Reassessing Colugo Phylogeny, Taxonomy, and Biogeography

Total Page:16

File Type:pdf, Size:1020Kb

Reassessing Colugo Phylogeny, Taxonomy, and Biogeography REASSESSING COLUGO PHYLOGENY, TAXONOMY, AND BIOGEOGRAPHY BY GENOME WIDE COMPARISONS AND DNA CAPTURE HYBRIDIZATION FROM MUSEUM SPECIMENS A Dissertation by VICTOR CHRISTIAN MASON Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, William J Murphy Committee Members, Kristofer M Helgen Paul Samollow Tiffani Williams James Cai Head of Department, Dorothy Shippen May 2016 Major Subject: Genetics Copyright 2016 Victor Christian Mason ABSTRACT The ability to uncover the phylogenetic history of archived museum material with molecular techniques has rapidly improved due to the reduced cost and increased sequence capacity of next-generation sequencing technologies. However it remains difficult to isolate large, orthologous DNA regions across multiple divergent species. Here we describe the use of cross-species DNA capture hybridization techniques and next-generation sequencing to selectively isolate and sequence mitochondrial DNA genomes and nuclear DNA from the degraded DNA of museum specimens, using probes generated from the DNA of an extant species. Colugos are among the most poorly understood of all living mammals despite their central role in our understanding of higher-level primate relationships. Two described species of these extreme gliders are the sole living members of a unique mammalian order, Dermoptera, distributed throughout Southeast Asia. We generated a draft genome sequence for a Sunda colugo and a reference alignment for the Philippine colugo, and used these to identify colugo-specific enrichment in sensory and musculo- skeletal related genes that likely underlie their nocturnal and gliding adaptations. Phylogenomic analysis and catalogs of rare genomic changes overwhelmingly support the hypothesis that colugos are the sister group to primates (Primatomorpha), to the exclusion of treeshrews. We also captured ~140-kb of orthologous sequence data from colugo museum specimens sampled across their range, and identified deep genetic structure between many geographically isolated populations of the two named species, ii consistent with a remarkable increase in diversity. Our results identify conservation units to mitigate future losses of this enigmatic mammalian order. Examining multiple distantly related mammals we identified a consistent pattern of early diversification between east and west Borneo including colugos, the lesser mouse deer, and pangolins. This strongly parallel biogeographic pattern is not common in mammals and we see no evidence for this pattern in the greater mouse deer. Colugos on West Borneo diverged from those in Indochina in the late Pliocene, however most other mammals across this same geographic region diverged from their common ancestor much more recently in the Pleistocene. Low genetic divergence between colugos on large landmasses and colugos on neighboring islands indicate that past forest distributions in the recent past were recently much larger than present refugial distributions. iii ACKNOWLEDGEMENTS I want to start off by thanking my PI, committee chair, and friend Dr. William Murphy for not only giving me an opportunity to pursue my scientific interests, but also for being the best role-model a student could ask for. He has pushed me to strive for goals I assumed to be out of reach, and has always been available and happy to discuss my sometimes rather ridiculous ideas. Dr. Murphy has always put the well-being of his students first and given myself and others substantial scientific and personal opportunities to develop and grow to be better people. I attribute a large part of what I have achieved and what I want to achieve to him alone. I would like to thank Dr. Kristofer Helgen for being exceptionally positive, and an enormous facilitator of this dissertation. He traveled around the world with me to sample museum specimens and measure hundreds of colugo skulls used for this dissertation. In addition, his truly encyclopedic knowledge of mammals has generated integral intellectual contributions to our hypotheses and conclusions. I would like to thank my committee member Dr. Paul Samollow for taking the time to critically think and comment on my dissertation. Dr. Samollow has always understood the true meaning of things. He always has something insightful and uplifting to say and I value all of our conversations. My interactions with both Dr. Murphy and Dr Samollow as an undergraduate student convinced me to pursue a doctoral degree. I also want to thank my committee member Dr. Tiffani Williams for introducing me to Python which allowed me to apply my own ideas to big data, and for reminding iv me that reproducibile results are the only real scientific results. Thank you to my committee member Dr. James Cai for broadening my bioinformatic knowledge and being a part of this entire journey. Thank you to everyone that has been a part of the Murphy lab over the years, Particularly Dr. Gang Li, Dr. Brian Davis, and M.S. Wesley Brashear. Dr. Li has answered so many of my questions over the years, and been a great friend. Thanks Wesley for being a backboard that I can bounce ideas off of at any moment and being an exceptional friend. Graduate school has been difficult at times, and my family has stood beside me through everything, my parents Jacque and Richard Mason and, my brothers Austin and Owen Mason. Of course all of my friends and people close to me throughout graduate school have encouraged me, humbled me, and heavily influenced how I see the world. You know who you are and thank you. Also thank you to the Texas A&M University (TAMU) College of Veterinary Medicine, TAMU Institute for Genome Sciences and Society, the TAMU Genetics Graduate Student Association, the National Human Genome Research Institute (NHGRI), and the National Science Foundation (NSF) for funding various aspects of this project. v TABLE OF CONTENTS Page ABSTRACT……………………………………………………………………………...ii ACKNOWLEDGEMENTS ...………………………………………...…………………iv TABLE OF CONTENTS……………………………………….……………………….vi LIST OF FIGURES…………………………………………………………………….viii LIST OF TABLES………………………………………………………………………..x CHAPTER I INTRODUCTION AND LITERATURE REVIEW ...…………………….1 1.1 Colugos ............................................................................................................. 1 1.2 Current and Historical Taxonomy of Dermoptera ........................................... 4 1.3 Historical Interordinal Relationships of Dermoptera ....................................... 7 1.4 Biogeography ................................................................................................... 9 1.5 Application of Capture Hybridization Techniques to Museum Specimens ... 12 1.6 Aims and Structure of the Dissertation .......................................................... 13 CHAPTER II EFFICIENT CROSS-SPECIES CAPTURE HYBRIDIZATION AND NEXT-GENERATION SEQUENCING OF MITOCHONDRIAL GENOMES FROM NON-INVASIVELY SAMPLED MUSEUM SPECIMENS .......................................... 15 2.1 Introduction .................................................................................................... 15 2.2 Results ............................................................................................................ 19 2.3 Discussion ...................................................................................................... 31 2.4 Methods .......................................................................................................... 38 2.5 Data Access .................................................................................................... 45 CHAPTER III GENOMIC ANALYSIS REVEALS REMARKABLE HIDDEN BIODIVERSITY WITHIN COLUGOS AND THE SISTER GROUP TO PRIMATES 46 3.1 Introduction .................................................................................................... 46 3.2 Results and Discussion ................................................................................... 48 vi 3.3 Methods .......................................................................................................... 61 CHAPTER IV COLUGO BIOGEOGRAPHY REVEALS PALEO-FOREST CORRIDORS THROUGHOUT SUNDALAND ............................................................ 88 4.1 Introduction .................................................................................................... 88 4.2 Materials and Methods ................................................................................... 94 4.3 Results .......................................................................................................... 101 4.4 Discussion .................................................................................................... 106 4.5 Conclusions and Future Research ................................................................ 117 CHAPTER V CONCLUSIONS ..................................................................................... 119 5.1 DNA Capture Hyrbidization ........................................................................ 119 5.2 Divergence Dating ........................................................................................ 120 5.3 Phylogeography ............................................................................................ 121 5.4 Future Directions .......................................................................................... 123 5.5 Recommended Taxonomic Revisions .......................................................... 124
Recommended publications
  • Genome-Wide Association Studies Identify Genetic Loci Associated With
    SUPPLEMENTARY DATA Genome-wide Association Studies Identify Genetic Loci Associated with Albuminuria in Diabetes SUPPLEMENTAL MATERIALS This work is dedicated to the memory of our colleague Dr. Wen Hong Linda Kao, a wonderful person, brilliant scientist and central member of the CKDGen Consortium. 1 ©2016 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-1313/-/DC1 SUPPLEMENTARY DATA Table of Contents SUPPLEMENTARY FIGURE 1: QQ PLOTS FOR ALL GWAS META-ANALYSES ............................................. 3 SUPPLEMENTARY FIGURE 2: MANHATTAN PLOTS FOR ALL GWAS META-ANALYSES ............................. 4 SUPPLEMENTARY FIGURE 3: REGIONAL ASSOCIATION PLOTS............................................................... 6 SUPPLEMENTARY FIGURE 4: EVALUATION OF GLOMERULOSCLEROSIS IN RAB38 KO, CONGENIC AND TRANSGENIC RATS. ........................................................................................................................... 17 SUPPLEMENTARY TABLE 1: CHARACTERISTICS OF THE STUDY POPULATIONS ..................................... 18 SUPPLEMENTARY TABLE 2: INFORMATION ABOUT STUDY DESIGN AND UACR MEASUREMENT .......... 20 SUPPLEMENTARY TABLE 3: STUDY-SPECIFIC INFORMATION ABOUT GENOTYPING, IMPUTATION AND DATA MANAGEMENT AND ANALYSIS ................................................................................................ 31 SUPPLEMENTARY TABLE 4: SNPS ASSOCIATED WITH UACR AMONG ALL INDIVIDUALS WITH A P-VALUE OF <1E-05. .......................................................................................................................................
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Endemism and Diversity of Small Mammals Along Two Neighboring Bornean Mountains
    Endemism and diversity of small mammals along two neighboring Bornean mountains Miguel Camacho-Sanchez1,2,*, Melissa T.R. Hawkins3,4,5,*, Fred Tuh Yit Yu6, Jesus E. Maldonado3 and Jennifer A. Leonard1 1 Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Sevilla, Spain 2 CiBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal 3 Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA 4 Department of Biological Sciences, Humboldt State University, Arcata, CA, USA 5 Division of Mammals, National Museum of Natural History, Washington, DC, USA 6 Sabah Parks, Kota Kinabalu, Sabah, Malaysia * These authors contributed equally to this work. ABSTRACT Mountains offer replicated units with large biotic and abiotic gradients in a reduced spatial scale. This transforms them into well-suited scenarios to evaluate biogeographic theories. Mountain biogeography is a hot topic of research and many theories have been proposed to describe the changes in biodiversity with elevation. Geometric constraints, which predict the highest diversity to occur in mid-elevations, have been a focal part of this discussion. Despite this, there is no general theory to explain these patterns, probably because of the interaction among different predictors with the local effects of historical factors. We characterize the diversity of small non-volant mammals across the elevational gradient on Mount (Mt.) Kinabalu (4,095 m) and Mt. Tambuyukon (2,579 m), two neighboring mountains in Borneo, Malaysia. We documented a decrease in species richness with elevation which deviates from expectations of the geometric constraints and suggests that spatial Submitted 14 February 2018 Accepted 9 September 2019 factors (e.g., larger diversity in larger areas) are important.
    [Show full text]
  • Convergent Evolution in the Euarchontoglires
    This is a repository copy of Convergent evolution in the Euarchontoglires. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/133262/ Version: Published Version Article: Morris, Philip James Rencher, Cobb, Samuel Nicholas Frederick orcid.org/0000-0002- 8360-8024 and Cox, Philip Graham orcid.org/0000-0001-9782-2358 (2018) Convergent evolution in the Euarchontoglires. Biology letters. 2018036. ISSN 1744-957X https://doi.org/10.1098/rsbl.2018.0366 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Downloaded from http://rsbl.royalsocietypublishing.org/ on August 1, 2018 Evolutionary biology Convergent evolution in the rsbl.royalsocietypublishing.org Euarchontoglires Philip J. R. Morris1, Samuel N. F. Cobb2 and Philip G. Cox2 1Hull York Medical School, University of Hull, Hull HU6 7RX, UK Research 2Department of Archaeology and Hull York Medical School, University of York, York YO10 5DD, UK SNFC, 0000-0002-8360-8024; PGC, 0000-0001-9782-2358 Cite this article: Morris PJR, Cobb SNF, Cox PG. 2018 Convergent evolution in the Convergence—the independent evolution of similar phenotypes in distantly Euarchontoglires.
    [Show full text]
  • Essential Genes and Their Role in Autism Spectrum Disorder
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Essential Genes And Their Role In Autism Spectrum Disorder Xiao Ji University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, and the Genetics Commons Recommended Citation Ji, Xiao, "Essential Genes And Their Role In Autism Spectrum Disorder" (2017). Publicly Accessible Penn Dissertations. 2369. https://repository.upenn.edu/edissertations/2369 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2369 For more information, please contact [email protected]. Essential Genes And Their Role In Autism Spectrum Disorder Abstract Essential genes (EGs) play central roles in fundamental cellular processes and are required for the survival of an organism. EGs are enriched for human disease genes and are under strong purifying selection. This intolerance to deleterious mutations, commonly observed haploinsufficiency and the importance of EGs in pre- and postnatal development suggests a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication and repetitive behavior. More and more genetic evidence points to a polygenic model of ASD and it is estimated that hundreds of genes contribute to ASD. The central question addressed in this dissertation is whether genes with a strong effect on survival and fitness (i.e. EGs) play a specific oler in ASD risk. I compiled a comprehensive catalog of 3,915 mammalian EGs by combining human orthologs of lethal genes in knockout mice and genes responsible for cell-based essentiality.
    [Show full text]
  • Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed.
    [Show full text]
  • Musculoskeletal Morphing from Human to Mouse
    Procedia IUTAM Procedia IUTAM 00 (2011) 1–9 2011 Symposium on Human Body Dynamics Musculoskeletal Morphing from Human to Mouse Yoshihiko Nakamuraa,∗, Yosuke Ikegamia, Akihiro Yoshimatsua, Ko Ayusawaa, Hirotaka Imagawaa, and Satoshi Ootab aDepartment of Mechano-Informatics, Graduate School of Information and Science and Technology, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan bBioresource Center, Riken, 3-1-1 Takanodai, Tsukuba-shi, Ibaragi, Japan Abstract The analysis of movement provides various insights of human body such as biomechanical property of muscles, function of neural systems, physiology of sensory-motor system, skills of athletic movements, and more. Biomechan- ical modeling and robotics computation have been integrated to extend the applications of musculoskeletal analysis of human movements. The analysis would also provide valuable means for the other mammalian animals. One of current approaches of post-genomic research focuses to find connections between the phenotype and the genotype. The former means the visible morphological or behavioral expression of an animal, while the latter implies its genetic expression. Knockout mice allows to study the developmental pathway from the genetic disorders to the behavioral disorders. Would musculoskeletal analysis of mice also offer scientific means for such study? This paper reports our recent technological development to build the musculoskeletal model of a laboratory mouse. We propose mapping the musculoskeletal model of human to a laboratory mouse based on the morphological similarity between the two mammals. Although the model will need fine adjustment based on the CT data or else, we can still use the mapped musculoskeletal model as an approximate model of the mouse’s musculoskeletal system.
    [Show full text]
  • Aspects of Tree Shrew Consolidated Sleep Structure Resemble Human Sleep
    ARTICLE https://doi.org/10.1038/s42003-021-02234-7 OPEN Aspects of tree shrew consolidated sleep structure resemble human sleep Marta M. Dimanico1,4, Arndt-Lukas Klaassen1,2,4, Jing Wang1,3, Melanie Kaeser1, Michael Harvey1, ✉ Björn Rasch 2 & Gregor Rainer 1 Understanding human sleep requires appropriate animal models. Sleep has been extensively studied in rodents, although rodent sleep differs substantially from human sleep. Here we investigate sleep in tree shrews, small diurnal mammals phylogenetically close to primates, and compare it to sleep in rats and humans using electrophysiological recordings from frontal cortex of each species. Tree shrews exhibited consolidated sleep, with a sleep bout duration 1234567890():,; parameter, τ, uncharacteristically high for a small mammal, and differing substantially from the sleep of rodents that is often punctuated by wakefulness. Two NREM sleep stages were observed in tree shrews: NREM, characterized by high delta waves and spindles, and an intermediate stage (IS-NREM) occurring on NREM to REM transitions and consisting of intermediate delta waves with concomitant theta-alpha activity. While IS-NREM activity was reliable in tree shrews, we could also detect it in human EEG data, on a subset of transitions. Finally, coupling events between sleep spindles and slow waves clustered near the beginning of the sleep period in tree shrews, paralleling humans, whereas they were more evenly distributed in rats. Our results suggest considerable homology of sleep structure between humans and tree shrews despite the large difference in body mass between these species. 1 Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.
    [Show full text]
  • Transcriptional Profiling Identifies the Lncrna PVT1 As a Novel Regulator of the Asthmatic Phenotype in Human Airway Smooth Muscle
    Accepted Manuscript Transcriptional profiling identifies the lncRNA PVT1 as a novel regulator of the asthmatic phenotype in human airway smooth muscle Philip J. Austin, MSc, Eleni Tsitsiou, PhD, Charlotte Boardman, MD, Simon W. Jones, PhD, Mark A. Lindsay, PhD, Ian M. Adcock, PhD, Kian Fan Chung, MD PhD, Mark M. Perry, PhD PII: S0091-6749(16)30571-1 DOI: 10.1016/j.jaci.2016.06.014 Reference: YMAI 12203 To appear in: Journal of Allergy and Clinical Immunology Received Date: 5 April 2016 Revised Date: 24 May 2016 Accepted Date: 13 June 2016 Please cite this article as: Austin PJ, Tsitsiou E, Boardman C, Jones SW, Lindsay MA, Adcock IM, Chung KF, Perry MM, Transcriptional profiling identifies the lncRNA PVT1 as a novel regulator of the asthmatic phenotype in human airway smooth muscle, Journal of Allergy and Clinical Immunology (2016), doi: 10.1016/j.jaci.2016.06.014. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Transcriptional profiling identifies the lncRNA PVT1 as a novel 2 regulator of the asthmatic phenotype in human airway smooth muscle 3 4 Philip J. Austin MSc 1, Eleni Tsitsiou PhD 2, Charlotte Boardman MD 1, Simon W.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • Supplementary Data
    Supplementary Fig. 1 A B Responder_Xenograft_ Responder_Xenograft_ NON- NON- Lu7336, Vehicle vs Lu7466, Vehicle vs Responder_Xenograft_ Responder_Xenograft_ Sagopilone, Welch- Sagopilone, Welch- Lu7187, Vehicle vs Lu7406, Vehicle vs Test: 638 Test: 600 Sagopilone, Welch- Sagopilone, Welch- Test: 468 Test: 482 Responder_Xenograft_ NON- Lu7860, Vehicle vs Responder_Xenograft_ Sagopilone, Welch - Lu7558, Vehicle vs Test: 605 Sagopilone, Welch- Test: 333 Supplementary Fig. 2 Supplementary Fig. 3 Supplementary Figure S1. Venn diagrams comparing probe sets regulated by Sagopilone treatment (10mg/kg for 24h) between individual models (Welsh Test ellipse p-value<0.001 or 5-fold change). A Sagopilone responder models, B Sagopilone non-responder models. Supplementary Figure S2. Pathway analysis of genes regulated by Sagopilone treatment in responder xenograft models 24h after Sagopilone treatment by GeneGo Metacore; the most significant pathway map representing cell cycle/spindle assembly and chromosome separation is shown, genes upregulated by Sagopilone treatment are marked with red thermometers. Supplementary Figure S3. GeneGo Metacore pathway analysis of genes differentially expressed between Sagopilone Responder and Non-Responder models displaying –log(p-Values) of most significant pathway maps. Supplementary Tables Supplementary Table 1. Response and activity in 22 non-small-cell lung cancer (NSCLC) xenograft models after treatment with Sagopilone and other cytotoxic agents commonly used in the management of NSCLC Tumor Model Response type
    [Show full text]
  • DEGS2 Polymorphism Associated with Cognition in Schizophrenia Is Associated with Gene Expression in Brain
    OPEN Citation: Transl Psychiatry (2015) 5, e550; doi:10.1038/tp.2015.45 www.nature.com/tp ORIGINAL ARTICLE DEGS2 polymorphism associated with cognition in schizophrenia is associated with gene expression in brain K Ohi1,2, G Ursini1,MLi1, JH Shin1,TYe1, Q Chen1,RTao1, JE Kleinman1, TM Hyde1,3,4, R Hashimoto2,5 and DR Weinberger1,3,4,6,7 A genome-wide association study of cognitive deficits in patients with schizophrenia in Japan found association with a missense genetic variant (rs7157599, Asn8Ser) in the delta(4)-desaturase, sphingolipid 2 (DEGS2) gene. A replication analysis using Caucasian samples showed a directionally consistent trend for cognitive association of a proxy single-nucleotide polymorphism (SNP), rs3783332. Although the DEGS2 gene is expressed in human brain, it is unknown how DEGS2 expression varies during human life and whether it is affected by psychiatric disorders and genetic variants. To address these questions, we examined DEGS2 messenger RNA using next-generation sequencing in postmortem dorsolateral prefrontal cortical tissue from a total of 418 Caucasian samples including patients with schizophrenia, bipolar disorder and major depressive disorder. DEGS2 is expressed at very low levels prenatally and increases gradually from birth to adolescence and consistently expressed across adulthood. Rs3783332 genotype −3 was significantly associated with the expression across all subjects (F3,348 = 10.79,P= 1.12 × 10 ), particularly in control subjects − 4 (F1,87 = 13.14, P = 4.86 × 10 ). Similar results were found with rs715799 genotype. The carriers of the risk-associated minor allele at both loci showed significantly lower expression compared with subjects homozygous for the non-risk major allele and this was a consistent finding across all diagnostic groups.
    [Show full text]