The Influence of Ocean Acidification and Warming on DMSP & DMS in New Zealand Coastal Water
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spring Bloom Dynamics and Zooplankton Biomass Response on the US Northeast Continental Shelf
Continental Shelf Research 102 (2015) 47–61 Contents lists available at ScienceDirect Continental Shelf Research journal homepage: www.elsevier.com/locate/csr Spring bloom dynamics and zooplankton biomass response on the US Northeast Continental Shelf Kevin D. Friedland a,n, Robert T. Leaf b, Joe Kane a, Desiree Tommasi c, Rebecca G. Asch d, Nathan Rebuck a, Rubao Ji e, Scott I. Large f, Charles Stock c, Vincent S. Saba g a National Marine Fisheries Service, Northeast Fisheries Science Center, 28 Tarzwell Dr., Narragansett, RI 02882, USA b Gulf Coast Research Laboratory, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, USA c NOAA Geophysical Fluid Dynamics Laboratory, Princeton University Forrestal Campus, 201 Forrestal Road, Princeton, NJ 08540, USA d Princeton University, Program in Atmospheric and Oceanic Sciences, 300 Forrestal Road, Princeton, NJ 08540, USA e Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA f National Marine Fisheries Service, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543, USA g National Marine Fisheries Service, Northeast Fisheries Science Center, c/o NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton University Forrestal Campus, Princeton, NJ 08540, USA article info abstract Article history: The spring phytoplankton bloom on the US Northeast Continental Shelf is a feature of the ecosystem Received 31 October 2014 production cycle that varies annually in timing, spatial extent, and magnitude. To quantify this variability, Received in revised form we analyzed remotely-sensed ocean color data at two spatial scales, one based on ecologically defined 20 February 2015 sub-units of the ecosystem (production units) and the other on a regular grid (0.5°). -
ICES Marine Science Symposia, 215: 221-21)6
ICES Marine Science Symposia, 215: 221-21)6. 2002 Understanding the role of turbulence on fisheries production during the first century of ICES Brian R. MacKenzie MacKenzie, B. R. 2002. Understanding the role of turbulence on fisheries production during the first century of ICES. - ICES Marine Science Symposia, 215: 227-236. Since its inception, ICES has been concerned with the effect of hydrography on the abundance and distribution of fish and fish catches. One of the earliest and most sig nificant oceanographic findings made by the ICES community was the influence of vertical mixing and turbulence on seasonal plankton production processes. This dis covery, acquired over several decades of investigation, led to three major theories of fish population regulation and demonstrates the underlying impact that turbulence has on seasonal plankton and fish production. More recently, moderate levels of turbu lence and upwelling have been shown to produce the highest recruitment among clu- peid populations inhabiting major upwelling areas. The mechanism responsible for this pattern is a balance between the positive and negative effects of both turbulence and upwelling on plankton production, larval feeding, and advective processes. In one ICES upwelling zone (Bay of Biscay), recruitment of a local clupeid is related to some of these processes. This knowledge is contributing to the ICES assessment process for this stock. Frontal zones on continental shelves within the ICES Area are also moder ately turbulent environments, may also have an impact on fish recruitment, and have received particular attention by colleagues within the ICES community. In future, an understanding of how turbulence affects fish and plankton production at upwelling and frontal zones and during storms could help justify including additional environ mental and ecosystem information in recruitment and catch prediction models. -
Spring Bloom in the Central Strait of Georgia: Interactions of River Discharge, Winds and Grazing
MARINE ECOLOGY PROGRESS SERIES Vol. 138: 255-263, 1996 Published July 25 Mar Ecol Prog Ser I l Spring bloom in the central Strait of Georgia: interactions of river discharge, winds and grazing Kedong yinl,*,Paul J. Harrisonl, Robert H. Goldblattl, Richard J. Beamish2 'Department of Oceanography, University of British Columbia, Vancouver, British Columbia, Canada V6T 124 'pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, British Columbia, Canada V9R 5K6 ABSTRACT: A 3 wk cruise was conducted to investigate how the dynamics of nutrients and plankton biomass and production are coupled with the Fraser River discharge and a wind event in the Strait of Georgia estuary (B.C.,Canada). The spring bloom was underway in late March and early Apnl, 1991. in the Strait of Georgia estuary. The magnitude of the bloom was greater near the river mouth, indicat- ing an earher onset of the spring bloom there. A week-long wind event (wind speed >4 m S-') occurred during April 3-10 The spring bloom was interrupted, with phytoplankton biomass and production being reduced and No3 in the surface mixing layer increasing at the end of the wind event. Five days after the lvind event (on April 15),NO3 concentrations were lower than they had been at the end of the wind event, Indicating a utilization of NO3 during April 10-14. However, the utilized NO3 did not show up in phytoplankton blomass and production, which were lower than they had been at the end (April 9) of the wind event. During the next 4 d, April 15-18, phytoplankton biomass and production gradu- ally increased, and No3 concentrations in the water column decreased slowly, indicating a slow re- covery of the spring bloom Zooplankton data indicated that grazing pressure had prevented rapid accumulation of phytoplankton biomass and rapid utilization of NO3 after the wind event and during these 4 d. -
Uts Marine Biology Fact Sheet
UTS MARINE BIOLOGY FACT SHEET Topic: Phytoplankton and Cloud Formation 1.The CLAW Hypothesis Background: In 1987 four people (Charlson, Lovelock, Andrea, & Warren) introduced a theory that a natural gas called Dimethylsulfide (DMS), produced by microscopic plants in the ocean (phytoplankton), was a major contributor to the formation of clouds in the atmosphere. This theory was named the CLAW Hypothesis (from the first letter of each of their surnames). Fast facts: . Phytoplankton produce DMSP (dimethylsulphoniopropionate), an organic sulphur compound, which is converted to DMS in the ocean. The majority of this DMS is consumed by bacteria but around 10% escapes into the atmosphere. When DMS is released into the air, a chemical reaction takes place (called an oxidation reaction) and sulphate aerosols are formed – a gas which acts as cloud condensation nuclei (CCN). This means it combines with water droplets in the atmosphere to form clouds. As a result, more clouds increase the reflectivity of the sun’s rays (earth albedo) which decreases the amount of light reaching the earth’s surface, and contributes to cooling the overall climate. A decrease in light causes a decrease in phytoplankton productivity of DMS. (Phytoplankton are primary producers which rely on light to function). This sequence of events is called a Negative Feedback Loop, because phytoplankton increase DMS production but DMS forms clouds which lowers the amount of light reaching the earth, resulting in less phytoplankton and less DMS. DMS emissions are a key step in the global sulphur cycle, which circulates sulphur throughout the earth, oceans, and atmosphere. It is an essential component in the growth of all living things. -
Anaerobic Degradation of Methanethiol in a Process for Liquefied Petroleum Gas (LPG) Biodesulfurization
Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization Promotoren Prof. dr. ir. A.J.H. Janssen Hoogleraar in de Biologische Gas- en waterreiniging Prof. dr. ir. A.J.M. Stams Persoonlijk hoogleraar bij het laboratorium voor Microbiologie Copromotor Prof. dr. ir. P.N.L. Lens Hoogleraar in de Milieubiotechnologie UNESCO-IHE, Delft Samenstelling promotiecommissie Prof. dr. ir. R.H. Wijffels Wageningen Universiteit, Nederland Dr. ir. G. Muyzer TU Delft, Nederland Dr. H.J.M. op den Camp Radboud Universiteit, Nijmegen, Nederland Prof. dr. ir. H. van Langenhove Universiteit Gent, België Dit onderzoek is uitgevoerd binnen de onderzoeksschool SENSE (Socio-Economic and Natural Sciences of the Environment) Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization R.C. van Leerdam Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit Prof. dr. M.J. Kropff in het openbaar te verdedigen op maandag 19 november 2007 des namiddags te vier uur in de Aula Van Leerdam, R.C., 2007. Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization. PhD-thesis Wageningen University, Wageningen, The Netherlands – with references – with summaries in English and Dutch ISBN: 978-90-8504-787-2 Abstract Due to increasingly stringent environmental legislation car fuels have to be desulfurized to levels below 10 ppm in order to minimize negative effects on the environment as sulfur-containing emissions contribute to acid deposition (‘acid rain’) and to reduce the amount of particulates formed during the burning of the fuel. Moreover, low sulfur specifications are also needed to lengthen the lifetime of car exhaust catalysts. -
Blooms Unit (3 Pts) Section
T. James Noyes, El Camino College Blooms Unit (Topic 10A-2) – page 1 Name: Blooms Unit (3 pts) Section: Blooms A bloom is the rapid increase in the population of an organism (a “population explosion”). Blooms occur when something needed for growth and reproduction, something that was holding back or “limiting” the size of the population, becomes more abundant. Phytoplankton blooms typically occur when the amount of sunlight or nutrients increases. (Sunlight and nutrients are the two things that phytoplankton need for photosynthesis that there may not be enough of in ocean water.) A bloom will stop and the population will shrink when the resource runs out or goes away. Zooplankton bloom when phytoplankton bloom, because more phytoplankton means more food for them. However, most animals cannot reproduce as fast as phytoplankton, so their population grows more slowly and is not large enough to prevent the growth of the phytoplankton population (until the phytoplankton bloom begins to slow down on its own). Humans can cause blooms of phytoplankton by adding lots of additional nutrients to ocean water. (We cannot affect the amount of sunlight, can we?) Typically, humans add nutrients by dumping untreated sewage or when rain washes fertilizers and animal wastes off farmland and into rivers. (Animal wastes are the feces or manure from cows, pigs, and so on.) In developed countries like the United States, sewage is treated to a very high standard and accidental spills of untreated or partially treated sewage are rare, so in the United States farming is the primary human activity that causes or contributes to blooms of algae (phytoplankton) in lakes and the ocean. -
Sample Chapter Algal Blooms
ALGAL BLOOMS 7 Observations and Remote Sensing. http://dx.doi.org/10.1109/ energy and material transport through the food web, and JSTARS.2013.2265255. they also play an important role in the vertical flux of Pack, R. T., Brooks, V., Young, J., Vilaca, N., Vatslid, S., Rindle, P., material out of the surface waters. These blooms are Kurz, S., Parrish, C. E., Craig, R., and Smith, P. W., 2012. An “ ” overview of ALS technology. In Renslow, M. S. (ed.), Manual distinguished from those that are deemed harmful. of Airborne Topographic Lidar. Bethesda: ASPRS Press. Algae form harmful algal blooms, or HABs, when either Sithole, G., and Vosselman, G., 2004. Experimental comparison of they accumulate in massive amounts that alone cause filter algorithms for bare-Earth extraction from airborne laser harm to the ecosystem or the composition of the algal scanning point clouds. ISPRS Journal of Photogrammetry and community shifts to species that make compounds Remote Sensing, 59,85–101. (including toxins) that disrupt the normal food web or to Shan, J., and Toth, C., 2009. Topographic Laser Ranging and Scanning: Principles and Processes. Boca Raton: CRC Press. species that can harm human consumers (Glibert and Slatton, K. C., Carter, W. E., Shrestha, R. L., and Dietrich, W., 2007. Pitcher, 2001). HABs are a broad and pervasive problem, Airborne laser swath mapping: achieving the resolution and affecting estuaries, coasts, and freshwaters throughout the accuracy required for geosurficial research. Geophysical world, with effects on ecosystems and human health, and Research Letters, 34,1–5. on economies, when these events occur. This entry Wehr, A., and Lohr, U., 1999. -
M1 Project: Climate - Biosphere Interactions Using ODE Models
M1 Project: Climate - Biosphere interactions using ODE models Jan Rombouts Erasmus Mundus Master in Complex Systems Science Ecole´ Polytechnique, Paris Supervisors: Michael Ghil, Regis Ferri`ere Ecole´ Normal Sup´erieure,Paris June 30, 2014 Abstract There are many examples of the complex interactions of climate and vegetation through various feedback mechanisms. Climatic models have begun to take into ac- count vegetation as an important player in the evolution of the climate. Climate models range from complicated, large scale GCMs to simple conceptual models. It is this last type of modeling that I looked at in my project. Conceptual models usually use differential equations and techniques from dynamical systems theory to investi- gate basic mechanisms in the climate system. They have in particular been applied to investigate glacial-interglacial cycles. These models have not often included vege- tation as one of their variables, and this is what I've looked at in the project. First I investigate a simple, two equation model, and show that even in such a simple model, interesting oscillatory behaviour can be observed. Then I go on to study models with three equations, based on an existing model for temperature and ice sheet evolution. I extend this model in two ways: by adding a vegetation variable, and by adding a carbon dioxide variable. Again, oscillations are observed, but the existence depends on parameters that are linked to the vegetation. Finally I put it all together in a model with four equations. These models show that vegetation is an important factor, and can account for some specific features of glacial-interglacial cycles. -
University of Warwick Institutional Repository
CORE Metadata, citation and similar papers at core.ac.uk Provided by Warwick Research Archives Portal Repository University of Warwick institutional repository: http://go.warwick.ac.uk/wrap This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please refer to the repository record for this item and our policy information available from the repository home page for further information. To see the final version of this paper please visit the publisher’s website. Access to the published version may require a subscription. Author(s): Hendrik Schäfer, Natalia Myronova and Rich Boden Article Title: Microbial degradation of dimethylsulphide and related C1- sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere Year of publication: 2010 Link to published version: http://dx.doi.org/ 10.1093/jxb/erp355 Publisher statement: This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Journal of Experimental Botany following peer review. The definitive publisher-authenticated version Schäfer, H. et al. (2010). Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. Journal of Experimental Botany, Vol. 61(2), pp. 315-334 is available online at: http://jxb.oxfordjournals.org/cgi/content/full/61/2/315 Microbial degradation of dimethylsulfide and related C1-sulfur compounds: organisms and pathways controlling fluxes of sulfur in the biosphere Hendrik Schäfer*1, Natalia Myronova1, Rich Boden2 1 Warwick HRI, University of Warwick, Wellesbourne, CV35 9EF, UK 2 Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK * corresponding author Warwick HRI University of Warwick Wellesbourne CV35 9EF Tel: +44 2476 575052 [email protected] For submission to: Journal of Experimental Botany 1 Abstract 2 Dimethylsulfide (DMS) plays a major role in the global sulfur cycle. -
Kinetics of the Ozonation of Dimethyl Sulfide in the Gas Phase
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1973 Kinetics of the ozonation of dimethyl sulfide in the gas phase Robert John Moody The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Moody, Robert John, "Kinetics of the ozonation of dimethyl sulfide in the gas phase" (1973). Graduate Student Theses, Dissertations, & Professional Papers. 8125. https://scholarworks.umt.edu/etd/8125 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. KINETICS OF THE OZONATION OF DIMETHYL SOLFIDB IN THE GAS PHASE by Robert J, Moody B.S., University of Montana, 1968 Presented in partial fulfillment of the requirements for the degree of Master of Science UNIVERSITY OF MONTANA 1973 Approved by: Chairman, Board of Examiners Deanf 'Graduait Schoo Date 7 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP38926 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. -
The Case Against Climate Regulation Via Oceanic Phytoplankton Sulphur Emissions P
REVIEW doi:10.1038/nature10580 The case against climate regulation via oceanic phytoplankton sulphur emissions P. K. Quinn1 & T. S. Bates1 More than twenty years ago, a biological regulation of climate was proposed whereby emissions of dimethyl sulphide from oceanic phytoplankton resulted in the formation of aerosol particles that acted as cloud condensation nuclei in the marine boundary layer. In this hypothesis—referred to as CLAW—the increase in cloud condensation nuclei led to an increase in cloud albedo with the resulting changes in temperature and radiation initiating a climate feedback altering dimethyl sulphide emissions from phytoplankton. Over the past two decades, observations in the marine boundary layer, laboratory studies and modelling efforts have been conducted seeking evidence for the CLAW hypothesis. The results indicate that a dimethyl sulphide biological control over cloud condensation nuclei probably does not exist and that sources of these nuclei to the marine boundary layer and the response of clouds to changes in aerosol are much more complex than was recognized twenty years ago. These results indicate that it is time to retire the CLAW hypothesis. loud condensation nuclei (CCN) can affect the amount of solar The CLAW hypothesis further postulated that an increase in DMS radiation reaching Earth’s surface by altering cloud droplet emissions from the ocean would result in an increase in CCN, cloud number concentration and size and, as a result, cloud reflectivity droplet concentrations, and cloud albedo, and a decrease in the amount C 1 or albedo . CCN are atmospheric particles that are sufficiently soluble of solar radiation reaching Earth’s surface. -
Enhancing the Natural Sulfur Cycle to Slow Global Warming$
ARTICLE IN PRESS Atmospheric Environment 41 (2007) 7373–7375 www.elsevier.com/locate/atmosenv New Directions: Enhancing the natural sulfur cycle to slow global warming$ Full scale ocean iron fertilization of the Southern The CLAW hypothesis further states that greater Ocean (SO) has been proposed previously as a DMS production would result in additional flux to means to help mitigate rising CO2 in the atmosphere the atmosphere, more cloud condensation nuclei (Martin et al., 1990, Nature 345, 156–158). Here we (CCN) and greater cloud reflectivity by decreasing describe a different, more leveraged approach to cloud droplet size. Thus, increased DMS would partially regulate climate using limited iron en- contribute to the homeostasis of the planet by hancement to stimulate the natural sulfur cycle, countering warming from increasing CO2. A cor- resulting in increased cloud reflectivity that could ollary to the CLAW hypothesis is that elevated CO2 cool large regions of our planet. Some regions of the itself increases DMS production which has been Earth’s oceans are high in nutrients but low in observed during a mesocosm scale CO2 enrichment primary productivity. The largest such region is the experiment (Wingenter et al., 2007, Geophysical SO followed by the equatorial Pacific. Several Research Letters 34, L05710). The CLAW hypoth- mesoscale (102 km2) experiments have shown that esis relies on the assumption that DMS sea-to-air the limiting nutrient to productivity is iron. Yet, the flux leads to new particles and not just the growth of effectiveness of iron fertilization for sequestering existing particles. If the CLAW hypothesis is significant amounts of atmospheric CO2 is still in correct, the danger is that enormous anthropogenic question.