A New Species of Trichoderma Hypoxylon Harbours Abundant Secondary Metabolites Received: 13 May 2016 Jingzu Sun1,2, Yunfei Pei1,†, Erwei Li1, Wei Li1, Kevin D

Total Page:16

File Type:pdf, Size:1020Kb

A New Species of Trichoderma Hypoxylon Harbours Abundant Secondary Metabolites Received: 13 May 2016 Jingzu Sun1,2, Yunfei Pei1,†, Erwei Li1, Wei Li1, Kevin D www.nature.com/scientificreports OPEN A new species of Trichoderma hypoxylon harbours abundant secondary metabolites Received: 13 May 2016 Jingzu Sun1,2, Yunfei Pei1,†, Erwei Li1, Wei Li1, Kevin D. Hyde2, Wen-Bing Yin1,3 & Accepted: 27 October 2016 Xingzhong Liu1,3 Published: 21 November 2016 Some species of Trichoderma are fungicolous on fungi and have been extensively studied and commercialized as biocontrol agents. Multigene analyses coupled with morphology, resulted in the discovery of T. hypoxylon sp. nov., which was isolated from surface of the stroma of Hypoxylon anthochroum. The new taxon produces Trichoderma- to Verticillium-like conidiophores and hyaline conidia. Phylogenetic analyses based on combined ITS, TEF1-α and RPB2 sequence data indicated that T. hypoxylon is a well-distinguished species with strong bootstrap support in the polysporum group. Chemical assessment of this species reveals a richness of secondary metabolites with trichothecenes and epipolythiodiketopiperazines as the major compounds. The fungicolous life style of T. hypoxylon and the production of abundant metabolites are indicative of the important ecological roles of this species in nature. Traditionally the taxonomy of species of Trichoderma was based on morphology. Most species in this genus are usually fast growing, produce highly branched conidiophores with cylindrical to nearly subglobose phialides and ellipsoidal to globose conidia1–4. However, high morphological homoplasy in sexual state makes identification difficult, and the importance of sequence data have been increased5,6. Based on the combined phenotypic and phylogenetic analysis, about 260 species have been recognized and accepted5–10. The internal transcript spacers (ITS), translation elongation factor 1-alpha (TEF1-α) and largest subunit of RNA polymerase II (RBP2) genes are more available to recognize species within Trichoderma5,9,10. Phylogenetic analysis based on a combination of ITS, TEF1-α and RBP2 are recommended solve the problem of Trichoderma species complex and reveal taxonomic deversity2,6–11. Fungi associated with other fungi as saprobes, commensals or parasites are termed fungicolous fungi12. These fungi usually produce rich secondary metabolites, which have been reported as an important resource for bio- active small molecule discovery such as anti-fungi, tumors, nematodes and bacteria13,14. Some metabolites pro- duced by the species in this genus play very important ecological roles in nature15. Trichoderma species are most frequently found in vegetable matter, decaying wood and soil, plant rhizosphere, as well as on other fungi5,6,16. Fungicolous Trichoderma species comprise diversity and abundant genes associated with secondary metabolites productivity15,16. These genes are responsible to a number of secondary metabolites with pharmaceutical and biotechnological importance including peptides, peptaibols, poliketides, pyrones, siderophores and nonvolatile terpenes14,15–22. Some of secondary metabolites are responsible for survival and adaption of their habitat15,16. For example, peptaibols are small peptides of non-ribosomal origin produced by Trichoderma15 and have the ability to induce systemic resistance in plants against microbial invasion. Harzianum A is a growth-promoting trichoth- ecene produced by Trichoderma arundinaceum17. In the search of novel bioactive compounds, we carried out resource and diversity investigation of fungicolous fungi in China and Thailand. Two isolates of Trichoderma were obtained from stroma of Hypoxylon anthochroum. They are described, illustrated and named as a new species Trichoderma hypoxylon. Its phylogenetic positions 1State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences (CASIM), No. 3 Park 1, West Beichen Road, Chaoyang District, Beijing 100101, China. 2Center of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand. 3Joint Laboratory of Applied Microbial Technology, CASIM and Institute of Biology limited Liability Company, Henan Academy of Sciences, Zheng Zhou, 45002, China. †Present address: National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China. Correspondence and requests for materials should be addressed to W.-B.Y. (email: [email protected]) or X.L. (email: [email protected]) SCIENTIFIC REPORTS | 6:37369 | DOI: 10.1038/srep37369 1 www.nature.com/scientificreports/ Figure 1. Phylogeny constructed from the combined sequences of ITS, TEF1-α and RBP2. The tree is rooted to Nectria berolinensis and Nectria eustromatica. MPBP above 50% (left) MLBP above 50% (midle) BIPP above 95% (right) are indicated at the nodes. New species proposed are indicated in boldface. were also explored, which inferred from sequence analyses of the combined internal transcribed spacer (ITS), partial RNA polymerase II subunit (RPB2) and translation elongation factor 1 alpha (TEF1-α ) exon genes. Detailed comparisons were made between the new taxa and their related fungi. Considering T. hypoxylon is a new fungicolous species and its special life style, we reasoned that it is valued to study the chemical profiles to get the linkage to the biological roles. Results Phylogenetic analyses. Alignment results show that the sequences ITS, RPB2 and TEF1-α of T. hypoxy- lon are less than 97% similar to other Trichoderma species. Based on phylogenetic analysis of single gene of ITS, RPB2 and TEF1-α , T. hypoxylon formed a clade with Trichoderma taxi and Trichoderma rubi. The position of this clade showed closed relationship with section Hypoceanum, Polysporum, Psychrophila and other species in Trichoderma (Fig. S1, and Fig. S2). The phylogenetic analysis of RPB2 showed that T. hypoxylon grouped with the Polysporum section (Fig. S3). Therefore, the combination matrix included 60 ingroup taxa of Trichoderma which are phylogenetically close to T. hypoxylon. This data matrix comprised 2839 characters. Bayesian inference (BI), maximum likelihood (ML) and maximum parsimony (MP) trees generated shared the same topology. In MP analyses, 1642 (57.8%) characters are constant, 216 (7.6%) characters are parsimony-uninformative, and 981 (34.6%) characters are parsimony informative. In MP analyses, 1642 characters were constant, 981 were parsi- mony-informative, and 216 variable characters were parsimony-uninformative. Maximum likelihood tree was Presented (Fig. 1). Based on the analyses, 60 strains of Trichoderma, including our new species T. hypoxylon, formed a strongly supported group (MPBP/MLBP/BIPP =​ 100%/100%/1.00). They also clustered in 7 recog- nized subclades and a new subclade including T. hypoxylon, Brevicompactum (MLBP/BIPP = 94%/1.00), Deliquescens (MPBP/BIPP =​ 100%/1.00), Hypoceanum (MPBP/MLBP/BIPP = 100%/99%/1.00), Polysporum (BIPP =​ 1.00), Psychrophila (MPBP/MLBP/BIPP =​ 98%/96%/1.00), and green spore sections (MPBP/MLBP/ BIPP =​ 100%/100%/1.00), whereas two strain of Trichoderma atroviride Bissett positioned inside Polysporum section. The tree topology is basically congruent with previous reports6. SCIENTIFIC REPORTS | 6:37369 | DOI: 10.1038/srep37369 2 www.nature.com/scientificreports/ Figure 2. Morphologicial characteristics of Trichoderma hypoxylon (ex-type CGMCC 3.17906) on PDA. (a–c) and (h–k) conidiophores with condia; (d–g) conidiophores without condia; l, conidia; bar = 10 μ m. The new species T. hypoxylon (CGMCC 3.17906, CGMCC 3.17907), and T. taxi and T. rubi formed a clade independent from other Trichoderma species with strong support (MPBP/MLBP/BIPP = 100%/100%/1.00). However, T. hypoxylon isolates were distinguished from T. axi and T. rubi with high support (MPBP/MLBP/ BIPP = 100%/100%/1.00). SCIENTIFIC REPORTS | 6:37369 | DOI: 10.1038/srep37369 3 www.nature.com/scientificreports/ Figure 3. Morphologicial characters of Trichoderma hypoxylon (ex-type CGMCC 3.17906) on CMD after 30 days. (a) Forward of the colony; (b) reverse of the colony; (c) mycelia; (d,e,i) conidiophores with condia; (h) conidiophores without condia; (j) conidia; c = 1000 μ m; (d) e = 20 μ m; c f–j = 10 μ m. SCIENTIFIC REPORTS | 6:37369 | DOI: 10.1038/srep37369 4 www.nature.com/scientificreports/ Figure 4. Cultures of Trichoderma hypoxylon on PDA, CMD and SNA at different temperature after 10 days. (a–c) Colony on PDA at 30 °C, 25 °C and 20 °C seperately; (d–f) colony on CMD at 30 °C, 25 °C and 20 °C seperately; (g–i) colony on SNA at 30 °C, 25 °C and 20 °C seperately. Taxonomy. Trichoderma hypoxylon Jing Z. Sun, Xing Z. Liu & K.D. Hyde, sp. nov. Index Fungorum number: IF552046, Facesoffungi number: FoF: 02075, Figs 2–4. Type:—HMAS 246918 Colonizing or hyperparasitic on stroma of Hypoxylon anthochroum. Sexual morph Undetermined. Asexual morph forming Acremonium- to Verticillium-like conidiophores and hyaline conidia. Phialides lageniform to cylindrical, hyaline, 4.5–12 × 3–3.5 μ m (x =​ 6.5 ±​ 1.4 × 3.2 ±​ 0.25 μ m, n =​ 30); l/w 2.5–4(− 4.5) (n = 30). Mature conidia forming a head at the apex of conidiophores, hyaline, smooth-walled, unicellular, oboviod and mostly 2.8–4.3 × 2.1–2.4 μ m (x = 3.8 ± 0.4 × 2.2 ± 0.10 μ m, n =​ 30), l/w 1–2(− 2.2) (n =​ 30). Slow growing on PDA, SNA and CMD; PDA colonies especially dense, whitish; SNA and CMA colonies consisting of concentric rings with irregular outline when cultured in darkness at 30 °C. Colonies on PDA after 10 d at 20, 25 and 30 °C dense (Fig. 4a–c), with a thick white layer of cotton-like aerial mycelia, forming concentric rings at 20 and 25 °C, however not forming concentric rings at 30 °C, odour woody, and agar not pigmented. Conidia formed within 10 d in the aerial mycelium, mature conidia gathered at the apex of conidiophores, hyaline, smooth walled, 1-celled, oboviod and mostly 2.8–4.3 × 2.1–2.4 μ m (x = 3.8 ± 0.4 × 2.2 ± 0.10 μ m, n =​ 30), l/w 1.2–2.2 (− 2.5) (n = 30). Colony on CMD after 10 d at 20, 25 and 30 °C flat (Fig. 4d–f), with a thin white layer of mycelia, not forming concentric rings and conidia at 20 and 25 °C, however forming concentric rings at 30 °C, no distinctive odour, agar not pigmented.
Recommended publications
  • Biodiversity of Trichoderma in Neotropics
    13 Biodiversity of Trichoderma in Neotropics Lilliana Hoyos-Carvajal1 and John Bissett2 1Universidad Nacional de Colombia, Sede Bogotá 2Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa 1Colombia 2Canada 1. Introduction Trichoderma species frequently are predominant over wide geographic regions in all climatic zones, where they are significant decomposers of woody and herbaceous materials. They are characterized by rapid growth, an ability to assimilate a diverse array of substrates, and by their production of an range of antimicrobials. Strains have been exploited for production of enzymes and antibiotics, bioremediation of xenobiotic substances, and as biological control agents against plant pathogenic fungi and nematodes. The main use of Trichoderma in global trade is derived from its high production of enzymes. Trichoderma reesei (teleomorph: Hypocrea jecorina) is the most widely employed cellulolytic organism in the world, although high levels of cellulase production are also seen in other species of this genus (Baig et al., 2003, Watanabe et al., 2006). Worldwide sales of enzymes had reached the figure of $ 1.6 billion by the year 2000 (Demain 2000, cited by Karmakar and Ray, 2011), with an annual growth of 6.5 to 10% not including pharmaceutical enzymes (Stagehands, 2008). Of these, cellulases comprise approximately 20% of the enzymes marketed worldwide (Tramoy et al., 2009). Cellulases of microbial origin are used to process food and animal feed, biofuel production, baking, textiles, detergents, paper pulp, agriculture and research areas at all levels (Karmakar and Ray, 2011). Most cellulases are derived from Trichoderma (section Longibrachiatum in particular) and Aspergillus (Begum et al., 2009).
    [Show full text]
  • Two New Species and a New Chinese Record of Hypocreaceae As Evidenced by Morphological and Molecular Data
    MYCOBIOLOGY 2019, VOL. 47, NO. 3, 280–291 https://doi.org/10.1080/12298093.2019.1641062 RESEARCH ARTICLE Two New Species and a New Chinese Record of Hypocreaceae as Evidenced by Morphological and Molecular Data Zhao Qing Zeng and Wen Ying Zhuang State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China ABSTRACT ARTICLE HISTORY To explore species diversity of Hypocreaceae, collections from Guangdong, Hubei, and Tibet Received 13 February 2019 of China were examined and two new species and a new Chinese record were discovered. Revised 27 June 2019 Morphological characteristics and DNA sequence analyses of the ITS, LSU, EF-1a, and RPB2 Accepted 4 July 2019 regions support their placements in Hypocreaceae and the establishments of the new spe- Hypomyces hubeiensis Agaricus KEYWORDS cies. sp. nov. is characterized by occurrence on fruitbody of Hypomyces hubeiensis; sp., concentric rings formed on MEA medium, verticillium-like conidiophores, subulate phia- morphology; phylogeny; lides, rod-shaped to narrowly ellipsoidal conidia, and absence of chlamydospores. Trichoderma subiculoides Trichoderma subiculoides sp. nov. is distinguished by effuse to confluent rudimentary stro- mata lacking of a well-developed flank and not changing color in KOH, subcylindrical asci containing eight ascospores that disarticulate into 16 dimorphic part-ascospores, verticillium- like conidiophores, subcylindrical phialides, and subellipsoidal to rod-shaped conidia. Morphological distinctions between the new species and their close relatives are discussed. Hypomyces orthosporus is found for the first time from China. 1. Introduction Members of the genus are mainly distributed in temperate and tropical regions and economically The family Hypocreaceae typified by Hypocrea Fr.
    [Show full text]
  • General Introduction
    University of Bath PHD Detection, control and resistance expression in oil palm (elaeis guineensis) caused by F.oxysporum f.sp. elaeidis Rusli, Mohd Award date: 2012 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 Detection, Control and Resistance Expression in Oil Palm (Elaeis guineensis) caused by Fusarium oxysporum f.sp. elaeidis Mohd Hefni Rusli A thesis submitted for the degree of Doctor of Philosophy University of Bath Department of Biology and Biochemistry October 2012 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and they must not copy it or use material from it except as permitted by law or with the consent of the author.
    [Show full text]
  • 1 a Native and an Invasive Dune Grass Share
    A native and an invasive dune grass share similar, patchily distributed, root-associated fungal communities Renee B Johansen1, Peter Johnston2, Piotr Mieczkowski3, George L.W. Perry4, Michael S. Robeson5, 1 6 Bruce R Burns , Rytas Vilgalys 1: School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand 2: Landcare Research, Private Bag 92170, Auckland Mail Centre, Auckland 1142, New Zealand 3: Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, U.S.A. 4: School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand 5: Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA 6: Department of Biology, Duke University, Durham, NC 27708, USA Corresponding author: Renee Johansen, Ph: +64 21 0262 9143, Fax: +64 9 574 4101 Email: [email protected] For the published version of this article see here: https://www.sciencedirect.com/science/article/abs/pii/S1754504816300848 1 Abstract Fungi are ubiquitous occupiers of plant roots, yet the impact of host identity on fungal community composition is not well understood. Invasive plants may benefit from reduced pathogen impact when competing with native plants, but suffer if mutualists are unavailable. Root samples of the invasive dune grass Ammophila arenaria and the native dune grass Leymus mollis were collected from a Californian foredune. We utilised the Illumina MiSeq platform to sequence the ITS and LSU gene regions, with the SSU region used to target arbuscular mycorrhizal fungi (AMF). The two plant species largely share a fungal community, which is dominated by widespread generalists.
    [Show full text]
  • Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): Species with Green Ascospores
    CHAVERRI & SAMUELS Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): species with green ascospores Priscila Chaverri1* and Gary J. Samuels2 1The Pennsylvania State University, Department of Plant Pathology, Buckhout Laboratory, University Park, Pennsylvania 16802, U.S.A. and 2United States Department of Agriculture, Agricultural Research Service, Systematic Botany and My- cology Laboratory, Rm. 304, B-011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705, U.S.A. Abstract: The systematics of species of Hypocrea with green ascospores and their Trichoderma anamorphs is presented. Multiple phenotypic characters were analysed, including teleomorph and anamorph, as well as col- ony morphology and growth rates at various temperatures. In addition, phylogenetic analyses of two genes, the RNA polymerase II subunit (RPB2) and translation elongation factor 1-alpha (EF-1α), were performed. These analyses revealed that species of Hypocrea with green ascospores and Trichoderma anamorphs are derived from within Hypocrea but do not form a monophyletic group. Therefore, Creopus and Chromocrea, genera formerly segregated from Hypocrea only based on their coloured ascospores, are considered synonyms of Hy- pocrea. The present study showed that phenotypic characters alone are generally not helpful in understanding phylogenetic relationships in this group of organisms, because teleomorph characters are generally highly con- served and anamorph characters tend to be morphologically divergent within monophyletic lineages or clades. The species concept used here for Hypocrea/Trichoderma is based on a combination of phenotypic and geno- typic characteristics. In this study 40 species of Hypocrea/Trichoderma having green ascospores are described and illustrated. Dichotomous keys to the species are given. The following species are treated (names in bold are new species or new combinations): H.
    [Show full text]
  • Figs. 464–483. Stromata of Hypocrea Species. 464. H. Albocornea (Isotype)
    CHAVERRI &SAMUELS Figs. 464–483. Stromata of Hypocrea species. 464. H. albocornea (Isotype). 465. H. atrogelatinosa (Holotype). 466. H. aureoviridis (CBS 103.69). 467. H. candida (Holotype). 468. H. catoptron (G.J.S. 02-76). 469. H. centristerilis (Isotype). 470. H. ceracea (Holotype). 471. H. ceramica (G.J.S. 88-70). 472. H. chlorospora (G.J.S. 91-150). 473. H. chromosperma (Epitype). 474. H. cinnamomea (Holotype). 475. H. clusiae (Holotype). 476. H. cornea (Holotype). 477. H. costaricensis (Holotype). 478. H. crassa (G.J.S. 01-227). 479. H. cremea (Holotype). 480. H. cuneispora (Holotype). 481. H. estonica (Holotype). 482. H. gelatinosa (Epitype). 483. H. gyrosa (Holotype). Bars = ca. 1 mm. 471, 479–481. Adapted from Chaverri et al. (2003a) with permission from Mycologia. 103 HYPOCREA/TRICHODERMA WITH GREEN ASCOSPORES Excluded or doubtful species reported to have 5. Hypocrea pseudogelatinosa Komatsu & Yoshim. green ascospores Doi, Rept. Tottori Mycol. Inst. (Japan) 10: 425 (1973). 1. Hypocrea andinogelatinosa Yoshim. Doi, Bull. Natl. Sci. Mus., Ser. B (Bot.) 1: 20 (1975). Hypocrea pseudogelatinosa was reported as having yellow or yellow-brown stromata and green Holotype and paratype specimens of this species ascospores; distal part-ascospores subglobose or deposited in TNS were not available for examination. obovate, 3.8–4.7 × 3.7–4.0 μm; proximal part- Doi (1975) distinguished H. andinogelatinosa as ascospore 3.9–4.8 × 2.8–3.6 μm. Conidiophores having a small brownish stroma with prominent verticillium- to gliocladium-like; phialides 8–18 × 2– perithecial protuberances. The distal part-ascospores 3 μm; conidia green, ellipsoidal 2.5–5.0 × 2.1–3.2 were described as subglobose-obovate, 4.5–6.7 × μm; abundant production of chlamydospores (Doi 4.2–5.7 μm; and the proximal part-ascospores as 1973a).
    [Show full text]
  • The Use and Regulation of Microbial Pesticides in Representative Jurisdictions Worldwide
    THE USE AND REGULATION OF MICROBIAL PESTICIDES IN REPRESENTATIVE JURISDICTIONS WORLDWIDE J. Todd Kabaluk Antonet M. Svircev Mark S. Goettel Stephanie G. Woo THE USE AND REGULATION OF MICROBIAL PESTICIDES IN REPRESENTATIVE JURISDICTIONS WORLDWIDE Editors J. Todd Kabaluk Biologist, Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre Agassiz, British Columbia Antonet M. Svircev Research Scientist, Agriculture and Agri-Food Canada Southern Crop Protection and Food Research Centre Vineland, Ontario Mark S. Goettel Research Fellow, Agriculture and Agri-Food Canada Lethbridge Research Centre Lethbridge, Alberta Stephanie G. Woo Life Sciences Cooperative Education Student, University of British Columbia Vancouver, British Columbia This document is interactive. Click on items in the Table of Contents and lists of tables and figures to view. Click on footers (and HERE) to go to the Table of Contents. Kabaluk, J. Todd, Antonet M. Svircev, Mark. S. Goettel, and Stephanie G. Woo (ed.). 2010. The Use and Regulation of Microbial Pesticides in Representative Jurisdictions Worldwide. IOBC Global. 99pp. Available online through www.IOBC-Global.org International Organization for Biological Control of Noxious Animals and Plants (IOBC) Table of Contents List of tables………………………………………………………………………………... v List of figures………………………………………………………………………………. v Preface……………………………………………………………………………………... vi Africa Africa with special reference to Kenya……………...……………........................... 1 Roma L. Gwynn and Jean N. K. Maniania Asia China……………………………………………………………………...................7 Bin Wang and Zengzhi Li India…………………………………………………………………….................. 12 R. J. Rabindra and D. Grzywacz South Korea……………………………………………………………………….. 18 Jeong Jun Kim, Sang Guei Lee, Siwoo Lee, and Hyeong-Jin Jee Europe European Union with special reference to the United Kingdom……….................. 24 Roma L. Gwynn and John Dale Ukraine, Russia, and Moldova…………………………………………................
    [Show full text]
  • EVALUATING the ENDOPHYTIC FUNGAL COMMUNITY in PLANTED and WILD RUBBER TREES (Hevea Brasiliensis)
    ABSTRACT Title of Document: EVALUATING THE ENDOPHYTIC FUNGAL COMMUNITY IN PLANTED AND WILD RUBBER TREES (Hevea brasiliensis) Romina O. Gazis, Ph.D., 2012 Directed By: Assistant Professor, Priscila Chaverri, Plant Science and Landscape Architecture The main objectives of this dissertation project were to characterize and compare the fungal endophytic communities associated with rubber trees (Hevea brasiliensis) distributed in wild habitats and under plantations. This study recovered an extensive number of isolates (more than 2,500) from a large sample size (190 individual trees) distributed in diverse regions (various locations in Peru, Cameroon, and Mexico). Molecular and classic taxonomic tools were used to identify, quantify, describe, and compare the diversity of the different assemblages. Innovative phylogenetic analyses for species delimitation were superimposed with ecological data to recognize operational taxonomic units (OTUs) or ―putative species‖ within commonly found species complexes, helping in the detection of meaningful differences between tree populations. Sapwood and leaf fragments showed high infection frequency, but sapwood was inhabited by a significantly higher number of species. More than 700 OTUs were recovered, supporting the hypothesis that tropical fungal endophytes are highly diverse. Furthermore, this study shows that not only leaf tissue can harbor a high diversity of endophytes, but also that sapwood can contain an even more diverse assemblage. Wild and managed habitats presented high species richness of comparable complexity (phylogenetic diversity). Nevertheless, main differences were found in the assemblage‘s taxonomic composition and frequency of specific strains. Trees growing within their native range were dominated by strains belonging to Trichoderma and even though they were also present in managed trees, plantations trees were dominated by strains of Colletotrichum.
    [Show full text]
  • A Stable Backbone for the Fungi
    A stable backbone for the fungi Ingo Ebersberger1, Matthias Gube2, Sascha Strauss1, Anne Kupczok1, Martin Eckart2,3, Kerstin Voigt2,3, Erika Kothe2, and Arndt von Haeseler1 1 Center for Integrative Bioinformatics Vienna (CIBIV), University of Vienna, Medical University of Vienna, University of Veterinary Medicine Vienna, Austria 2 Friedrich Schiller University, Institute for Microbiology, Jena, Germany 3 current address: Fungal Reference Centre, Jena, Germany 1 Fungi are abundant in the biosphere. They have fascinated mankind as far as written history goes and have considerably influenced our culture. In biotechnology, cell biology, genetics, and life sciences in general fungi constitute relevant model organisms. Once the phylogenetic relationships of fungi are stably resolved individual results from fungal research can be combined into a holistic picture of biology. However, and despite recent progress1-3, the backbone of the fungal phylogeny is not yet fully resolved. Especially the early evolutionary history of fungi4-6 and the order or below-order relationships within the ascomycetes remain uncertain. Here we present the first phylogenomic study for a eukaryotic kingdom that merges all publicly available fungal genomes and expressed sequence tags (EST) to build a data set comprising 128 genes and 146 taxa. The resulting tree provides a stable phylogenetic backbone for the fungi. Moreover, we present the first formal supertree based on 161 fungal taxa and 128 gene trees. The combined evidences from the trees support the deep-level stability of the fungal groups towards a comprehensive natural system of the fungi. They indicate that the classification of the fungi, especially their alliance with the Microsporidia, requires careful revision.
    [Show full text]
  • Using Molecular Analysis to Investigate Phylogenetic Relationships
    USING MOLECULAR ANALYSIS TO INVESTIGATE PHYLOGENETIC RELATIONSHIPS IN TWO TROPICAL PATHOSYSTEMS: WITCHES’ BROOM OF CACAO, CAUSED BY MONILIOPHTHORA PERNICIOSA, AND MANGO ANTHRACNOSE, CAUSED BY COLLETOTRICHUM SPP. By TARA LUANA BARRETT TARNOWSKI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009 1 © 2009 Tara Luana Barrett Tarnowski 2 To David, for the endless love and support 3 ACKNOWLEDGMENTS There are so many people that contribute support to a student during dissertation research, and I want to thank everyone who pitched in. I would especially like to thank my committee members Dr. Aime, Dr. Palmateer, Dr. Ploetz, Dr. Rollins, and Dr. Soltis for their instruction, advice, and support. I also appreciate all the help I received from José Pérez, Patricia Lopez, and Gail Harris. For the financial support I received for research, I thank IFAS, the Florida Mango Forum, and the Redland’s Citizen Association. I also received assistance for travel to professional meetings from the Graduate School, the Department of Plant Pathology, and the Mycological Society of America. Many people also contributed material support for my research. Drs. Harry Evans and Robert Barreto donated Moniliophthora perniciosa isolates for phylogenetic analysis. Limeco, LLC and Brooks Tropicals, Inc. donated fruit for pathogenicity experiments. Lastly I want to thank all the friends and family for the love and support they gave me. I could not have completed all of this without them. I want to especially thank David, Trevor, Mom, and Dad, for always believing in me and giving me strength when I need it the most, and for always reminding me what is important in life.
    [Show full text]
  • The Use and Regulation of Microbial Pesticides Worldwide 1 AFRICA with Special Reference to Kenya
    THE USE AND REGULATION OF MICROBIAL PESTICIDES IN REPRESENTATIVE JURISDICTIONS WORLDWIDE J. Todd Kabaluk Antonet M. Svircev Mark S. Goettel Stephanie G. Woo THE USE AND REGULATION OF MICROBIAL PESTICIDES IN REPRESENTATIVE JURISDICTIONS WORLDWIDE Editors J. Todd Kabaluk Biologist, Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre Agassiz, British Columbia Antonet M. Svircev Research Scientist, Agriculture and Agri-Food Canada Southern Crop Protection and Food Research Centre Vineland, Ontario Mark S. Goettel Research Fellow, Agriculture and Agri-Food Canada Lethbridge Research Centre Lethbridge, Alberta Stephanie G. Woo Life Sciences Cooperative Education Student, University of British Columbia Vancouver, British Columbia This document is interactive. Click on items in the Table of Contents and lists of tables and figures to view. Click on footers (and HERE) to go to the Table of Contents. Kabaluk, J. Todd, Antonet M. Svircev, Mark. S. Goettel, and Stephanie G. Woo (ed.). 2010. The Use and Regulation of Microbial Pesticides in Representative Jurisdictions Worldwide. IOBC Global. 99pp. Available online through www.IOBC-Global.org International Organization for Biological Control of Noxious Animals and Plants (IOBC) Table of Contents List of tables………………………………………………………………………………... v List of figures………………………………………………………………………………. v Preface……………………………………………………………………………………... vi Africa Africa with special reference to Kenya……………...……………........................... 1 Roma L. Gwynn and Jean N. K. Maniania Asia China……………………………………………………………………...................7 Bin Wang and Zengzhi Li India…………………………………………………………………….................. 12 R. J. Rabindra and D. Grzywacz South Korea……………………………………………………………………….. 18 Jeong Jun Kim, Sang Guei Lee, Siwoo Lee, and Hyeong-Jin Jee Europe European Union with special reference to the United Kingdom……….................. 24 Roma L. Gwynn and John Dale Ukraine, Russia, and Moldova…………………………………………................
    [Show full text]
  • Forest Tree Microbiomes and Associated Fungal Endophytes: Functional Roles and Impact on Forest Health
    Review Forest Tree Microbiomes and Associated Fungal Endophytes: Functional Roles and Impact on Forest Health Eeva Terhonen 1, Kathrin Blumenstein 1 , Andriy Kovalchuk 2 and Fred O. Asiegbu 2,* 1 Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany; [email protected] (E.T.); [email protected] (K.B.) 2 Department of Forest Sciences, P.O. box 27, University of Helsinki, FIN-00014 Helsinki, Finland; andriy.kovalchuk@helsinki.fi * Correspondence: fred.asiegbu@helsinki.fi; Tel.: +358-2941-58109 Received: 27 November 2018; Accepted: 1 January 2019; Published: 9 January 2019 Abstract: Terrestrial plants including forest trees are generally known to live in close association with microbial organisms. The inherent features of this close association can be commensalism, parasitism or mutualism. The term “microbiota” has been used to describe this ecological community of plant-associated pathogenic, mutualistic, endophytic and commensal microorganisms. Many of these microbiota inhabiting forest trees could have a potential impact on the health of, and disease progression in, forest biomes. Comparatively, studies on forest tree microbiomes and their roles in mutualism and disease lag far behind parallel work on crop and human microbiome projects. Very recently, our understanding of plant and tree microbiomes has been enriched due to novel technological advances using metabarcoding, metagenomics, metatranscriptomics and metaproteomics approaches. In addition, the availability of massive DNA databases (e.g., NCBI (USA), EMBL (Europe), DDBJ (Japan), UNITE (Estonia)) as well as powerful computational and bioinformatics tools has helped to facilitate data mining by researchers across diverse disciplines.
    [Show full text]