Using Molecular Analysis to Investigate Phylogenetic Relationships

Total Page:16

File Type:pdf, Size:1020Kb

Using Molecular Analysis to Investigate Phylogenetic Relationships USING MOLECULAR ANALYSIS TO INVESTIGATE PHYLOGENETIC RELATIONSHIPS IN TWO TROPICAL PATHOSYSTEMS: WITCHES’ BROOM OF CACAO, CAUSED BY MONILIOPHTHORA PERNICIOSA, AND MANGO ANTHRACNOSE, CAUSED BY COLLETOTRICHUM SPP. By TARA LUANA BARRETT TARNOWSKI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009 1 © 2009 Tara Luana Barrett Tarnowski 2 To David, for the endless love and support 3 ACKNOWLEDGMENTS There are so many people that contribute support to a student during dissertation research, and I want to thank everyone who pitched in. I would especially like to thank my committee members Dr. Aime, Dr. Palmateer, Dr. Ploetz, Dr. Rollins, and Dr. Soltis for their instruction, advice, and support. I also appreciate all the help I received from José Pérez, Patricia Lopez, and Gail Harris. For the financial support I received for research, I thank IFAS, the Florida Mango Forum, and the Redland’s Citizen Association. I also received assistance for travel to professional meetings from the Graduate School, the Department of Plant Pathology, and the Mycological Society of America. Many people also contributed material support for my research. Drs. Harry Evans and Robert Barreto donated Moniliophthora perniciosa isolates for phylogenetic analysis. Limeco, LLC and Brooks Tropicals, Inc. donated fruit for pathogenicity experiments. Lastly I want to thank all the friends and family for the love and support they gave me. I could not have completed all of this without them. I want to especially thank David, Trevor, Mom, and Dad, for always believing in me and giving me strength when I need it the most, and for always reminding me what is important in life. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................8 LIST OF FIGURES .......................................................................................................................10 CHAPTER 1 INTRODUCTION ..................................................................................................................14 Current State of Fungal Systematics.......................................................................................14 Classification of Different Phyla of Fungi ......................................................................15 Species Characterization in Fungi...................................................................................16 Species defined by morphology ...............................................................................16 Biological species concept .......................................................................................19 Phylogenetic species concept ...................................................................................21 Evolutionary species concept ...................................................................................24 The Role of Plant Pathology in Fungal Systematics .......................................................25 Witches’ Broom of Cacao ......................................................................................................29 Colletotrichum-induced Anthracnoses: Plagues to Tropical Fruit .........................................36 Taxonomic History of Colletotrichum ............................................................................36 Colletotrichum gloeosporioides as the Cause of Mango Anthracnose ..........................40 2 INVESTIGATING THE RELATIONSHIPS AMONG BIOTYPES OF MONILIOPHTHORA PERNICIOSA USING PHYLOGENIES FROM MULTIPLE DNA REGIONS .....................................................................................................................50 Introduction.............................................................................................................................50 Materials and Methods ...........................................................................................................56 Isolate Selection...............................................................................................................56 DNA Extraction and PCR of ITS, IGS, and RPB1 Regions ...........................................56 Phylogenetic Analysis .....................................................................................................58 Congruence of Molecular Data Sets and Combined Analysis ........................................59 Morphological Description..............................................................................................61 Results.....................................................................................................................................62 Phylogenetic Analysis .....................................................................................................62 Congruence Tests and Combined Data Analysis ............................................................65 Morphological Characterization......................................................................................66 Discussion...............................................................................................................................67 3 USE OF PHYLOGENIES FROM MULTIPLE DNA REGIONS TO ASSESS THE DIVERGENCE OF LINEAGES OF COLLETOTRICHUM GLOEOSPORIOIDES SENSU LATO THAT ARE ASSOCIATED WITH MANGO ANTHRACNOSE IN SOUTH FLORIDA.................................................................................................................96 5 Introduction.............................................................................................................................96 Materials and Methods ...........................................................................................................99 Collection and Storage of Isolates...................................................................................99 DNA Extraction and PCR of the ITS, MAT1-2, and CGTT5 Regions.........................100 Phylogenetic Analyses...................................................................................................102 Congruence of Molecular Data Sets and Combined Analysis ......................................103 Morphology Studies ......................................................................................................104 Pathogenicity Studies ....................................................................................................104 Blossom blight........................................................................................................105 Leaf anthracnose ....................................................................................................105 Fruit pathogenicity .................................................................................................106 Results...................................................................................................................................107 Phylogenetic Analyses...................................................................................................107 Congruence Tests and Combined Analysis ...................................................................109 Morphology Studies ......................................................................................................110 Pathogenicity studies.....................................................................................................111 Discussion.............................................................................................................................112 4 INVESTIGATING THE ROLE PLAYED BY COLLETOTRICHUM ACUTATUM IN THE DEVELOPMENT OF BLOSSOM BLIGHT AND LEAF AND FRUIT ANTHRACNOSE OF MANGO IN SOUTHERN FLORIDA ............................................153 Introduction...........................................................................................................................153 Materials and Methods .........................................................................................................154 Leaf Anthracnose Survey ..............................................................................................154 Pathogenicity Tests........................................................................................................157 Blossom blight tests ...............................................................................................157 Leaf pathogenicity..................................................................................................158 Fruit pathogenicity .................................................................................................158 Results...................................................................................................................................159 Survey Results...............................................................................................................159 Pathogenicity of C. acutatum and C. gloeosporioides on Mango Organs ....................160 Blossom blight........................................................................................................160 Leaf anthracnose ....................................................................................................160 Fruit anthracnose....................................................................................................161
Recommended publications
  • Interaction of Putative Virulent Isolates Among Commercial Varieties Of
    Journal of Pharmacognosy and Phytochemistry 2020; 9(1): 355-360 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2020; 9(1): 355-360 Interaction of putative virulent isolates among Received: 16-11-2019 Accepted: 18-12-2019 commercial varieties of mango under protected condition Devappa V Department of Plant Pathology, College of Horticulture, UHS Devappa V, Sangeetha CG and Ranjitha N Campus, GKVK Post, Bengaluru, Karnataka, India Abstract Sangeetha CG The present study was undertaken to know the interaction of the putative Colletotrichum gloeosporioides Department of Plant Pathology, isolates from different regions of Karnataka. The cultural characteristics among the 10 isolates studied, College of Horticulture, UHS showed that isolates Cg-1, Cg-2, Cg-4, Cg-5, Cg-6, Cg-7, Cg-8, Cg-10 were circular with smooth margin Campus, GKVK Post, both on 7th and 12th day of inoculation. Excellent sporulation was observed in Cg-8 and Cg-4 isolate, Bengaluru, Karnataka, India good sporulation was observed in Cg-3 and Cg-9 isolates whereas, medium sporulation in Cg-1, Cg-2, Cg-5, Cg-6 and Cg-7 isolates and poor sporulation was observed in Cg-10 isolate. Among the varieties Ranjitha N tested, none of them showed immune and resistant reaction to the disease under shade house condition. Department of Plant Pathology, Dasheri (20%) exhibited moderately resistant reaction, Totapuri (28%) and Himayudhin (29.70%) College of Horticulture, UHS Campus, GKVK Post, exhibited moderately susceptible reaction whereas, Mallika (35%) and Kesar (47.30%) exhibited Bengaluru, Karnataka, India susceptible reaction. Alphanso (62.50%), Neelam (56.20%) and Raspuri (75%) exhibited highly susceptible reaction.
    [Show full text]
  • Based DNA Fingerprinting of Selected Mango (Mangifera Indica L.) Genotypes in Bangladesh
    Vol. 11(7), pp. 104-119, October-December 2019 DOI: 10.5897/JHF2019.0597 Article Number: 5B1E80B62162 ISSN 2006-9782 Copyright ©2019 Author(s) retain the copyright of this article Journal of Horticulture and Forestry http://www.academicjournals.org/JHF Full Length Research Paper Morphological characterization and Simple Sequence Repeats (SSRs) based DNA fingerprinting of selected mango (Mangifera indica L.) genotypes in Bangladesh Md. Rezwan Molla1, Iftekhar Ahmed1, Md. Amjad Hossain1, Md. Shafiqul Islam2, Md. Aziz Zilani Chowdhury3, Dilruba Shabnam4 and Md. Motiar Rohman5* 1Plant Genetic Resources Centre, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh. 2Regional Horticulture Research Station, Bangladesh Agricultural Research Institute, Chapainawabganj, Bangladesh. 3Crops Division, Bangladesh Agricultural Research Council, Farmgate, Dhaka, Bangladesh. 4Department of Agricultural Extension, Plant Quarantine Wing, Narayanganj, Bangladesh. 5Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh. Received 18 July 2019; Accepted 9 September 2019 Nineteen genotypes of mango including nine released varieties viz. BARI Aam-1, BARI Aam-2 (Laxmanbhog), BARI Aam-3, BARI Aam- 4 (Hybrid), BARI Aam-5, BARI Aam-6, BARI Aam-7, BARI Aam- 8, BARI Aam-9; one parental line viz. M- 3896 and nine Geographical Indication Crops (GIs) viz. Haribhanga, Surjapuri, Fazli, Gourmoti, Ashwina, Khirsapat, Gopalbhog, Langra and Ranipasand were characterized with a view to identifying the degree of morphological and molecular variation of mango within genotypes with their historical background their historical background, and to establish a permanent database for documentation of mango in Bangladesh. Wide variations were observed among GI crops and released varieties included in this study for plant, leaf, flower and fruit characters. Among 19 mango genotypes, eight were distinct by two traits and 11 by only single character.
    [Show full text]
  • Pest and Diseases in Mango (Mangifera Indica L.) J
    PEST AND DISEASES IN MANGO (MANGIFERA INDICA L.) J. González-Fernández, J.I. Hormaza IHSM la Mayora CSIC-UMA, 29750 Algarrobo, Malaga, Spain EXECUTIVE SUMMARY In this work, we review the most important pests and diseases that affect mango production worldwide as well as the main measures implemented to control them. Pests and diseases are the main factors that can impact sustainable mango fruit production in the tropics and subtropics worldwide. Commercial cultivation of mango, characterized by expansion to new areas, changing crop management, replacement of varieties and increased chemical interventions, has altered significantly the pest and disease community structure in this crop in the different mango producing regions. In addition, climate change is inducing the emergence of new pests and, whereas globalization and trade liberalization have created wide opportunities for mango commercialization growth, at the same time, this can result in faster dispersion of pests and diseases among different mango growing areas if proper sanitary measures are not implemented. This review covers different topics related to pests and diseases in mango. First, a thorough description of the main pests and diseases that affect mango is provided. Second, the different approaches used in different mango producing countries for chemical and biological control are described. Third, recommendations for appropriate mango management techiques that include integrated pest and disease management, reduction in the use of chemicals and the implementation of a good monitoring and surveillance system to help control the main pests and diseases, are also discussed. Finally, the current knowledge on agrohomeopathy and Korean Natural Farming is analyzed and recommendations on future lines of research to optimize mango pest and disease control are discussed.
    [Show full text]
  • Biodiversity of Trichoderma in Neotropics
    13 Biodiversity of Trichoderma in Neotropics Lilliana Hoyos-Carvajal1 and John Bissett2 1Universidad Nacional de Colombia, Sede Bogotá 2Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa 1Colombia 2Canada 1. Introduction Trichoderma species frequently are predominant over wide geographic regions in all climatic zones, where they are significant decomposers of woody and herbaceous materials. They are characterized by rapid growth, an ability to assimilate a diverse array of substrates, and by their production of an range of antimicrobials. Strains have been exploited for production of enzymes and antibiotics, bioremediation of xenobiotic substances, and as biological control agents against plant pathogenic fungi and nematodes. The main use of Trichoderma in global trade is derived from its high production of enzymes. Trichoderma reesei (teleomorph: Hypocrea jecorina) is the most widely employed cellulolytic organism in the world, although high levels of cellulase production are also seen in other species of this genus (Baig et al., 2003, Watanabe et al., 2006). Worldwide sales of enzymes had reached the figure of $ 1.6 billion by the year 2000 (Demain 2000, cited by Karmakar and Ray, 2011), with an annual growth of 6.5 to 10% not including pharmaceutical enzymes (Stagehands, 2008). Of these, cellulases comprise approximately 20% of the enzymes marketed worldwide (Tramoy et al., 2009). Cellulases of microbial origin are used to process food and animal feed, biofuel production, baking, textiles, detergents, paper pulp, agriculture and research areas at all levels (Karmakar and Ray, 2011). Most cellulases are derived from Trichoderma (section Longibrachiatum in particular) and Aspergillus (Begum et al., 2009).
    [Show full text]
  • Colletotrichum – Names in Current Use
    Online advance Fungal Diversity Colletotrichum – names in current use Hyde, K.D.1,7*, Cai, L.2, Cannon, P.F.3, Crouch, J.A.4, Crous, P.W.5, Damm, U. 5, Goodwin, P.H.6, Chen, H.7, Johnston, P.R.8, Jones, E.B.G.9, Liu, Z.Y.10, McKenzie, E.H.C.8, Moriwaki, J.11, Noireung, P.1, Pennycook, S.R.8, Pfenning, L.H.12, Prihastuti, H.1, Sato, T.13, Shivas, R.G.14, Tan, Y.P.14, Taylor, P.W.J.15, Weir, B.S.8, Yang, Y.L.10,16 and Zhang, J.Z.17 1,School of Science, Mae Fah Luang University, Chaing Rai, Thailand 2Research & Development Centre, Novozymes, Beijing 100085, PR China 3CABI, Bakeham Lane, Egham, Surrey TW20 9TY, UK and Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK 4Cereal Disease Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 1551 Lindig Street, St. Paul, MN 55108, USA 5CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 6School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada 7International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, PR China 8Landcare Research, Private Bag 92170, Auckland 1142, New Zealand 9BIOTEC Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, NSTDA, 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand 10Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006 PR China 11Hokuriku Research Center, National Agricultural Research Center,
    [Show full text]
  • Two New Species and a New Chinese Record of Hypocreaceae As Evidenced by Morphological and Molecular Data
    MYCOBIOLOGY 2019, VOL. 47, NO. 3, 280–291 https://doi.org/10.1080/12298093.2019.1641062 RESEARCH ARTICLE Two New Species and a New Chinese Record of Hypocreaceae as Evidenced by Morphological and Molecular Data Zhao Qing Zeng and Wen Ying Zhuang State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China ABSTRACT ARTICLE HISTORY To explore species diversity of Hypocreaceae, collections from Guangdong, Hubei, and Tibet Received 13 February 2019 of China were examined and two new species and a new Chinese record were discovered. Revised 27 June 2019 Morphological characteristics and DNA sequence analyses of the ITS, LSU, EF-1a, and RPB2 Accepted 4 July 2019 regions support their placements in Hypocreaceae and the establishments of the new spe- Hypomyces hubeiensis Agaricus KEYWORDS cies. sp. nov. is characterized by occurrence on fruitbody of Hypomyces hubeiensis; sp., concentric rings formed on MEA medium, verticillium-like conidiophores, subulate phia- morphology; phylogeny; lides, rod-shaped to narrowly ellipsoidal conidia, and absence of chlamydospores. Trichoderma subiculoides Trichoderma subiculoides sp. nov. is distinguished by effuse to confluent rudimentary stro- mata lacking of a well-developed flank and not changing color in KOH, subcylindrical asci containing eight ascospores that disarticulate into 16 dimorphic part-ascospores, verticillium- like conidiophores, subcylindrical phialides, and subellipsoidal to rod-shaped conidia. Morphological distinctions between the new species and their close relatives are discussed. Hypomyces orthosporus is found for the first time from China. 1. Introduction Members of the genus are mainly distributed in temperate and tropical regions and economically The family Hypocreaceae typified by Hypocrea Fr.
    [Show full text]
  • Colletotrichum: a Catalogue of Confusion
    Online advance Fungal Diversity Colletotrichum: a catalogue of confusion Hyde, K.D.1,2*, Cai, L.3, McKenzie, E.H.C.4, Yang, Y.L.5,6, Zhang, J.Z.7 and Prihastuti, H.2,8 1International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, PR China 2School of Science, Mae Fah Luang University, Thasud, Chiang Rai 57100, Thailand 3Novozymes China, No. 14, Xinxi Road, Shangdi, HaiDian, Beijing, 100085, PR China 4Landcare Research, Private Bag 92170, Auckland, New Zealand 5Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006 PR China 6Department of Biology and Geography, Liupanshui Normal College. Shuicheng, Guizhou 553006, P.R. China 7Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Kaixuan Rd 258, Hangzhou 310029, PR China 8Department of Biotechnology, Faculty of Agriculture, Brawijaya University, Malang 65145, Indonesia Hyde, K.D., Cai, L., McKenzie, E.H.C., Yang, Y.L., Zhang, J.Z. and Prihastuti, H. (2009). Colletotrichum: a catalogue of confusion. Fungal Diversity 39: 1-17. Identification of Colletotrichum species has long been difficult due to limited morphological characters. Single gene phylogenetic analyses have also not proved to be very successful in delineating species. This may be partly due to the high level of erroneous names in GenBank. In this paper we review the problems associated with taxonomy of Colletotrichum and difficulties in identifying taxa to species. We advocate epitypification and use of multi-locus phylogeny to delimit species and gain a better understanding of the genus. We review the lifestyles of Colletotrichum species, which may occur as epiphytes, endophytes, saprobes and pathogens.
    [Show full text]
  • Model Profile for 1.0 Ha Mango Cultivation
    Model Profile for 1.0 ha Mango Cultivation 1. Introduction Mango (Mangifera indica) is the leading fruit crop of India and considered to be the king of fruits. Besides delicious taste, excellent flavour and attractive fragrance, it is rich in vitamin A&C. The tree is hardy in nature, can be grown in a variety of soil and requires comparatively low maintenance costs. Mango fruit is utilised at all stages of its development both in its immature and mature state. Raw fruits are used for making chutney, pickles and juices. The ripe fruits besides being used for desert are also utilised for preparing several products like squashes, syrups, nectars, jams and jellies. The mango kernel also contains 8-10 percent good quality fat which can be used for soap and also as a substitute for cocoa butter in confectionery. 2. Scope for Mango Cultivation and its National Importance Mango occupies about 36% of the total area under fruits (2010-11) comprising of 22.97 lakh hectares, with a total production of 151.88 lakh tonnes. Uttar Pradesh and Andhra Pradesh are having the largest area under mango each with around 23% of the total area followed by Karnataka, Bihar, Gujarat and Tamilnadu. Fresh mangoes and mango pulp are the important items of agri-exports from India. India's main export destinations for mango are UAE, Bangladesh, UK, Saudi Arabia, Nepal, Kuwait, USA and other Middle East countries with a limited quantity being shipped to European market. Although, India is the largest mango producing country, accounting about 45% of world production, the export of fresh fruit is limited to Alphonso and Dashehari varieties.
    [Show full text]
  • General Introduction
    University of Bath PHD Detection, control and resistance expression in oil palm (elaeis guineensis) caused by F.oxysporum f.sp. elaeidis Rusli, Mohd Award date: 2012 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 Detection, Control and Resistance Expression in Oil Palm (Elaeis guineensis) caused by Fusarium oxysporum f.sp. elaeidis Mohd Hefni Rusli A thesis submitted for the degree of Doctor of Philosophy University of Bath Department of Biology and Biochemistry October 2012 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and they must not copy it or use material from it except as permitted by law or with the consent of the author.
    [Show full text]
  • Changes in the Sensory Characteristics of Mango Cultivars During the Production of Mango Purée and Sorbet
    DIFFERENCES IN SENSORY CHARACTERISTICS AMONG VARIOUS MANGO CULTIVARS IN THE FORM OF FRESH SLICED MANGO, MANGO PURÉE, AND MANGO SORBET by CHRISTIE N. LEDEKER B.S., University of Delaware, 2008 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Interdisciplinary Food Science Graduate Program Department of Human Nutrition KANSAS STATE UNIVERSITY Manhattan, Kansas 2011 Approved by: Major Professor Dr. Delores H. Chambers Abstract Fresh mangoes are highly perishable, and therefore, they are often processed to extend shelf-life and facilitate exportation. Studying the transformation that mango cultivars undergo throughout processing can aid in selecting appropriate varieties for products. In the 1st part of this study, the flavor and texture properties of 4 mango cultivars available in the United States (U.S.) were analyzed. Highly trained descriptive panelists in the U.S. evaluated fresh, purée, and sorbet samples prepared from each cultivar. Purées were made by pulverizing mango flesh, passing it through a china cap, and heating it to 85 °C for 15 s. For the sorbets, purées were diluted with water (1:1), sucrose was added, and the bases were frozen in a batch ice cream freezer. Much of the texture variation among cultivars was lost after fresh samples were transformed into purées, whereas much of the flavor and texture variation among cultivars was lost once fresh mangoes and mango purées were transformed into sorbets. Compared to the other cultivars, Haden and Tommy Atkins underwent greater transformations in flavor throughout sorbet preparation, and processing reduced the intensities of some unpleasant flavors in these cultivars.
    [Show full text]
  • Colletotrichum Acutatum
    Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Colletotrichum acutatum IDENTITY Name: Colletotrichum acutatum Simmonds Synonyms: Colletotrichum xanthii Halsted Taxonomic position: Fungi: Ascomycetes: Polystigmatales (probable anamorph) Common names: Anthracnose, black spot (of strawberry), terminal crook disease (of pine), leaf curl (of anemone and celery), crown rot (especially of anemone and celery) (English) Taches noires du fraisier (French) Manchas negras del fresón (Spanish) Notes on taxonomy and nomenclature: The classification of the genus Colletotrichum is currently very unsatisfactory, and several species occur on the principal economic host (strawberry) which are regularly confused. As well as C. acutatum, these include the Glomerella cingulata anamorphs C. fragariae and C. gloeosporioides, all of which can be distinguished by isozyme analysis (Bonde et al., 1991). Studies are continuing. Colletotrichum xanthii appears to be an earlier name for C. acutatum, but more research is necessary before it is adopted in plant pathology circles. Bayer computer code: COLLAC EU Annex designation: II/A2 HOSTS The species has a very wide host range, but is economically most important on strawberries (Fragaria ananassa). Other cultivated hosts include Anemone coronaria, apples (Malus pumila), aubergines (Solanum melongena), avocados (Persea americana), Camellia spp., Capsicum annuum, Ceanothus spp., celery (Apium graveolens), coffee (Coffea arabica), guavas (Psidium guajava), olives (Olea europea), pawpaws (Carica papaya), Pinus (especially P. radiata and P. elliottii), tamarillos (Cyphomandra betacea), tomatoes (Lycopersicon esculentum), Tsuga heterophylla and Zinnia spp. Colletotrichum acutatum can apparently affect almost any flowering plant, especially in warm temperate or tropical regions, although its host range needs further clarification.
    [Show full text]
  • Festival 2002 Festival 2002
    NOVEMBER & DECEMBER 2002 FRUIT GARDENER VOL. 34, NO. 6 – $5.00 FESTIVFESTIVALAL 20022002 ◆◆ VVanillaanilla inin Madagascar:Madagascar: ShadesShades ofof NoirNoir FESTIVFESTIVALAL OFOF FRUITFRUIT ◆◆ GrGrenada’enada’ss NutmegNutmeg andand Mace:Mace: SpicesSpices ofof LifeLife REPORREPORTSTS INSIDEINSIDE ◆◆ PuertoPuerto Rico:Rico: 100100 YearsYears ofof AgriculturalAgricultural ResearchResearch California Rare Fruit Growers, Inc. Draft-5 OF THE B ANANA ◆ YEAR OF THE B ANANA ◆ YEAR OF THE B ANANA ◆ YEAR OF THE B ANANA ◆ YEAR OF THE B ANA Puerto Rico’s TropicalFRUIT Agriculture GARDENER Research Station 100 Years of Tropical Research Story by Ricardo Goenaga and Sidebar by Larry Shore Photos courtesy of the Agricultural Research Service he Tropical Agriculture Research Station, operated by the USDA’s Agricultural Research T Service, had its beginning in 1901, when Congress appropriated $5,000 and directed the Secretary of Agriculture to establish an experiment station in Puerto Rico to study agricul- 1 tural problems of interest to the island. The Governor of Puerto Rico, cooperating with the island’s communities and the U.S. Department of Agriculture, selected the present site of the station at Mayaguez: the farm known as Hacienda Carmen, 235 acres donated by the City of Mayaguez. At its inception, this facility was known as the Federal Experiment Station. In 1975 it became the Mayaguez Institute of Tropical Agriculture (mita), and in 1982 was renamed the Tropical Ag- riculture Research Station (tars). Since 1961 it has been part of the Agricultural Research Service’s Tropical Crops and Germplasm Research Division. When established, the Federal Experiment Station was the island’s only institution for agricul- 2 tural research, and horticultural research has always been prominent in the station’s program.
    [Show full text]