STUDIES IN MYCOLOGY 56: 67–133. 2006. The Trichoderma koningii aggregate species Gary J. Samuels1*, Sarah Dodd2, Bing-Sheng Lu3, Orlando Petrini4, Hans-Josef Schroers5, Irina S. Druzhinina6 1United States Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, Rm 304, B-011A, Beltsville, Maryland 20705, U.S.A.; 2The Pennsylvania State University, Department of Plant Pathology, Buckhout Laboratory, University Park, Pennsylvania 16802, U.S.A. Current address: New Zialand Institute of Crop and Food Research Ltd., Private Bag 4704, Christchurch, New Zealand; 3The Pennsylvania State University, Department of Plant Pathology, Buckhout Laboratory, University Park, Pennsylvania 16802, U.S.A. Current address: Agronomy College, Department of Plant Protection, Zhongkai Agrotechnical College, Guangzhou 510225, China; 4Tèra d’Sott 5, CH-6949 Comano, Ticino, Switzerland; 5Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, P.O. Box 85167, 3508 TC Utrecht, The Netherlands. Current address: Agricultural Institute of Slovenia, Hacquetova 17, 1001 Ljubljana, Slovenia; 6Technische Universität Wien, Abteilung für Mikrobielle Biochemie, Institut für Biochemische Technologie und Mikrobiologie, Getreidemarkt 9/172, A-1060 Wien, Austria. *Correspondence: Gary J. Samuels,
[email protected] Abstract: The morphological concept of Trichoderma koningii is found to include several species that differ from each other in details of phenotype (including conidium morphology, growth rate) and biogeography. Phylogenetic analysis utilizing partial sequences of the translation-elongation factor 1 alpha (tef1), as well as fragments of actin and calmodulin genes, indicate that phenotypic characters typical of T. koningii evolved independently in three well-separated main lineages. Combined molecular and phenotype data lead to the development of a taxonomy with the recognition of twelve taxonomic species and one variety within the three lineages.