SPEN Induces Mir-4652-3P to Target HIPK2 in Nasopharyngeal Carcinoma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HIPK2–P53ser46 Damage Response Pathway Is Involved in Temozolomide-Induced Glioblastoma Cell Death Yang He, Wynand P
Published OnlineFirst February 22, 2019; DOI: 10.1158/1541-7786.MCR-18-1306 Cell Fate Decisions Molecular Cancer Research The SIAH1–HIPK2–p53ser46 Damage Response Pathway is Involved in Temozolomide-Induced Glioblastoma Cell Death Yang He, Wynand P. Roos, Qianchao Wu, Thomas G. Hofmann, and Bernd Kaina Abstract Patients suffering from glioblastoma have a dismal prog- in chromatin-immunoprecipitation experiments, in which nosis, indicating the need for new therapeutic targets. Here p-p53ser46 binding to the Fas promotor was regulated by we provide evidence that the DNA damage kinase HIPK2 HIPK2. Other pro-apoptotic proteins such as PUMA, and its negative regulatory E3-ubiquitin ligase SIAH1 are NOXA, BAX, and PTEN were not affected in HIPK2kd, and critical factors controlling temozolomide-induced cell also double-strand breaks following temozolomide remain- death. We show that HIPK2 downregulation (HIPK2kd) ed unaffected. We further show that downregulation of significantly reduces the level of apoptosis. This was not the HIPK2 inactivator SIAH1 significantly ameliorates the case in glioblastoma cells expressing the repair protein temozolomide-induced apoptosis, suggesting that the MGMT, suggesting that the primary DNA lesion responsible ATM/ATR target SIAH1 together with HIPK2 plays a pro- 6 for triggering HIPK2-mediated apoptosis is O -methylguanine. apoptotic role in glioma cells exhibiting p53wt status. A Upon temozolomide treatment, p53 becomes phosphory- database analysis revealed that SIAH1, but not SIAH2, is lated whereby HIPK2kd had impact exclusively on ser46, significantly overexpressed in glioblastomas. but not ser15. Searching for the transcriptional target of p-p53ser46, we identified the death receptor FAS (CD95, Implications: The identification of a novel apoptotic APO-1) being involved. -
Updates on HIPK2: a Resourceful Oncosuppressor for Clearing Cancer Gabriella D’Orazi1,2*, Cinzia Rinaldo2,3 and Silvia Soddu2*
D’Orazi et al. Journal of Experimental & Clinical Cancer Research 2012, 31:63 http://www.jeccr.com/content/31/1/63 REVIEW Open Access Updates on HIPK2: a resourceful oncosuppressor for clearing cancer Gabriella D’Orazi1,2*, Cinzia Rinaldo2,3 and Silvia Soddu2* Abstract Homeodomain-interacting protein kinase 2 (HIPK2) is a multitalented protein that exploits its kinase activity to modulate key molecular pathways in cancer to restrain tumor growth and induce response to therapies. HIPK2 phosphorylates oncosuppressor p53 for apoptotic activation. In addition, also p53-independent apoptotic pathways are regulated by HIPK2 and can be exploited for anticancer purpose too. Therefore, HIPK2 activity is considered a central switch in targeting tumor cells toward apoptosis upon genotoxic damage and the preservation and/or restoration of HIPK2 function is crucial for an efficient tumor response to therapies. As a proof of principle, HIPK2 knockdown impairs p53 function, induces chemoresistance, angiogenesis, and tumor growth in vivo,onthe contrary, HIPK2 overexpression activates apoptotic pathways, counteracts hypoxia, inhibits angiogenesis, and induces chemosensitivity both in p53-dependent and -independent ways. The role of HIPK2 in restraining tumor development was also confirmed by studies with HIPK2 knockout mice. Recent findings demonstrated that HIPK2 inhibitions do exist in tumors and depend by several mechanisms including HIPK2 cytoplasmic localization, protein degradation, and loss of heterozygosity (LOH), recapitulating the biological outcome obtained by RNA interference studies in tumor cells, such as p53 inactivation, resistance to therapies, apoptosis inhibition, and tumor progression. These findings may lead to new diagnostic and therapeutic approaches for treating cancer patients. This review will focus on the last updates about HIPK2 contribution in tumorigenesis and cancer treatment. -
Mithramycin Represses Basal and Cigarette Smoke–Induced Expression of ABCG2 and Inhibits Stem Cell Signaling in Lung and Esophageal Cancer Cells
Cancer Therapeutics, Targets, and Chemical Biology Research Mithramycin Represses Basal and Cigarette Smoke–Induced Expression of ABCG2 and Inhibits Stem Cell Signaling in Lung and Esophageal Cancer Cells Mary Zhang1, Aarti Mathur1, Yuwei Zhang1, Sichuan Xi1, Scott Atay1, Julie A. Hong1, Nicole Datrice1, Trevor Upham1, Clinton D. Kemp1, R. Taylor Ripley1, Gordon Wiegand2, Itzak Avital2, Patricia Fetsch3, Haresh Mani6, Daniel Zlott4, Robert Robey5, Susan E. Bates5, Xinmin Li7, Mahadev Rao1, and David S. Schrump1 Abstract Cigarette smoking at diagnosis or during therapy correlates with poor outcome in patients with lung and esophageal cancers, yet the underlying mechanisms remain unknown. In this study, we observed that exposure of esophageal cancer cells to cigarette smoke condensate (CSC) led to upregulation of the xenobiotic pump ABCG2, which is expressed in cancer stem cells and confers treatment resistance in lung and esophageal carcinomas. Furthermore, CSC increased the side population of lung cancer cells containing cancer stem cells. Upregulation of ABCG2 coincided with increased occupancy of aryl hydrocarbon receptor, Sp1, and Nrf2 within the ABCG2 promoter, and deletion of xenobiotic response elements and/or Sp1 sites markedly attenuated ABCG2 induction. Under conditions potentially achievable in clinical settings, mithramycin diminished basal as well as CSC- mediated increases in AhR, Sp1, and Nrf2 levels within the ABCG2 promoter, markedly downregulated ABCG2, and inhibited proliferation and tumorigenicity of lung and esophageal cancer cells. Microarray analyses revealed that mithramycin targeted multiple stem cell–related pathways in vitro and in vivo. Collectively, our findings provide a potential mechanistic link between smoking status and outcome of patients with lung and esophageal cancers, and support clinical use of mithramycin for repressing ABCG2 and inhibiting stem cell signaling in thoracic malignancies. -
Osrrm, a Spen-Like Rice Gene Expressed Specifically in the Endosperm
Shi-Yan Chen et al. npg Cell Research (2007) 17:713-721. npg713 © 2007 IBCB, SIBS, CAS All rights reserved 1001-0602/07 $ 30.00 ORIGINAL ARTICLE www.nature.com/cr OsRRM, a Spen-like rice gene expressed specifically in the endosperm Shi-Yan Chen1, 2, Zong-Yang Wang1, Xiu-Ling Cai1 1National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; 2Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China We used the promoter trap technique to identify a rice plant, named 107#, in which the β-glucuronidase (GUS) reporter gene was expressed specifically in the endosperm. A single copy of the T-DNA was inserted into the plant genome, and a candidate gene OsRRM was identified by the insertion. The OsRRM promoter directed GUS expression specifically in rice endosperm, analogous to the GUS expression pattern observed in 107#. OsRRM is a single-copy gene in rice and encodes a nuclear protein containing 1 005 amino-acid residues with two RNA recognition motifs and one Spen paralog and ortholog C-terminal domain. Western blot analysis confirmed that the OsRRM protein was specifically expressed in rice endosperm. Ectopic expression of OsRRM in transgenic plants led to abnormalities, such as short stature, retarded growth and low fructification rates. Our data, in conjunction with the reported function ofSpen genes, implicated OsRRM in the regulation of cell development in rice endosperm. Keywords: RRM, Spen, promoter trap, GUS, rice Cell Research (2007) 17:713-721. -
The Estrogen Receptor Cofactor SPEN Functions As a Tumor Suppressor and Candidate Biomarker of Drug Responsiveness in Hormone-Dependent Breast Cancers
Author Manuscript Published OnlineFirst on August 21, 2015; DOI: 10.1158/0008-5472.CAN-14-3475 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. SPEN is a tumor suppressor in ERα positive breast cancers Title The estrogen receptor cofactor SPEN functions as a tumor suppressor and candidate biomarker of drug responsiveness in hormone-dependent breast cancers. Running Title SPEN is a tumor suppressor in ERα positive breast cancers Authors and affiliations: Légaré, Stéphanie1,2, Cavallone, Luca2, Mamo, Aline2, Chabot, Catherine2, Sirois, Isabelle1,2, Magliocco, Anthony3, Klimowicz, Alexander3, Tonin, Patricia N.4, Buchanan, Marguerite2, Keilty, Dana1,2, Hassan, Saima1,2, Laperrière, David5, Mader, Sylvie5,6, Aleynikova, Olga2, Basik Mark1,2 Keywords - Transcriptional corepressor - Tumor suppressor gene - Estrogen receptor positive breast cancers - Endocrine resistance Financial support • Stéphanie Légaré • Supported by a McGill Integrated Cancer Research Training Program studentship (FRN53888) and a doctoral award from the Fonds de recherche du Québec – Santé. • Isabelle Sirois • Recipient of the Eileen Iwanicki postdoctoral fellowship in Breast Cancer Research from the Canadian Institutes of Health Research in partnership with the Breast Cancer Society of Canada. 1 Dept of Surgery and Oncology, McGill University, Montréal, Québec, Canada. 2 Dept of Oncology and Surgery, Lady Davis Institute for Medical Research, Montréal, Québec, Canada. 3 Dept of Pathology, University of Calgary, Calgary, Alberta, Canada. 4 Depts of Human Genetics and Medicine, McGill University and The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada. 5 Institut de recherche en immunologie et cancérologie, IRIC, Montréal, Québec, Canada. 6 Dept de Biochimie, Université de Montréal, Montréal, Québec, Canada. -
SPEN Protein Expression and Interactions with Chromatin in Mouse Testicular Cells
156 3 REPRODUCTIONRESEARCH SPEN protein expression and interactions with chromatin in mouse testicular cells Joanna Korfanty1, Tomasz Stokowy2, Marek Chadalski1, Agnieszka Toma-Jonik1, Natalia Vydra1, Piotr Widłak1, Bartosz Wojtaś3, Bartłomiej Gielniewski3 and Wieslawa Widlak1 1Maria Sklodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland, 2Department of Clinical Science, University of Bergen, Bergen, Norway and 3Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland Correspondence should be addressed to W Widlak; Email: [email protected] Abstract SPEN (spen family transcription repressor) is a nucleic acid-binding protein putatively involved in repression of gene expression. We hypothesized that SPEN could be involved in general downregulation of the transcription during the heat shock response in mouse spermatogenic cells through its interactions with chromatin. We documented predominant nuclear localization of the SPEN protein in spermatocytes and round spermatids, which was retained after heat shock. Moreover, the protein was excluded from the highly condensed chromatin. Chromatin immunoprecipitation experiments clearly indicated interactions of SPEN with chromatin in vivo. However, ChIP-Seq analyses did not reveal any strong specific peaks both in untreated and heat shocked cells, which might suggest dispersed localization of SPEN and/or its indirect binding to DNA. Using in situ proximity ligation assay we found close in vivo associations of SPEN with MTA1 (metastasis-associated 1), a member of the nucleosome remodeling complex with histone deacetylase activity, which might contribute to interactions of SPEN with chromatin. Reproduction (2018) 156 195–206 Introduction However, regulation of osteocalcin expression by SPEN depends on its interactions with other proteins. -
1 a Genome-Wide RNA Interference Screen Identifies New Regulators Of
Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press A genome-wide RNA interference screen identifies new regulators of androgen receptor function in prostate cancer cells Keren Imberg-Kazdan1 Susan Ha1,2 Alex Greenfield3 Christopher S. Poultney3^ Richard Bonneau3 Susan K. Logan1,2,4 Michael J. Garabedian2, 3,4 Departments of Biochemistry and Molecular Pharmacology1, Urology2, Microbiology4, and NYU Cancer Institute5, New York University School of Medicine, 550 First Avenue, New York, NY 10016; 3Center for Genomics and Systems Biology, New York University, New York, New York 10003 ^ present address: Seaver Autism Center for Research and Treatment, Department of Psychiatry, Mount Sinai Medical Center, New York, New York 10029 Corresponding Author: Michael J. Garabedian Department of Microbiology NYU School of Medicine 550 First Avenue, New York, NY 10016 Phone 212 263-7662 Fax 212 263-8276 Email: [email protected] Running Title: Genome-wide RNAi screen for AR regulators Keywords: Androgen receptor, RNAi screen, transcriptional regulation, HIPK2, MED19, Mediator complex, prostate cancer 1 Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract The androgen receptor (AR) is a mediator of both androgen-dependent and castration- resistant prostate cancers. Identification of cellular factors affecting AR transcriptional activity could in principle yield new targets that reduce AR activity and combat prostate cancer, yet a comprehensive analysis of the genes required for AR-dependent transcriptional activity has not been determined. Using an unbiased genetic approach that takes advantage of the evolutionary conservation of AR signaling, we have conducted a genome-wide RNAi screen in Drosophila cells for genes required for AR transcriptional activity and applied the results to human prostate cancer cells. -
A Conserved Structural Motif Reveals the Essential Transcriptional Repression Function of Spen Proteins and Their Role in Developmental Signaling
Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling Mariko Ariyoshi and John W.R. Schwabe1 Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, UK Spen proteins regulate the expression of key transcriptional effectors in diverse signaling pathways. They are large proteins characterized by N-terminal RNA-binding motifs and a highly conserved C-terminal SPOC domain. The specific biological role of the SPOC domain (Spen paralog and ortholog C-terminal domain), and hence, the common function of Spen proteins, has been unclear to date. The Spen protein, SHARP (SMRT/HDAC1-associated repressor protein), was identified as a component of transcriptional repression complexes in both nuclear receptor and Notch/RBP-J signaling pathways. We have determined the 1.8 Å crystal structure of the SPOC domain from SHARP. This structure shows that essentially all of the conserved surface residues map to a positively charged patch. Structure-based mutational analysis indicates that this conserved region is responsible for the interaction between SHARP and the universal transcriptional corepressor SMRT/NCoR (silencing mediator for retinoid and thyroid receptors/nuclear receptor corepressor. We demonstrate that this interaction involves a highly conserved acidic motif at the C terminus of SMRT/NCoR. These findings suggest that the conserved function of the SPOC domain is to mediate interaction with SMRT/NCoR corepressors, and that Spen proteins play an essential role in the repression complex. [Keywords: SHARP; SPOC domain; Spen proteins; transcriptional corepressor; crystal structure; nuclear receptor] Received March 31, 2003; revised version accepted June 3, 2003. -
Counteracting MDM2-Induced HIPK2 Downregulation Restores HIPK2/P53
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 584 (2010) 4253–4258 journal homepage: www.FEBSLetters.org Counteracting MDM2-induced HIPK2 downregulation restores HIPK2/p53 apoptotic signaling in cancer cells ⇑ ⇑⇑ Lavinia Nardinocchi a, , Rosa Puca a,b, David Givol c, Gabriella D’Orazi a,b, a Department of Experimental Oncology, Molecular Oncogenesis Laboratory, National Cancer Institute ‘‘Regina Elena”, 00158 Rome, Italy b Department of Oncology and Experimental Medicine, School of Medicine, University ‘‘G. d’Annunzio”, 66100 Chieti, Italy c Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel article info abstract Article history: Homeodomain-interacting protein kinase-2 (HIPK2) is a crucial regulator of p53 apoptotic function Received 23 July 2010 by phosphorylating serine 46 (Ser46) in response to DNA damage. In tumors with wild-type p53, its Revised 21 August 2010 tumor suppressor function is often impaired by MDM2 overexpression that targets p53 for proteaso- Accepted 10 September 2010 mal degradation. Likewise, MDM2 targets HIPK2 for protein degradation impairing p53-apoptotic Available online 16 September 2010 function. Here we report that zinc antagonised MDM2-induced HIPK2 degradation as well as p53 Edited by Gianni Cesareni ubiquitination. The zinc inhibitory effect on MDM2 activity leads to HIPK2-induced p53Ser46 phos- phorylation and p53 pro-apoptotic transcriptional activity. These results suggest that zinc deriva- tives are potential molecules to target the MDM2-induced HIPK2/p53 inhibition. Keywords: HIPK2 Ó 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. -
Ski and Snon, Potent Negative Regulators of TGF-Β Signaling
Cell Research (2009) 19:47-57. npg © 2009 IBCB, SIBS, CAS All rights reserved 1001-0602/09 $ 30.00 REVIEW www.nature.com/cr Ski and SnoN, potent negative regulators of TGF-β signaling Julien Deheuninck1, Kunxin Luo1 1UC Berkeley, Department of Molecular and Cellular Biology, 16 Barker Hall, MC3204, Berkeley, CA 94720, USA Ski and the closely related SnoN were discovered as oncogenes by their ability to transform chicken embryo fi- broblasts upon overexpression. While elevated expressions of Ski and SnoN have also been reported in many human cancer cells and tissues, consistent with their pro-oncogenic activity, emerging evidence also suggests a potential anti-oncogenic activity for both. In addition, Ski and SnoN have been implicated in regulation of cell differentiation, especially in the muscle and neuronal lineages. Multiple cellular partners of Ski and SnoN have been identified in an effort to understand the molecular mechanisms underlying the complex roles of Ski and SnoN. In this review, we summarize recent findings on the biological functions of Ski and SnoN, their mechanisms of action and how their levels of expression are regulated. Keywords: SnoN, Ski, Signal transduction, development, tumorigenesis, TGF-β signaling, senescence Cell Research (2009) 19:47-57. doi: 10.1038/cr.2008.324; published online 30 December 2008 Introduction sion of Fussel-18 and Fussel-15 appears to be limited to neuronal tissues, suggesting that their functions may be The sno gene (Ski novel gene) was initially discov- more restricted. ered on the basis of its close homology to v-ski, the Ski and SnoN contain several structural domains (Fig- transforming component of the Sloan–Kettering virus ure 1), including the DHD (Dachshund homology do- (SKV) [1] and its cellular homolog c-ski [2]. -
Loss of HIPK2 Protects Neurons from Mitochondrial Toxins by Regulating Parkin Protein Turnover
The Journal of Neuroscience, January 15, 2020 • 40(3):557–568 • 557 Cellular/Molecular Loss of HIPK2 Protects Neurons from Mitochondrial Toxins by Regulating Parkin Protein Turnover X Jiasheng Zhang,1,2 Yulei Shang,1 Sherry Kamiya,1 Sarah J. Kotowski,3,4 XKen Nakamura,3,4 and XEric J. Huang1,2 1Department of Pathology, University of California, San Francisco, San Francisco, California 94143, 2Pathology Service 113B, VA Medical Center, San Francisco, California 94121, 3Department of Neurology, University of California, San Francisco, San Francisco, California 94122, and 4Gladstone Institute of Neurological Disease, San Francisco, California 94158 Mitochondria are important sources of energy, but they are also the target of cellular stress, toxin exposure, and aging-related injury. Persistent accumulation of damaged mitochondria has been implicated in many neurodegenerative diseases. One highly conserved mechanism to clear damaged mitochondria involves the E3 ubiquitin ligase Parkin and PTEN-induced kinase 1 (PINK1), which cooper- atively initiate the process called mitophagy that identifies and eliminates damaged mitochondria through the autophagosome and lysosome pathways. Parkin is a mostly cytosolic protein, but is rapidly recruited to damaged mitochondria and target them for mi- tophagy. Moreover, Parkin interactomes also involve signaling pathways and transcriptional machinery critical for survival and cell death. However, the mechanism that regulates Parkin protein level remains poorly understood. Here, we show that the loss of homeodo- main interacting protein kinase 2 (HIPK2) in neurons and mouse embryonic fibroblasts (MEFs) has a broad protective effect from cell death induced by mitochondrial toxins. The mechanism by which Hipk2 Ϫ / Ϫ neurons and MEFs are more resistant to mitochondrial toxins is in part due to the role of HIPK2 and its kinase activity in promoting Parkin degradation via the proteasome-mediated mecha- nism. -
Prolyl Isomerase Pin1 and Protein Kinase HIPK2 Cooperate To
Cell Death and Differentiation (2014) 21, 321–332 & 2014 Macmillan Publishers Limited All rights reserved 1350-9047/14 www.nature.com/cdd Prolyl isomerase Pin1 and protein kinase HIPK2 cooperate to promote cortical neurogenesis by suppressing Groucho/TLE:Hes1-mediated inhibition of neuronal differentiation R Ciarapica1,2, L Methot1, Y Tang1,RLo1, R Dali1, M Buscarlet1, F Locatelli2,3, G del Sal4,5, R Rota2 and S Stifani*,1 The Groucho/transducin-like Enhancer of split 1 (Gro/TLE1):Hes1 transcriptional repression complex acts in cerebral cortical neural progenitor cells to inhibit neuronal differentiation. The molecular mechanisms that regulate the anti-neurogenic function of the Gro/TLE1:Hes1 complex during cortical neurogenesis remain to be defined. Here we show that prolyl isomerase Pin1 (peptidyl-prolyl cis-trans isomerase NIMA-interacting 1) and homeodomain-interacting protein kinase 2 (HIPK2) are expressed in cortical neural progenitor cells and form a complex that interacts with the Gro/TLE1:Hes1 complex. This association depends on the enzymatic activities of both HIPK2 and Pin1, as well as on the association of Gro/TLE1 with Hes1, but is independent of the previously described Hes1-activated phosphorylation of Gro/TLE1. Interaction with the Pin1:HIPK2 complex results in Gro/TLE1 hyperphosphorylation and weakens both the transcriptional repression activity and the anti-neurogenic function of the Gro/ TLE1:Hes1 complex. These results provide evidence that HIPK2 and Pin1 work together to promote cortical neurogenesis, at least in