An Extraordinary New Carnivorous Sponge, Chondrocladia Lyra, in the New Subgenus Symmetrocladia

Total Page:16

File Type:pdf, Size:1020Kb

An Extraordinary New Carnivorous Sponge, Chondrocladia Lyra, in the New Subgenus Symmetrocladia See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260103802 An extraordinary new carnivorous sponge, Chondrocladia lyra, in the new subgenus Symmetrocladia... Article in Invertebrate Biology · December 2012 DOI: 10.2307/23352690 CITATIONS READS 10 199 4 authors, including: Lonny Lundsten Monterey Bay Aquarium Research Institute 27 PUBLICATIONS 471 CITATIONS SEE PROFILE All content following this page was uploaded by Lonny Lundsten on 22 April 2014. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Invertebrate Biology 131(4): 259–284. © 2012, The American Microscopical Society, Inc. DOI: 10.1111/ivb.12001 An extraordinary new carnivorous sponge, Chondrocladia lyra, in the new subgenus Symmetrocladia (Demospongiae, Cladorhizidae), from off of northern California, USA Welton L. Lee,1,a Henry M. Reiswig,2,3 William C. Austin,4 and Lonny Lundsten5 1 Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, California 94118, USA 2 Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada 3 Natural History Section, Royal British Columbia Museum, Victoria, British Columbia V8W 9W2, Canada 4 Khoyatan Marine Laboratory, North Saanich, British Columbia V8L 5G5, Canada 5 Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA Abstract. Chondrocladia (Symmetrocladia) lyra subgen. nov., sp. nov., is described from northeast Pacific sites at Escanaba Ridge and Monterey Canyon at depths of 3316–3399 m. Two retrieved specimens are described in detail, while variations are described in ten photo- graphed or videotaped specimens. The basic structure, termed a vane, is harp- or lyre-shaped. From 1 to 6 vanes extend by radial growth from the organism’s center. The orientation among the vanes is approximately equiangular, such that together they display pentaradiate, tetraradiate, triradiate, or biradiate symmetries. Each vane is formed by a horizontal stolon supporting a series of upright, equidistantly spaced branches each of which terminates at its apex in a swollen ball in all observed specimens except the para- type. Swellings occur midway along the branches in the holotype, but not in the paratype. A linear row of filaments project from the sides, front, and back of each branch, and also from the tops of each stolon. The terminal balls are the sites of spermatophore production and release; mid-branch swellings are sites of oocyte maturation. The two megasclere spicule types have specific distributions; styles support rhizoids, stolons, and branches, while subtylo- styles support filaments and terminal balls. Anchorate isochelae cover all surfaces. Enclosed crustacean prey on branches and stolons provide direct evidence of carnivory. The structure of the vanes maximizes surface area for passive suspension feeding. Increased surface area could also maximize spermatophore capture, with the sigmas projecting from the spermato- phore surface being caught by projecting isochelae on filaments. Swellings on filaments are snared spermatophores, firmly fused to recipient tissues and undergoing destruction. Sperma- tophores on filaments are present in branch swellings containing early and mature oocytes. Oogenesis and maturation occur only in proximity to branch swellings, suggesting that devel- opment is induced by spermatophore reception. Symmetrical development of uniserial branched stolons (the vanes) characterized members of the new subgenus Symmetrocladia. Additional key words: Porifera, northeast Pacific, spicules, spermatophores, radial symmetry It has been 17 years since incontrovertible proof fare in substrate competition with other sessile of carnivory by sponges was published by Vacelet & organisms (Jackson & Buss 1975; Pawlik et al. 2007) Boury-Esnault (1995). Before that major discovery, and in antipredatory defense against mobile animals sponges were generally regarded as rather simple, (Wulff 2002; Pawlik 2011). It had been known that filter-feeding bacterivores and herbivores, restricted some sponges aggressively kill corals at the scale of in their aggressive activities to waging chemical war- single coral heads (e.g., Cliona delitrix PANG 1973: Chaves-Fonnegra & Zea 2007), and occasionally aAuthor for correspondence. over a larger reef-wide scale (e.g., Terpios hoshinota E-mail: [email protected] RU¨ TZLER &MUZIK 1993), but they had not been 260 Lee, Reiswig, Austin, & Lundsten known to pose a threat to mobile animals. Our ditions conducted by the Monterey Bay Aquarium understanding of sponge biology changed signifi- Research Institute (MBARI) using the remotely cantly when Vacelet and Boury-Esnault showed that operated vehicles (ROVs) Tiburon (in 2000, 2005– sponges without choanocyte chambers passively 2007) and Doc Ricketts (in 2009). These ROVs are ensnared zooplankton, aggressively enclosed them in equipped with studio-quality digital video cameras, a cavity by cell migration, and effectively dismem- digital still cameras, a variety of sensors (e.g., CTD, bered them into small particles, which could be O2), and sampling gear (e.g., manipulator arm, suc- phagocytosed and digested intracellularly. tion sampler). Observations were recorded to digital The great majority of known or suspected carnivo- video tape and later analyzed using the Video Anno- rous sponges belong to the demosponge family Clad- tation and Reference System (VARS: Schlining & orhizidae (all members of the presently recognized Jacobsen Stout 2006), a software interface and data- seven genera); a few members of the closely related base that contains over 4,000,000 observations of families Esperiopsidae and Guitarridae are also sus- organisms, geologic features, and equipment pected to be carnivorous by similarity of body form deployed during MBARI’s 25 years of deep-sea and the presence of erected chelate microscleres on research. For each observation of C. lyra, associated their external surface (Vacelet 2007). When carnivory fauna, substrate features, and other ecological was first proven, there were 84 species in the family parameters were annotated within VARS. Observa- Cladorhizidae, a group dominated in form by small, tions were merged with physical data collected by thin, bottle-brush sponges with little or no “body.” the ROV so that position, depth, and water chemis- Intense interest in documenting the variety and ubiq- try are known for each specimen. Parallel red lasers uity of this group has seen 24 new species described (640 nm), spaced 29 cm apart, were used to estimate in the intervening period of 18 years (1995–2012), organism size for observations where no physical compared with only six species described in the previ- collection was made. ous 18 years (1977–1994). In spite of the increase in During the encounters with C. lyra, large frag- taxonomic activity, there is still relatively little known ments of two specimens were collected, one in 2000 about details of body organization, reproduction, and the other in 2005, from the South Escanaba and cytology of the carnivorous sponges. Only five Ridge (Gorda Ridge) off northern California at species can be considered known in any significant about 3300 m depth (Fig. 1). Both were observed detail: Asbestopluma hypogea VACELET &BOURY- on soft abyssal plain sediment with their root struc- ESNAULT 1996; A. occidentalis (LAMBE 1893) (Riesgo tures (rhizoids) mostly buried. Collected specimens et al. 2007), Cladorhiza methanophila VACELET &BOU- were preserved in 70% ethanol, which proved suffi- RY-ESNAULT 2002; C. pteron REISWIG &LEE 2007; and cient for routine taxonomy and light microscopy of Chondrocladia gigantea (HANSEN 1885) (Ku¨ bler & cells in one specimen, the holotype, but too poor for Barthel 1999). Members of the last genus retain examination of cells by transmission electron aquiferous canals and choanocyte chambers that, at microscopy (TEM). The remaining ten video obser- least in some species, function in maintaining water vations were made in 2006, 2007, and 2009, all in a pressure for inflation of spectacular terminal globes. region south of the Monterey Canyon (Fig. 1). Here, we report the results of our examination of two recently collected specimens and ten additional imaged specimens of a spectacular and large new spe- Spicule examination cies of Chondrocladia from deep water in the northeast Pacific Ocean. We provide a taxonomic description of Spicules from fragments of each body part were this species, summarize variation in its body form, disassociated, either in sodium hypochlorite or in and describe details of cellular organization, including concentrated nitric acid. They were then rinsed and its feeding and reproductive systems. We also extrapo- mounted on glass microscope slides. A compound late from the reproductive evidence to suggest pro- microscope fitted with an ocular micrometer or com- cesses that maintain this species in nature. puter digitizer was used to measure the length, and, where appropriate, the width of 50 spicules of each Methods spicule type within each body part. Exceptionally, in some cases, fewer than 50 spicules were found and measured. Anomalies were noted, but not necessarily Specimens enumerated. Immature spicules were deemed to be In situ observations of twelve individuals of those of similar or lesser length than the mean length, Chondrocladia
Recommended publications
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • New Species from the Deep Pacific Suggest That Carnivorous Sponges Date Back to the Early Jurassic. Some Deep-Sea Poecilosclerid
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Nature Precedings New species from the deep Pacific suggest that carnivorous sponges date back to the Early Jurassic. Jean Vacelet1 & Michelle Kelly2 1Centre d’Océanologie de Marseille, Aix-Marseille Université, CNRS UMR 6540 DIMAR, Station Marine d’Endoume, rue Batterie des Lions, 13007 Marseille, France ([email protected]) 2National Centre for Aquatic Biodiversity and Biosecurity, National Institute of Water & Atmospheric Research Ltd, P. O. Box 109-695, Newmarket, Auckland, New Zealand ([email protected]) Some deep-sea poecilosclerid sponges (Porifera) have developed a carnivorous feeding habit that is very surprising in sponges1. As shown by the typical morphology of their spicules, they most probably evolved from “normal sponges” under the difficult conditions of a deep-sea environment. Such evolution, which implies the loss of the diagnostic character of the phylum Porifera, i.e. a filter feeding habit through a complex aquiferous system, should be of great interest in the understanding of the origin of metazoans. Some scenarios, based on the hypothesis of the paraphyly of Porifera, allege that metazoans could derive from a sponge filter-feeding body plan. A difficulty, however, is to imagine the transition from a sponge grade of organization to other organization plans2. Carnivorous sponges demonstrate that a functional, non filter-feeding animal may derive from a conventional sponge body plan, albeit nothing is known of the age of this evolution. Here we report that newly discovered species of Chondrocladia from the deep Pacific display special spicules that were previously recorded only as isolated spicules from sediment dating back to the Early Jurassic and Miocene periods.
    [Show full text]
  • Carnivorous Sponges of the Atlantic and Arctic Oceans
    &DUQLYRURXVVSRQJHVRIWKH$WODQWLFDQG $UFWLF2FHDQV 3K\ORJHQ\WD[RQRP\GLVWULEXWLRQDQGPLFURELDODVVRFLDWLRQVRIWKH &ODGRUKL]LGDH 'HPRVSRQJLDH3RHFLORVFOHULGD -RQ7KRPDVVHQ+HVWHWXQ Dissertation for the degree of philosophiae doctor (PhD) at the University of Bergen 'LVVHUWDWLRQGDWH1RYHPEHUWK © Copyright Jon Thomassen Hestetun The material in this publication is protected by copyright law. Year: 2016 Title: Carnivorous sponges of the Atlantic and Arctic Oceans Phylogeny, taxonomy, distribution and microbial associations of the Cladorhizidae (Demospongiae, Poecilosclerida) Author: Jon Thomassen Hestetun Print: AiT Bjerch AS / University of Bergen 3 Scientific environment This PhD project was financed through a four-year PhD position at the University of Bergen, and the study was conducted at the Department of Biology, Marine biodiversity research group, and the Centre of Excellence (SFF) Centre for Geobiology at the University of Bergen. The work was additionally funded by grants from the Norwegian Biodiversity Centre (grant to H.T. Rapp, project number 70184219), the Norwegian Academy of Science and Letters (grant to H.T. Rapp), the Research Council of Norway (through contract number 179560), the SponGES project through Horizon 2020, the European Union Framework Programme for Research and Innovation (grant agreement No 679849), the Meltzer Fund, and the Joint Fund for the Advancement of Biological Research at the University of Bergen. 4 5 Acknowledgements I have, initially through my master’s thesis and now during these four years of my PhD, in all been involved with carnivorous sponges for some six years. Trying to look back and somehow summarizing my experience with this work a certain realization springs to mind: It took some time before I understood my luck. My first in-depth exposure to sponges was in undergraduate zoology, and I especially remember watching “The Shape of Life”, an American PBS-produced documentary series focusing on the different animal phyla, with an enthusiastic Dr.
    [Show full text]
  • Microbiome Exploration of Deep-Sea Carnivorous Cladorhizidae Sponges
    Microbiome exploration of deep-sea carnivorous Cladorhizidae sponges by Joost Theo Petra Verhoeven A Thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biology Memorial University of Newfoundland March 2019 St. John’s, Newfoundland and Labrador ABSTRACT Members of the sponge family Cladorhizidae are unique in having replaced the typical filter-feeding strategy of sponges by a predatory lifestyle, capturing and digesting small prey. These carnivorous sponges are found in many different environments, but are particularly abundant in deep waters, where they constitute a substantial component of the benthos. Sponges are known to host a wide range of microbial associates (microbiome) important for host health, but the extent of the microbiome in carnivorous sponges has never been extensively investigated and their importance is poorly understood. In this thesis, the microbiome of two deep-sea carnivorous sponge species (Chondrocladia grandis and Cladorhiza oxeata) is investigated for the first time, leveraging recent advances in high-throughput sequencing and through custom developed bioinformatic and molecular methods. Microbiome analyses showed that the carnivorous sponges co-occur with microorganisms and large differences in the composition and type of associations were observed between sponge species. Tissues of C. grandis hosted diverse bacterial communities, similar in composition between individuals, in stark contrast to C. oxeata where low microbial diversity was found with a high host-to-host variability. In C. grandis the microbiome was not homogeneous throughout the host tissue, and significant shifts occured within community members across anatomical regions, with the enrichment of specific bacterial taxa in particular anatomical niches, indicating a potential symbiotic role of such taxa within processes like prey digestion and chemolithoautotrophy.
    [Show full text]
  • (Porifera, Demospongiae, Poecilosclerida) from the Northeast Pacific
    Zootaxa 3786 (2): 101–123 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3786.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:9C3B70D0-4092-4ACC-A134-1CEC31E232C7 Four new species of Cladorhizidae (Porifera, Demospongiae, Poecilosclerida) from the Northeast Pacific LONNY LUNDSTEN1,5, HENRY M. REISWIG2,3 & WILLIAM C. AUSTIN4 1Monterey Bay Aquarium Research Institute, 7700 Sandholdt Drive, Moss Landing, California 95039, USA 2Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada 3Natural History Section, Royal British Columbia Museum, Victoria, British Columbia V8W 9W2, Canada 4Khoyatan Marine Laboratory, North Saanich, British Columbia V8L 5G5, Canada 5Corresponding author Abstract Interest in cladorhizid sponges has grown rapidly in the past 19 years since a unique feeding strategy, carnivory, was de- scribed by Vacelet and Boury-Esnault in 1995. Since that time, 31% of the 133 extant cladorhizids have been described. Previously, seven species of cladorhizid sponges were known from the Northeast Pacific. Here we describe four additional species, including two species of Asbestopluma and two species of Cladorhiza. We report on species ranges, habitat, and ecology, including one from a chemosynthetic environment that appears to be using methane-oxidizing bacteria as a nu- trient source. In fact, three of the four species described here were found in chemosynthetic habitats. The presence of small crustacean prey was also documented for three of these species. Key words: Porifera, Cladorhizidae, Deep Sea Ecology, Deep Sea Biology, taxonomy Introduction Interest in carnivorous sponge biology has grown considerably since carnivory was first described in a population of deep-sea sponges, Asbestopluma hypogea, that were discovered inhabiting a shallow marine cave in the Mediterranean by Vacelet and Boury-Esnault (1995).
    [Show full text]
  • Scientists Select New Species for Top 10 List; Issue SOS 21 May 2010
    Scientists select new species for top 10 list; issue SOS 21 May 2010 instead of just one. The top 10 new species come from around the world, including Africa, Indonesia, Madagascar, Myanmar, New Zealand, the Philippines, Thailand, the United States and Uruguay. Issuing an SOS The taxonomists also are issuing an SOS - State of Observed Species - report on human knowledge of Earth's species. In it, they report that 18,225 living The top 10 new species list includes a carnivorous species new to science were described in 2008, the sponge, bug-eating slug, edible yam, stinkhorn fungus, most recent year for which complete data are golden orb spider, flat-faced frogfish, banded knifefish, available. The SOS report trumpets the latest minnow with fangs, deep-sea worm and charismatic discoveries of previously unknown plants, animals, plant that feeds on insects. The top 10 new species list microbes, algae and fungi. It also notes 2,140 fossil is issued annually by the International Institute for species described as new in 2008. Species Exploration at Arizona State University and an international committee of taxonomists - scientists responsible for species exploration and classification. The SOS report was compiled by ASU's International Institute for Species Exploration in partnership with the International Plant Names Index, Zoological Record published by Thomson The International Institute for Species Exploration Reuters, International Journal of Systematic and at Arizona State University and an international Evolutionary Microbiology, AlgaeBase, MycoBank committee of taxonomists - scientists responsible and World Register of Marine Species. for species exploration and classification - today announce the top 10 new species described in Information about the top 10 new species, including 2009.
    [Show full text]
  • Prey Capture and Digestion in the Carnivorous Sponge Asbestopluma Hypogea (Porifera: Demospongiae)
    Zoomorphology (2004) 123:179–190 DOI 10.1007/s00435-004-0100-0 ORIGINAL ARTICLE Jean Vacelet · Eric Duport Prey capture and digestion in the carnivorous sponge Asbestopluma hypogea (Porifera: Demospongiae) Received: 2 May 2003 / Accepted: 17 March 2004 / Published online: 27 April 2004 Springer-Verlag 2004 Abstract Asbestopluma hypogea (Porifera) is a carnivo- Electronic Supplementary Material Supplementary ma- rous species that belongs to the deep-sea taxon Cla- terial is available in the online version of this article at dorhizidae but lives in littoral caves and can be raised http://dx.doi.org/10.1007/s00435-004-0100-0 easily in an aquarium. It passively captures its prey by means of filaments covered with hook-like spicules. Various invertebrate species provided with setae or thin appendages are able to be captured, although minute crus- Introduction taceans up to 8 mm long are the most suitable prey. Multicellular animals almost universally feed by means of Transmission electron microscopy observations have been a digestive tract or a digestive cavity. Apart from some made during the digestion process. The prey is engulfed parasites directly living at the expense of their host, the in a few hours by the sponge cells, which migrate from only exceptions are the Pogonophores (deep-sea animals the whole body towards the prey and concentrate around relying on symbiotic chemoautotrophy and whose larvae it. A primary extracellular digestion possibly involving have a temporary digestive tract) and two groups of mi- the activity of sponge cells, autolysis of the prey and crophagous organisms relying on intracellular digestion, bacterial action results in the breaking down of the prey the minor Placozoa and, most importantly, sponges (Po- body.
    [Show full text]
  • Deep-Sea Carnivorous Sponges from the Mariana Islands
    fmars-06-00371 July 8, 2019 Time: 16:8 # 1 ORIGINAL RESEARCH published: 10 July 2019 doi: 10.3389/fmars.2019.00371 Deep-Sea Carnivorous Sponges From the Mariana Islands Jon Thomassen Hestetun1*, Hans Tore Rapp1,2 and Shirley Pomponi3 1 NORCE Environment, Norwegian Research Centre (NORCE), Bergen, Norway, 2 Department of Biological Sciences, University of Bergen, Bergen, Norway, 3 Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States Carnivorous sponges belonging to family Cladorhizidae (Porifera, Demospongiae, Poecilosclerida) are unique within phylum Porifera due to their ability to capture and envelop small prey. While other sponges use an aquiferous system to filter water, the aquiferous system of the cladorhizids is partially reduced or completely absent. Carnivorous sponges can be found worldwide at all depths, but are more common in the deep sea, where oligotrophic conditions containing less suspended particles may favor a carnivorous feeding strategy. Here, we provide formal descriptions of eight cladorhizid sponge species from 1229 to 5813 m depth collected as part of the NOAA 2016 Deepwater Exploration of the Marianas with the NOAA ship Okeanos Explorer (EX1605) during the investigation of the bathyal and abyssal seafloor off the Northern Mariana Islands and Guam: the harp sponge Chondrocladia (Symmetrocladia) Edited by: Diva Amon, lyra, Chondrocladia (Chondrocladia) coronata sp. nov., Lycopodina subtile sp. nov., Natural History Museum, Abyssocladia fryerae sp. nov., Abyssocladia kellyae sp. nov., Abyssocladia marianensis United Kingdom sp. nov., Abyssocladia stegosaurensis sp. nov., and Abyssocladia villosa sp. nov. We Reviewed by: Dorte Janussen, also provide a phylogenetic analysis showing the systematic position of the described Senckenberg Museum, Germany species.
    [Show full text]
  • Carnivorous Sponges Cpx Analyses Alone; and (3) Most Phenocrysts Have Low [He]
    LETTERS TO NATURE The distinctive 3He/He characteristics of LPS ( ~ 18.1RA) and 7. Graham, D. W., Humphris, S. E., Jenkins, W. J. & Kurz, M. D. Earth planet. Sci. Lett. 110, 121-132 (1992). BBS (~SARA) lavas have a clear bearing on the nature of 8. Farley, K. A. & Craig, H. Science 258, 821 (1992). 3 magma sources supplying Heard Island. First, the high He/ 9. Clarke, W. B., Beg, M. A. & Craig, H. Earth planet. Sci. Lett. 6, 213-220 (1969). 4 10. Hilton, D. R., Hammerschmidt, K., Teufel, S. & Friedrichsen, H. Earth planet. Sci. Lett. 120, He ratios of the LPS lavas provide unambiguous evidence for 265-282 (1993). involvement of a mantle-plume component in their genesis. This 11. Gasparon, M., Hilton, D. R. & Varne, R. Earth planet. Sci. Lett. 126, 15-22 (1994). is somewhat surprising given the postulated location of the 12. Marty, B., Trull, T., Lussiez, P., Basile, I. & Tanguy, J.-C. Earth planet. Sci. Lett. 126, 23- 39 (1994). Kerguelen plume beneath prominent seamounts on the north­ 13. Hilton, D. R., Hammerschmidt, K., Loock, G. & Friedrichsen, H. Geochim. cosmochim. Acta 24 west margin of the Kerguelen Plateau ~550 km from Heard • 57' 2819-2841 (1993). 14. Sedwick, P., McMurty, G. M., Hilton, D. R. & Goff, F. Geochim. cosmochim. Acta 58, 1219- Either the LPS lavas represent a fossil remnant of the plume 1227 (1994). embedded in the thickened lithosphere of the Kerguelen Plateau 15. Storey, M. eta/. Nature 338, 371-374 (1988). 17 16. Barling, J. & Goldstein, S. L. Nature 348, 59-62 (1990).
    [Show full text]
  • Evidence of Vent-Adaptation in Sponges Living at the Periphery of Hydrothermal Vent Environments: Ecological and Evolutionary Implications
    fmicb-11-01636 July 23, 2020 Time: 17:36 # 1 ORIGINAL RESEARCH published: 24 July 2020 doi: 10.3389/fmicb.2020.01636 Evidence of Vent-Adaptation in Sponges Living at the Periphery of Hydrothermal Vent Environments: Ecological and Evolutionary Implications Magdalena N. Georgieva1*, Sergi Taboada1,2,3, Ana Riesgo1, Cristina Díez-Vives1, Fabio C. De Leo4,5, Rachel M. Jeffreys6, Jonathan T. Copley7, Crispin T. S. Little1,8, Pilar Ríos3,9, Javier Cristobo3,10, Jon T. Hestetun11 and Adrian G. Glover1 1 Life Sciences Department, Natural History Museum, London, United Kingdom, 2 Departamento de Biología (Zoología), Universidad Autónoma de Madrid, Madrid, Spain, 3 Departamento de Zoología y Antropología Física, Universidad de Alcalá, Madrid, Spain, 4 Ocean Networks Canada, University of Victoria, Victoria, BC, Canada, 5 Department of Biology, University of Victoria, Victoria, BC, Canada, 6 School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom, 7 School of Ocean and Earth Science, University of Southampton, Southampton, United Kingdom, 8 School of Earth Edited by: and Environment, University of Leeds, Leeds, United Kingdom, 9 Centro Oceanográfico de Santander, Instituto Español Iliana B. Baums, de Oceanografía, Santander, Spain, 10 Centro Oceanográfico de Gijón, Instituto Español de Oceanografía, Gijón, Spain, Pennsylvania State University (PSU), 11 NORCE Environment, Norwegian Research Centre (NORCE), Bergen, Norway United States Reviewed by: Jillian Petersen, The peripheral areas of deep-sea hydrothermal vents are often inhabited by an University of Vienna, Austria assemblage of animals distinct to those living close to vent chimneys. For many such Peter Deines, University of Kiel, Germany taxa, it is considered that peak abundances in the vent periphery relate to the availability *Correspondence: of hard substrate as well as the increased concentrations of organic matter generated Magdalena N.
    [Show full text]
  • Deep-Sea Newsletter 21, 11-12, 1993 an ENIGMATIC ORGANISM DISCLOSED
    Deep-Sea Newsletter 21, 11-12, 1993 71 AN ENIGMATIC ORGANISM DISCLOSED - AND SOME NEW ENIGMA In the last issue of D-S.N. (no 20: 12-15) OT and DB discussed the distribu­ tion and biology of the large clubsponge Chondrocladia gigantea (Hansen, 18 8 5) . When a poster on the same theme was shown at the 4 th International Porifera Congress in Amsterdam in April 1993, KT told us about new observa­ tions made from the Russian submersible "Mir-2". The information reveals the nature of a class of enigmatic organisms encountered now and again in deep­ sea photographs and makes the function of some conspicuous morphological structures in members of the genus Chondrocladia an intriguing challenge. During a d1ve at abyssal depths in the North Pacific, "Mir-2" met a peculiar, stalked organism about 50 cm high (Fig. 1). The lower end of the 6 mm thick cylindrical stalk came out of the mud. The upper end supported a poorly defined, spherical head about 3 cm in diameter, from which 10-15 thin, cylindrical branches radiated in all directions. At the free end each branch carried a translucent sphere, 1-2 cm in diameter. The organism was collected with the movable arm of the submersible. On deck, it was obvious that it was a spo�ge, and the spheres at the tips of the branches were shrunk into the somewhat oblong, clavate, relatively massive structures characteristic of the branches of a number of Chondrocladia species called "the concrescens group" (Fig. 2). Bottom photographs showing the extended sponge have been taken before, but because of lack of identification they seem, with one exception, not to have been published.
    [Show full text]
  • Deep-Sea Life Issue 16, January 2021 Cruise News Sedimentation Effects Survey Series (ROBES III) Completed
    Deep-Sea Life Issue 16, January 2021 Despite the calamity caused by the global pandemic, we are pleased to report that our deep ocean continues to be investigated at an impressive rate. Deep-Sea Life 16 is another bumper issue, brimming with newly published research, project news, cruise news, scientist profiles and so on. Even though DOSI produce a weekly Deep-Sea Round Up newsletter and DOSI and DSBS are active on social media, there’s still plenty of breaking news for Deep- Sea Life! Firstly a quick update on the status of INDEEP. As most of you are aware, INDEEP was a legacy programme of the Census of Marine Life (2000-2010) and was established to address knowledge gaps in deep-sea ecology. Among other things, the INDEEP project played central role in the creation of the Deep-Ocean Stewardship Initiative and funded initial DOSI activities. In 2018, the DOSI Decade of Ocean Science working group was established with a view to identifying key priorities for deep-ocean science to support sustainable development and to ensure deep- ocean ecological studies were included in the UN Decade plans via truly global collaborative science. This has resulted in an exciting new initiative called “Challenger 150”. You are all invited to learn more about this during a webinar on 9th Feb (see p. 22 ). INDEEP has passed on the baton and has now officially closed its doors.Eva and I want to sincerely thank all those that led INDEEP with us and engaged in any of the many INDEEP actions. It was a productive programme that has left a strong legacy.
    [Show full text]