    [Show full text]
  • The Case Against Climate Regulation Via Oceanic Phytoplankton Sulphur Emissions P
    REVIEW doi:10.1038/nature10580 The case against climate regulation via oceanic phytoplankton sulphur emissions P. K. Quinn1 & T. S. Bates1 More than twenty years ago, a biological regulation of climate was proposed whereby emissions of dimethyl sulphide from oceanic phytoplankton resulted in the formation of aerosol particles that acted as cloud condensation nuclei in the marine boundary layer. In this hypothesis—referred to as CLAW—the increase in cloud condensation nuclei led to an increase in cloud albedo with the resulting changes in temperature and radiation initiating a climate feedback altering dimethyl sulphide emissions from phytoplankton. Over the past two decades, observations in the marine boundary layer, laboratory studies and modelling efforts have been conducted seeking evidence for the CLAW hypothesis. The results indicate that a dimethyl sulphide biological control over cloud condensation nuclei probably does not exist and that sources of these nuclei to the marine boundary layer and the response of clouds to changes in aerosol are much more complex than was recognized twenty years ago. These results indicate that it is time to retire the CLAW hypothesis. loud condensation nuclei (CCN) can affect the amount of solar The CLAW hypothesis further postulated that an increase in DMS radiation reaching Earth’s surface by altering cloud droplet emissions from the ocean would result in an increase in CCN, cloud number concentration and size and, as a result, cloud reflectivity droplet concentrations, and cloud albedo, and a decrease in the amount C 1 or albedo . CCN are atmospheric particles that are sufficiently soluble of solar radiation reaching Earth’s surface.
    [Show full text]
  • Enhancing the Natural Sulfur Cycle to Slow Global Warming$
    ARTICLE IN PRESS Atmospheric Environment 41 (2007) 7373–7375 www.elsevier.com/locate/atmosenv New Directions: Enhancing the natural sulfur cycle to slow global warming$ Full scale ocean iron fertilization of the Southern The CLAW hypothesis further states that greater Ocean (SO) has been proposed previously as a DMS production would result in additional flux to means to help mitigate rising CO2 in the atmosphere the atmosphere, more cloud condensation nuclei (Martin et al., 1990, Nature 345, 156–158). Here we (CCN) and greater cloud reflectivity by decreasing describe a different, more leveraged approach to cloud droplet size. Thus, increased DMS would partially regulate climate using limited iron en- contribute to the homeostasis of the planet by hancement to stimulate the natural sulfur cycle, countering warming from increasing CO2. A cor- resulting in increased cloud reflectivity that could ollary to the CLAW hypothesis is that elevated CO2 cool large regions of our planet. Some regions of the itself increases DMS production which has been Earth’s oceans are high in nutrients but low in observed during a mesocosm scale CO2 enrichment primary productivity. The largest such region is the experiment (Wingenter et al., 2007, Geophysical SO followed by the equatorial Pacific. Several Research Letters 34, L05710). The CLAW hypoth- mesoscale (102 km2) experiments have shown that esis relies on the assumption that DMS sea-to-air the limiting nutrient to productivity is iron. Yet, the flux leads to new particles and not just the growth of effectiveness of iron fertilization for sequestering existing particles. If the CLAW hypothesis is significant amounts of atmospheric CO2 is still in correct, the danger is that enormous anthropogenic question.
    [Show full text]
  • Effects of Increased Pco2 and Temperature on the North Atlantic Spring Bloom. III. Dimethylsulfoniopropionate
    Vol. 388: 41–49, 2009 MARINE ECOLOGY PROGRESS SERIES Published August 19 doi: 10.3354/meps08135 Mar Ecol Prog Ser Effects of increased pCO2 and temperature on the North Atlantic spring bloom. III. Dimethylsulfoniopropionate Peter A. Lee1,*, Jamie R. Rudisill1, Aimee R. Neeley1, 7, Jennifer M. Maucher2, David A. Hutchins3, 8, Yuanyuan Feng3, 8, Clinton E. Hare3, Karine Leblanc3, 9,10, Julie M. Rose3,11, Steven W. Wilhelm4, Janet M. Rowe4, 5, Giacomo R. DiTullio1, 6 1Hollings Marine Laboratory, College of Charleston, 331 Fort Johnson Road, Charleston, South Carolina 29412, USA 2Center for Coastal Environmental Health and Biomolecular Research, National Oceanic and Atmospheric Administration, 219 Fort Johnson Road, Charleston, South Carolina 29412, USA 3College of Marine and Earth Studies, University of Delaware, 700 Pilottown Road, Lewes, Delaware 19958, USA 4Department of Microbiology, University of Tennessee, 1414 West Cumberland Ave, Knoxville, Tennessee 37996, USA 5Department of Plant Pathology, The University of Nebraska, 205 Morrison Center, Lincoln, Nebraska 68583, USA 6Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Road, Charleston, South Carolina 29412, USA 7Present address: National Aeronautics and Space Administration, Calibration and Validation Office, 1450 S. Rolling Road, Suite 4.111, Halethorpe, Maryland 21227, USA 8Present address: Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, California 90089, USA 9Present address: Aix-Marseille Université, CNRS,
    [Show full text]
  • The CLAW Hypothesis Does Anyone Believe That This Feedback Loop
    The CLAW Hypothesis Does anyone believe that this feedback loop works as advertised? It is possible that it does, although most steps are too poorly quantified to be certain. CLAW Hypothesis Charlson, Lovelock, Andreae, and Warren, Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate, Nature, 326, 655-661, 1987. The CLAW Hypothesis DMS fluxes probably control the growth of aerosols into the CCN size range. These CCN help control the radiative properties of stratocumulus clouds. Although CLAW has not been rigorously proven, it is extremely likely that biological processes are linked to cloud properties via sulfur-containing aerosols. Neither can be understood in CLAW Hypothesis isolation from the other. What role do aerosols play in creating these pockets of open cells, POCs? To improve models of this region, we need to quantify the factors controlling clouds and radiation. 2-300 Wm-2 Difference! This aerosol data from an EPIC cruise shows the loss of aerosols when a POC passes overhead. Tony Clarke observed this re-growth from freshly-nucleated particles in the Eastern Pacific MBL during PEM-Tropics. Drizzle Removal > Nucleation > DMS-Controlled Growth is one plausible explanation for several-day POC lifetimes. How much of the recovery is from entrainment vs growth? POC Data courtesy Fairall & Collins The upwelling of cold, nutrient rich deep water creates gradients in biological productivity that should translate into gradients of DMS emissions and other . We can exploit these gradients to study the factors controlling fluxes, aerosol chemistry, and cloud properties. In the remote marine atmosphere the supply of DMS and its oxidation mechanisms limit the rates of new particle nucleation and growth.
    [Show full text]
  • Decreasing Particle Number Concentrations in a Warming Atmosphere and Implications F
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 11, 27913–27936, 2011 Atmospheric www.atmos-chem-phys-discuss.net/11/27913/2011/ Chemistry doi:10.5194/acpd-11-27913-2011 and Physics © Author(s) 2011. CC Attribution 3.0 License. Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. Decreasing particle number concentrations in a warming atmosphere and implications F. Yu1, G. Luo1, R. P. Turco2, J. A. Ogren3, and R. M. Yantosca4 1Atmospheric Sciences Research Center, State University of New York at Albany, USA 2Department of Atmospheric and Oceanic Sciences, University of California at Los Angeles, USA 3Global Monitoring Division (GMD), Earth System Research Laboratory (ESRL), NOAA, USA 4School of Engineering and Applied Sciences, Harvard University, USA Received: 22 August 2011 – Accepted: 29 September 2011 – Published: 14 October 2011 Correspondence to: F. Yu ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 27913 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract New particle formation contributes significantly to the number concentration of conden- sation nuclei (CN) as well as cloud CN (CCN), a key factor determining aerosol indirect radiative forcing of the climate system. Using a physics-based nucleation mechanism 5 that is consistent with a range of field observations of aerosol formation, it is shown that projected increases in global temperatures could significantly inhibit new particle, and CCN, formation rates worldwide. An analysis of CN concentrations observed at four NOAA ESRL/GMD baseline stations since the 1970s and two other sites since 1990s reveals long-term decreasing trends consistent with these predictions.
    [Show full text]
  • James Lovelock's Gaia Hypothesis
    James Lovelock’s Gaia hypothesis: ”A New Look at Life on Earth” ... for the Life and the Earth sciences Sébastien Dutreuil To cite this version: Sébastien Dutreuil. James Lovelock’s Gaia hypothesis: ”A New Look at Life on Earth” ... for the Life and the Earth sciences. Dreamers, Visionaries, and Revolutionaries in the Life Sciences, pp.272-287, 2018, 9780226569901. hal-01863320 HAL Id: hal-01863320 https://hal.archives-ouvertes.fr/hal-01863320 Submitted on 28 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. James Lovelock’s Gaia hypothesis: "A New Look at Life on Earth" ... for the Life and the Earth sciences. Sébastien Dutreuil James Lovelock (b. 1919) was described by the curators of an exhibition at London’s Science Museum in 2014 as a "scientist, inventor and maverick."1 He was clearly an eclectic inventor from the very beginning of his career as a research engineer in the 1940’s. He was an accomplished scientist before formulating the Gaia hypothesis in the 1970’s, with pioneering work in analytical chemistry, biochemistry and cryobiology. He was perhaps a maverick, when he quit academia in 1964, at age 45 to settle as an "independent scientist." But the Gaia hypothesis, his major accomplishment, is that of a dreamer.
    [Show full text]
  • Global Multi-Model Estimates of the Fire Emissions from the Fire Modeling
    Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP) Fang Li, Maria Val Martin, Meinrat Andreae, Almut Arneth, Stijn Hantson, Johannes Kaiser, Gitta Lasslop, Chao Yue, Dominique Bachelet, Matthew Forrest, et al. To cite this version: Fang Li, Maria Val Martin, Meinrat Andreae, Almut Arneth, Stijn Hantson, et al.. Historical (1700– 2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmospheric Chemistry and Physics, European Geosciences Union, 2019, 19 (19), pp.12545-12567. 10.5194/acp-19-12545-2019. hal-02975096 HAL Id: hal-02975096 https://hal.archives-ouvertes.fr/hal-02975096 Submitted on 26 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Atmos. Chem. Phys., 19, 12545–12567, 2019 https://doi.org/10.5194/acp-19-12545-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP) Fang Li1, Maria Val Martin2, Meinrat O. Andreae3,4, Almut Arneth5, Stijn Hantson6,5, Johannes W.
    [Show full text]
  • Gaia Hypothesis
    Gaia hypothesis The Gaia hypothesis /ˈɡaɪ.ə/, also known as the Gaia theory or the Gaia principle, proposes that living organisms interact with their inorganic surroundings on Earth to form a synergistic and self- regulating, complex system that helps to maintain and perpetuate the conditions for life on the planet. The hypothesis was formulated by the chemist James Lovelock[1] and co-developed by the microbiologist Lynn Margulis in the 1970s.[2] Lovelock named the idea after Gaia, the primordial goddess who personified the Earth in Greek mythology. In 2006, the Geological Society of London awarded Lovelock the Wollaston Medal in part for his work on the Gaia hypothesis.[3] The study of planetary habitability is Topics related to the hypothesis include how the biosphere and the partly based upon extrapolation from evolution of organisms affect the stability of global temperature, knowledge of the Earth's conditions, salinity of seawater, atmospheric oxygen levels, the maintenance of as the Earth is the only planet a hydrosphere of liquid water and other environmental variables that currently known to harbour life (The affect the habitability of Earth. Blue Marble, 1972 Apollo 17 photograph) The Gaia hypothesis was initially criticized for being teleological and against the principles of natural selection, but later refinements aligned the Gaia hypothesis with ideas from fields such as Earth system science, biogeochemistry and systems ecology.[4][5][6] Lovelock also once described the "geophysiology" of the Earth.[7] Even so, the Gaia hypothesis
    [Show full text]