BEND6 Is a Nuclear Antagonist of Notch Signaling During Self
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPEN Induces Mir-4652-3P to Target HIPK2 in Nasopharyngeal Carcinoma
Li et al. Cell Death and Disease (2020) 11:509 https://doi.org/10.1038/s41419-020-2699-2 Cell Death & Disease ARTICLE Open Access SPEN induces miR-4652-3p to target HIPK2 in nasopharyngeal carcinoma Yang Li1,YuminLv1, Chao Cheng2,YanHuang3,LiuYang1, Jingjing He1,XingyuTao1, Yingying Hu1,YutingMa1, Yun Su1,LiyangWu1,GuifangYu4, Qingping Jiang5,ShuLiu6,XiongLiu7 and Zhen Liu1 Abstract SPEN family transcriptional repressor (SPEN), also known as the SMART/HDAC1-associated repressor protein (SHARP), has been reported to modulate the malignant phenotypes of breast cancer, colon cancer, and ovarian cancer. However, its role and the detail molecular basis in nasopharyngeal carcinoma (NPC) remain elusive. In this study, the SPEN mRNA and protein expression was found to be increased in NPC cells and tissues compared with nonmalignant nasopharyngeal epithelial cells and tissues. Elevated SPEN protein expression was found to promote the pathogenesis of NPC and lead to poor prognosis. Knockdown of SPEN expression resulted in inactivation ofPI3K/AKT and c-JUN signaling, thereby suppressing NPC migration and invasion. In addition, miR-4652-3p was found to be a downstream inducer of SPEN by targeting the homeodomain interacting protein kinase 2 (HIPK2) gene, a potential tumor suppressor that reduces the activation of epithelial–mesenchymal transition (EMT) signaling, thereby reducing its expression and leading to increased NPC migration, invasion, and metastasis. In addition, SPEN was found to induce miR-4652-3p expression by activating PI3K/AKT/c-JUN signaling to target HIPK2. Our data provided a new molecular mechanism for SPEN as a metastasis promoter through activation of PI3K/AKT signaling, thereby stimulating the c-JUN/miR-4652-3p axis to target HIPK2 in NPC. -
Location Analysis of Estrogen Receptor Target Promoters Reveals That
Location analysis of estrogen receptor ␣ target promoters reveals that FOXA1 defines a domain of the estrogen response Jose´ e Laganie` re*†, Genevie` ve Deblois*, Ce´ line Lefebvre*, Alain R. Bataille‡, Franc¸ois Robert‡, and Vincent Gigue` re*†§ *Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montreal, QC, Canada H3A 1A1; †Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6; and ‡Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montre´al, Montreal, QC, Canada H2W 1R7 Communicated by Ronald M. Evans, The Salk Institute for Biological Studies, La Jolla, CA, July 1, 2005 (received for review June 3, 2005) Nuclear receptors can activate diverse biological pathways within general absence of large scale functional data linking these putative a target cell in response to their cognate ligands, but how this binding sites with gene expression in specific cell types. compartmentalization is achieved at the level of gene regulation is Recently, chromatin immunoprecipitation (ChIP) has been used poorly understood. We used a genome-wide analysis of promoter in combination with promoter or genomic DNA microarrays to occupancy by the estrogen receptor ␣ (ER␣) in MCF-7 cells to identify loci recognized by transcription factors in a genome-wide investigate the molecular mechanisms underlying the action of manner in mammalian cells (20–24). This technology, termed 17-estradiol (E2) in controlling the growth of breast cancer cells. ChIP-on-chip or location analysis, can therefore be used to deter- We identified 153 promoters bound by ER␣ in the presence of E2. mine the global gene expression program that characterize the Motif-finding algorithms demonstrated that the estrogen re- action of a nuclear receptor in response to its natural ligand. -
A Private 16Q24.2Q24.3 Microduplication in a Boy with Intellectual Disability, Speech Delay and Mild Dysmorphic Features
G C A T T A C G G C A T genes Article A Private 16q24.2q24.3 Microduplication in a Boy with Intellectual Disability, Speech Delay and Mild Dysmorphic Features Orazio Palumbo * , Pietro Palumbo , Ester Di Muro, Luigia Cinque, Antonio Petracca, Massimo Carella and Marco Castori Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; [email protected] (P.P.); [email protected] (E.D.M.); [email protected] (L.C.); [email protected] (A.P.); [email protected] (M.C.); [email protected] (M.C.) * Correspondence: [email protected]; Tel.: +39-088-241-6350 Received: 5 June 2020; Accepted: 24 June 2020; Published: 26 June 2020 Abstract: No data on interstitial microduplications of the 16q24.2q24.3 chromosome region are available in the medical literature and remain extraordinarily rare in public databases. Here, we describe a boy with a de novo 16q24.2q24.3 microduplication at the Single Nucleotide Polymorphism (SNP)-array analysis spanning ~2.2 Mb and encompassing 38 genes. The patient showed mild-to-moderate intellectual disability, speech delay and mild dysmorphic features. In DECIPHER, we found six individuals carrying a “pure” overlapping microduplication. Although available data are very limited, genomic and phenotype comparison of our and previously annotated patients suggested a potential clinical relevance for 16q24.2q24.3 microduplication with a variable and not (yet) recognizable phenotype predominantly affecting cognition. Comparing the cytogenomic data of available individuals allowed us to delineate the smallest region of overlap involving 14 genes. Accordingly, we propose ANKRD11, CDH15, and CTU2 as candidate genes for explaining the related neurodevelopmental manifestations shared by these patients. -
Osrrm, a Spen-Like Rice Gene Expressed Specifically in the Endosperm
Shi-Yan Chen et al. npg Cell Research (2007) 17:713-721. npg713 © 2007 IBCB, SIBS, CAS All rights reserved 1001-0602/07 $ 30.00 ORIGINAL ARTICLE www.nature.com/cr OsRRM, a Spen-like rice gene expressed specifically in the endosperm Shi-Yan Chen1, 2, Zong-Yang Wang1, Xiu-Ling Cai1 1National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; 2Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China We used the promoter trap technique to identify a rice plant, named 107#, in which the β-glucuronidase (GUS) reporter gene was expressed specifically in the endosperm. A single copy of the T-DNA was inserted into the plant genome, and a candidate gene OsRRM was identified by the insertion. The OsRRM promoter directed GUS expression specifically in rice endosperm, analogous to the GUS expression pattern observed in 107#. OsRRM is a single-copy gene in rice and encodes a nuclear protein containing 1 005 amino-acid residues with two RNA recognition motifs and one Spen paralog and ortholog C-terminal domain. Western blot analysis confirmed that the OsRRM protein was specifically expressed in rice endosperm. Ectopic expression of OsRRM in transgenic plants led to abnormalities, such as short stature, retarded growth and low fructification rates. Our data, in conjunction with the reported function ofSpen genes, implicated OsRRM in the regulation of cell development in rice endosperm. Keywords: RRM, Spen, promoter trap, GUS, rice Cell Research (2007) 17:713-721. -
The Estrogen Receptor Cofactor SPEN Functions As a Tumor Suppressor and Candidate Biomarker of Drug Responsiveness in Hormone-Dependent Breast Cancers
Author Manuscript Published OnlineFirst on August 21, 2015; DOI: 10.1158/0008-5472.CAN-14-3475 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. SPEN is a tumor suppressor in ERα positive breast cancers Title The estrogen receptor cofactor SPEN functions as a tumor suppressor and candidate biomarker of drug responsiveness in hormone-dependent breast cancers. Running Title SPEN is a tumor suppressor in ERα positive breast cancers Authors and affiliations: Légaré, Stéphanie1,2, Cavallone, Luca2, Mamo, Aline2, Chabot, Catherine2, Sirois, Isabelle1,2, Magliocco, Anthony3, Klimowicz, Alexander3, Tonin, Patricia N.4, Buchanan, Marguerite2, Keilty, Dana1,2, Hassan, Saima1,2, Laperrière, David5, Mader, Sylvie5,6, Aleynikova, Olga2, Basik Mark1,2 Keywords - Transcriptional corepressor - Tumor suppressor gene - Estrogen receptor positive breast cancers - Endocrine resistance Financial support • Stéphanie Légaré • Supported by a McGill Integrated Cancer Research Training Program studentship (FRN53888) and a doctoral award from the Fonds de recherche du Québec – Santé. • Isabelle Sirois • Recipient of the Eileen Iwanicki postdoctoral fellowship in Breast Cancer Research from the Canadian Institutes of Health Research in partnership with the Breast Cancer Society of Canada. 1 Dept of Surgery and Oncology, McGill University, Montréal, Québec, Canada. 2 Dept of Oncology and Surgery, Lady Davis Institute for Medical Research, Montréal, Québec, Canada. 3 Dept of Pathology, University of Calgary, Calgary, Alberta, Canada. 4 Depts of Human Genetics and Medicine, McGill University and The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada. 5 Institut de recherche en immunologie et cancérologie, IRIC, Montréal, Québec, Canada. 6 Dept de Biochimie, Université de Montréal, Montréal, Québec, Canada. -
SPEN Protein Expression and Interactions with Chromatin in Mouse Testicular Cells
156 3 REPRODUCTIONRESEARCH SPEN protein expression and interactions with chromatin in mouse testicular cells Joanna Korfanty1, Tomasz Stokowy2, Marek Chadalski1, Agnieszka Toma-Jonik1, Natalia Vydra1, Piotr Widłak1, Bartosz Wojtaś3, Bartłomiej Gielniewski3 and Wieslawa Widlak1 1Maria Sklodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland, 2Department of Clinical Science, University of Bergen, Bergen, Norway and 3Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland Correspondence should be addressed to W Widlak; Email: [email protected] Abstract SPEN (spen family transcription repressor) is a nucleic acid-binding protein putatively involved in repression of gene expression. We hypothesized that SPEN could be involved in general downregulation of the transcription during the heat shock response in mouse spermatogenic cells through its interactions with chromatin. We documented predominant nuclear localization of the SPEN protein in spermatocytes and round spermatids, which was retained after heat shock. Moreover, the protein was excluded from the highly condensed chromatin. Chromatin immunoprecipitation experiments clearly indicated interactions of SPEN with chromatin in vivo. However, ChIP-Seq analyses did not reveal any strong specific peaks both in untreated and heat shocked cells, which might suggest dispersed localization of SPEN and/or its indirect binding to DNA. Using in situ proximity ligation assay we found close in vivo associations of SPEN with MTA1 (metastasis-associated 1), a member of the nucleosome remodeling complex with histone deacetylase activity, which might contribute to interactions of SPEN with chromatin. Reproduction (2018) 156 195–206 Introduction However, regulation of osteocalcin expression by SPEN depends on its interactions with other proteins. -
E-Mutpath: Computational Modelling Reveals the Functional Landscape of Genetic Mutations Rewiring Interactome Networks
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.22.262386; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. e-MutPath: Computational modelling reveals the functional landscape of genetic mutations rewiring interactome networks Yongsheng Li1, Daniel J. McGrail1, Brandon Burgman2,3, S. Stephen Yi2,3,4,5 and Nidhi Sahni1,6,7,8,* 1Department oF Systems Biology, The University oF Texas MD Anderson Cancer Center, Houston, TX 77030, USA 2Department oF Oncology, Livestrong Cancer Institutes, Dell Medical School, The University oF Texas at Austin, Austin, TX 78712, USA 3Institute For Cellular and Molecular Biology (ICMB), The University oF Texas at Austin, Austin, TX 78712, USA 4Institute For Computational Engineering and Sciences (ICES), The University oF Texas at Austin, Austin, TX 78712, USA 5Department oF Biomedical Engineering, Cockrell School of Engineering, The University oF Texas at Austin, Austin, TX 78712, USA 6Department oF Epigenetics and Molecular Carcinogenesis, The University oF Texas MD Anderson Science Park, Smithville, TX 78957, USA 7Department oF BioinFormatics and Computational Biology, The University oF Texas MD Anderson Cancer Center, Houston, TX 77030, USA 8Program in Quantitative and Computational Biosciences (QCB), Baylor College oF Medicine, Houston, TX 77030, USA *To whom correspondence should be addressed. Nidhi Sahni. Tel: +1 512 2379506; Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.22.262386; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
A Conserved Structural Motif Reveals the Essential Transcriptional Repression Function of Spen Proteins and Their Role in Developmental Signaling
Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling Mariko Ariyoshi and John W.R. Schwabe1 Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, UK Spen proteins regulate the expression of key transcriptional effectors in diverse signaling pathways. They are large proteins characterized by N-terminal RNA-binding motifs and a highly conserved C-terminal SPOC domain. The specific biological role of the SPOC domain (Spen paralog and ortholog C-terminal domain), and hence, the common function of Spen proteins, has been unclear to date. The Spen protein, SHARP (SMRT/HDAC1-associated repressor protein), was identified as a component of transcriptional repression complexes in both nuclear receptor and Notch/RBP-J signaling pathways. We have determined the 1.8 Å crystal structure of the SPOC domain from SHARP. This structure shows that essentially all of the conserved surface residues map to a positively charged patch. Structure-based mutational analysis indicates that this conserved region is responsible for the interaction between SHARP and the universal transcriptional corepressor SMRT/NCoR (silencing mediator for retinoid and thyroid receptors/nuclear receptor corepressor. We demonstrate that this interaction involves a highly conserved acidic motif at the C terminus of SMRT/NCoR. These findings suggest that the conserved function of the SPOC domain is to mediate interaction with SMRT/NCoR corepressors, and that Spen proteins play an essential role in the repression complex. [Keywords: SHARP; SPOC domain; Spen proteins; transcriptional corepressor; crystal structure; nuclear receptor] Received March 31, 2003; revised version accepted June 3, 2003. -
BANP (1524CT337.6.32): Sc-517314
SAN TA C RUZ BI OTEC HNOL OG Y, INC . BANP (1524CT337.6.32): sc-517314 BACKGROUND SOURCE BANP (BTG3 associated nuclear protein), also known as BEND1, SMARBP1 BANP (1524CT337.6.32) is a mouse monoclonal antibody raised against a or SMAR1, is a 519 amino acid protein that localizes to the nucleus and recombinant protein corresponding to amino acids 30-390 of BANP of human belongs to the BANP/SMAR1 family. Interacting with CDP and p53, BANP origin. functions to control V(D)J recombination during T-cell development, specifi - cally by binding to a scaffold/matrix DNA attachment region and repressing PRODUCT the enhancer function of TCR (T-cell receptor ). Additionally, BANP promotes β Each vial contains 100 µg IgG 1 kappa light chain in 1.0 ml of PBS with < 0.1% p53 serine phosphorylation, resulting in the subsequent nuclear accumulation sodium azide and 0.1% gelatin. of p53 and, ultimately, cell cycle arrest. BANP is down regulated in breast cancer cells, suggesting a role in tumor suppression. Three isoforms of BANP APPLICATIONS exist due to alternative splicing events. BANP (1524CT337.6.32) is recommended for detection of BANP of mouse, REFERENCES rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) and immunoprecipitation [1-2 µg per 100-500 µg of total 1. Birot, A., Duret, L., Bartholin, L., Santalucia, B., Tigaud, I., Magaud, J. and protein (1 ml of cell lysate)]. Rouault, J. 2000. Identification and molecular analysis of BANP. Gene 253: 189-196. Suitable for use as control antibody for BANP siRNA (h): sc-72607, BANP siRNA (m): sc-72608, BANP shRNA Plasmid (h): sc-72607-SH, BANP shRNA 2. -
Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders
177 Arch Neuropsychitry 2020;57:177−191 RESEARCH ARTICLE https://doi.org/10.29399/npa.24890 Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders Hakan GÜRKAN1 , Emine İkbal ATLI1 , Engin ATLI1 , Leyla BOZATLI2 , Mengühan ARAZ ALTAY2 , Sinem YALÇINTEPE1 , Yasemin ÖZEN1 , Damla EKER1 , Çisem AKURUT1 , Selma DEMİR1 , Işık GÖRKER2 1Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey 2Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey ABSTRACT Introduction: Aneuploids, copy number variations (CNVs), and single in 39 (39/123=31.7%) patients. Twelve CNV variant of unknown nucleotide variants in specific genes are the main genetic causes of significance (VUS) (9.75%) patients and 7 CNV benign (5.69%) patients developmental delay (DD) and intellectual disability disorder (IDD). were reported. In 6 patients, one or more pathogenic CNVs were These genetic changes can be detected using chromosome analysis, determined. Therefore, the diagnostic efficiency of CMA was found to chromosomal microarray (CMA), and next-generation DNA sequencing be 31.7% (39/123). techniques. Therefore; In this study, we aimed to investigate the Conclusion: Today, genetic analysis is still not part of the routine in the importance of CMA in determining the genomic etiology of unexplained evaluation of IDD patients who present to psychiatry clinics. A genetic DD and IDD in 123 patients. diagnosis from CMA can eliminate genetic question marks and thus Method: For 123 patients, chromosome analysis, DNA fragment analysis alter the clinical management of patients. Approximately one-third and microarray were performed. Conventional G-band karyotype of the positive CMA findings are clinically intervenable. -
Identification and Molecular Analysis of BANP
Gene 253 (2000) 189–196 www.elsevier.com/locate/gene Identification and molecular analysis of BANP Anne-Marie Birot a, Laurent Duret c, Laurent Bartholin a,Be´ne´dicte Santalucia b, Isabelle Tigaud b, Jean-Pierre Magaud a,b, Jean-Pierre Rouault a,* a Unite´ INSERM U453, aYlie´e au CNRS, Centre Le´on Be´rard, Batiment Le Cheney, 28 rue Lae¨nnec, 69373 Lyon Ce´dex 08, France b Service de cytoge´ne´tique, Hopital Edouard Herriot, Pavillon E, Lyon, France c Laboratoire BGBP-UMR 5558, UCLB, Villeurbanne, France Received 24 March 2000; received in revised form 26 May 2000; accepted 30 May 2000 Received by A. Bernardi Abstract BTG3 belongs to a family of structurally related genes whose biochemical functions remain elusive. In order to investigate the mechanism underlying BTG3-mediated functions, we tried to identify BTG3 potential partners. The use of the yeast ‘two-hybrid system’, with BTG3 as bait, enabled us to isolate BANP (BTG3 Associated Nuclear Protein). Other commonly used protein- binding assays did not confirm this yeast interaction. However, BANP had never been described before, and this prompted us to further characterise this gene. In this paper, we present data on its molecular organization in mouse, then we speculate on the nature of this nuclear protein, and finally we localise BANP on the human chromosome 16q24 subregion; we discuss the fact that frequent loss of heterozygosity within this region has been observed in diVerent tumours. © 2000 Elsevier Science B.V. All rights reserved. Keywords: ANA; BTG; BTG3; rBTG3; 16q24 1. Introduction an altered G2/M block as compared with naive cells when they are treated with genotoxic agents (Rouault The mouse BTG3 gene (Gue´henneux et al., 1997) et al., 1996). -
Emerging Roles of Circrna in Formation and Progression of Cancer
Journal of Cancer 2019, Vol. 10 5015 Ivyspring International Publisher Journal of Cancer 2019; 10(21): 5015-5021. doi: 10.7150/jca.30828 Review Emerging roles of circRNA in formation and progression of cancer Yuting Yin*, Jiali Long*, Qinglian He, Yuling Li, Yanqiu Liao, Peishan He, Wei Zhu Department of Pathology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China *Contributed equally Corresponding author: Wei Zhu, MD, Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan 523808, Guangdong Province, China. E-mail: [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.10.21; Accepted: 2019.08.05; Published: 2019.08.28 Abstract Circular RNAs (circRNAs) are recently discovered as a special novel type of endogenous noncoding RNAs (ncRNAs), which form a covalently closed continuous loop and are highly represented in the eukaryotic transcriptome. Recent research revealed that circRNAs can function as microRNA (miRNA) sponges, regulators of splicing and transcription, as well as interact with RNA-binding proteins (RBPs). In this review, not only the function and mechanism, but also the experimental methods of circRNA are summarized. The summary of the current state of circRNA will help us in the discovery of novel biomarkers, the therapeutic targets and their potential significance in diagnosis and treatment of diseases. CircRNAs might play important roles in cancers especially in hepatocellular carcinoma, gastric carcinoma and colorectal cancer as well as serving as diagnostic or predictive biomarkers of some diseases and providing new treatments of diseases.