Lab Navigates First Asteroid Landing

Total Page:16

File Type:pdf, Size:1020Kb

Lab Navigates First Asteroid Landing F e b ru a ry 16, 2001 I n s i d e Volume 31 Number 4 News Briefs . 2 Leadership Transition . 3 Special Events Calendar . 2 Letters, Passings . 4 Entertainer Reaches Out . 2 Classifieds . 4 Jet Propulsion Laboratory the landing and the fact that the spacecraft is still alive and communicating with Lab Earth. NEAR Shoemaker project managers at APL said Wednesday that communications navigates with the spacecraft continue. The team will extend operations through Feb. 24 to gath- er data from the spacecraft’s gamma ray first spectrometer, which will track the abun- dance of elements on the surface of the asteroid. asteroid The NEAR Shoemaker navigation team at JPL also included Miller, Bill Owen, Mike Wang, Cliff Helfrich, Peter Antreasian and landing Steve Chesley, Eric Carranza and John Bordi. JPL’s Dr. Donald Yeomans serves as the mission’s radio science principal inves- By Martha Heil JPL navigation team made history February 12, when it guided the tigator, and JPLers Jon Giorgini and Alex and Mark Whalen Konopliv are team members. a NEAR Shoemaker spacecraft to a controlled landing on asteroid The last image from NEAR Shoemaker Eros, the first time such a maneuver has been attempted. was snapped a mere 120 meters (394 feet) from the asteroid’s surface and covers an The spacecraft, built and managed for Eros is about 32 kilometers (20 miles) area 6 meters (20 feet) wide. As NEAR NASA by the Johns Hopkins Applied across, or about the size of New York City’s Shoemaker touched down, it began send- Physics Laboratory (APL) in Laurel, Md., Manhattan Island. Eros rotates around its ing a beacon, assuring the team that the slowly descended to Eros’ boulder- and shortest axis every five hours and 16 min- small spacecraft had landed gently. The crater-strewn surface at 12:01:52 Pacific utes, and the successful land- The last image from NEAR Standard Time. Through five engine burns ing placed NEAR Shoemaker Shoemaker was snapped a in the hours leading up to the landing, it near the asteroid’s south pole. mere 120 meters (394 feet) had slowed to a gentle speed of between Since a landing on such a 1.5 and 1.8 meters per second (less than small body had never been from Eros’ surface. 4 mph) just before finally coming to rest tried before, the navigation The potato-shaped asteroid is after a journey of 3.2 billion kilometers team had to change the math- shown in fill size at right. (2 billion miles). ematical models it used as the “It could be the softest landing of all spacecraft drew closer to the time,” said NEAR Mission Director Dr. asteroid, Williams said, noting Robert Farquhar of APL, who noted that that the team received verifi- landings on the Earth’s moon, Venus and cation Monday that the models they were signal was identified by radar science Mars were accomplished at slightly higher using would work correctly. data, and about an hour later was locked speeds. At JPL, tension and anticipation filled a onto by DSN antennas, which monitored “For a spacecraft that was not designed small and crowded control room in Build- the spacecraft until Feb. 14. as a lander, the landing came off extraordi- ing 301 as the navigation team guided the The spacecraft spent the last year in narily well,” said Dr. Bobby Williams of spacecraft slowly to asteroid. a close-orbit study of asteroid 433 Eros, JPL’s Navigation and Flight Mechanics The success of the landing, and the a near-Earth asteroid that is currently Section, leader of the navigation team. spacecraft’s continuing communications 316 million kilometers (196 million miles) “It’s a testament to the hard work of the with controllers via NASA’s JPL-managed from Earth. During that time it collected APL team and the JPL navigation team.” Deep Space Network, astounded even the 10 times more data than originally planned He said one of the major challenges in most optimistic of scientists and engineers and completed all its science goals before landing the spacecraft involved the aster- associated with the mission. attempting its descent to the asteroid. oid’s unusual shape. The potato-shaped “Unbelievable,” was how deputy naviga- For mission updates, images and other tion team chief Jim Miller of JPL described information, log on to ht t p : / / n e a r. j h u a p l . e d u . JPL’s Mars Global Surveyor space- Global craft, which has been in orbit since 1997, ended its primary mission Surveyor Jan. 31 and immediately began an extended mission through April celebrates 2002. Among those celebrating in von Kármán Auditorium were, transition from left, Dr. Michael Malin, Extended principal investigator for the Mars orbiter camera; Dr. Jim Garvin, mission begins Mars program scientist at NASA for Mars orbiter Headquarters; and Dr. Arden Albee, Global Surveyor project scientist. 2 Dumas to re t i re later this year disadvantaged business by the U.S. JPL Deputy Director LARRY DUMAS Small Business Administration. “Much has announced that he will retire like JPL encourages individual mentor- Sp e c i a l Events Ca l e n d a r sometime this year. ing, NASA’s Office of Small and Disad- admission. For information, call With the announcement last month vantaged Business Utilization encour- Ongoing Support Gro u p s (626) 395-4652. that DR. CHARLES ELACHI will become ages NASA’s prime contractors to Alcoholics Anonymous—Meeting JPL’s new director May 1, Dumas, who mentor Small Disadvantaged Business- at 11:30 a.m. Mondays, Tuesdays, es, Small Woman Owned Businesses, F r i d a y, Feb. 23–Sun., Feb. 25 will turn 65 in October, said he will Thursdays (women only) and Historically Black Colleges or Universi- remain at the Lab during the transition. Fridays. Call Occupational Health Othello—This Theater Arts at ties, or Minority Institutions,” said Ne w s “With the pending change in Direc- Services at ext. 4-3319. Caltech production will be present- tors I want to time my departure such GEORG SIEBES of Division 35, the ed in Caltech’s Ramo Auditorium at that I can best help in this transition,” contract technical manager. Codependents Anonymous— 8 p.m. Friday and Saturday, 2 p.m. Dumas stated in a memo to employees. The agreement was developed by Meeting at noon every Wednesday. Sunday. Tickets are $15. For Br i efs “Charles has asked me to stay on for a JPL’s Business Opportunities Office. Call Occupational Health Services information, call (626) 395-4652. time after May 1 to help with the trans- Examples of the assistance JPL will at ext. 4-3319. itional workload and provide continuity provide ASL include: End of Life Issues and Bereave- S a t u rd a y, Febru a ry 24 • Support in the achievement of ISO in the Director’s Office. My date of ment—Meets the second Monday retirement will depend on the specifics 9000 certification; Les Ballets Trockadero DeMonte of the month at noon in Building Carlo—This all-male comic dance of the transition plan for the new • Mentoring and transfer of expertise 111-117. Call the JPL Employee company that performs pieces from Deputy, to be worked out after that in areas such as thermal/mechanical Assistance Program at 4-3680. classic ballets will appear at 8 p.m. individual is named. design, thermal/structural analysis, in Caltech’s Beckman Auditorium. “I intend to stay focused on doing system thermal vacuum testing and Gay, Lesbian and Bisexual Support Tickets are $32, $28 and $24. For mission operations; Group—Meets the first and third everything I can to ensure a great send- information, call (626) 395-4652. off for ED [STONE] and successful • Transfer of its mechanical engi- Fridays of the month at noon in start for JPL’s new Director and Deputy neering processes. JPL’s Mechanical Building 111-117. Call the Employ- ee Assistance Program at ext. Director, as I’m sure you will as well,” Design, Build, Assemble and Test Tu e s d a y, Febru a ry 27 4-3680 or Randy Herrera at Dumas said. process is the core process applicable ext. 3-0664. Airborne Visible/Infrared Imaging to the current partnership. Spectrometer (AVIRIS) Workshop— JPL, Aerospace Corp. to collaborate The goals of the agreement, Siebes Parent Support Group—Meets the Today is the first day of the work- JPL and the Aerospace Corporation said, include increasing ASL’s ability to third Thursday of the month at shop, to be held in von Kármán have signed a memorandum of under- make system-wide design trades and noon in Building 167-111. Call Auditorium from 8 a.m. to 5 p.m. standing that will foster collaboration optimizations, and providing ASL with a Greg Hickey at ext. 4-0776. and will continue through March 2. on defense, civil, and commercial well-balanced portfolio of mechanical JPLers considering attending are Larry Dumas business and establish a roadmap for engineering process capabilities to help Senior Caregivers Support Group— asked to register; registration and future collaborative endeavors. them compete with best-in-class com- Meets the the first Tuesday of the agenda information are available The agreement, signed Jan. 16 by panies in the future. month in Building 167-111. For in- online at http://makalu.jpl.nasa.gov/ formation, call the Employee Assis- JPL Director DR. EDWARD STONE and ASL–supported projects at JPL html/workshop2001.html. Call tance Program at ext. 4-3680. Aerospace president DR. BILL BALL- include Mars Exploration Rover, Tro- Valentina Grigoryan at ext.
Recommended publications
  • Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations*
    Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations* F. Marchisa,g, J.E. Enriqueza, J. P. Emeryb, M. Muellerc, M. Baeka, J. Pollockd, M. Assafine, R. Vieira Martinsf, J. Berthierg, F. Vachierg, D. P. Cruikshankh, L. Limi, D. Reichartj, K. Ivarsenj, J. Haislipj, A. LaCluyzej a. Carl Sagan Center, SETI Institute, 189 Bernardo Ave., Mountain View, CA 94043, USA. b. Earth and Planetary Sciences, University of Tennessee 306 Earth and Planetary Sciences Building Knoxville, TN 37996-1410 c. SRON, Netherlands Institute for Space Research, Low Energy Astrophysics, Postbus 800, 9700 AV Groningen, Netherlands d. Appalachian State University, Department of Physics and Astronomy, 231 CAP Building, Boone, NC 28608, USA e. Observatorio do Valongo/UFRJ, Ladeira Pedro Antonio 43, Rio de Janeiro, Brazil f. Observatório Nacional/MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro - RJ, Brazil. g. Institut de mécanique céleste et de calcul des éphémérides, Observatoire de Paris, Avenue Denfert-Rochereau, 75014 Paris, France h. NASA Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035-1000, USA i. NASA/Goddard Space Flight Center, Greenbelt, MD 20771, United States j. Physics and Astronomy Department, University of North Carolina, Chapel Hill, NC 27514, U.S.A * Based in part on observations collected at the European Southern Observatory, Chile Programs Numbers 70.C-0543 and ID 72.C-0753 Corresponding author: Franck Marchis Carl Sagan Center SETI Institute 189 Bernardo Ave. Mountain View CA 94043 USA [email protected] Abstract: We collected mid-IR spectra from 5.2 to 38 µm using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups.
    [Show full text]
  • Planets of the Solar System
    Chapter Planets of the 27 Solar System Chapter OutlineOutline 1 ● Formation of the Solar System The Nebular Hypothesis Formation of the Planets Formation of Solid Earth Formation of Earth’s Atmosphere Formation of Earth’s Oceans 2 ● Models of the Solar System Early Models Kepler’s Laws Newton’s Explanation of Kepler’s Laws 3 ● The Inner Planets Mercury Venus Earth Mars 4 ● The Outer Planets Gas Giants Jupiter Saturn Uranus Neptune Objects Beyond Neptune Why It Matters Exoplanets UnderstandingU d t di theth formationf ti and the characteristics of our solar system and its planets can help scientists plan missions to study planets and solar systems around other stars in the universe. 746 Chapter 27 hhq10sena_psscho.inddq10sena_psscho.indd 774646 PDF 88/15/08/15/08 88:43:46:43:46 AAMM Inquiry Lab Planetary Distances 20 min Turn to Appendix E and find the table entitled Question to Get You Started “Solar System Data.” Use the data from the How would the distance of a planet from the sun “semimajor axis” row of planetary distances to affect the time it takes for the planet to complete devise an appropriate scale to model the distances one orbit? between planets. Then find an indoor or outdoor space that will accommodate the farthest distance. Mark some index cards with the name of each planet, use a measuring tape to measure the distances according to your scale, and place each index card at its correct location. 747 hhq10sena_psscho.inddq10sena_psscho.indd 774747 22/26/09/26/09 111:42:301:42:30 AAMM These reading tools will help you learn the material in this chapter.
    [Show full text]
  • Workshop on Analysis of Returned Comet Nucleus Samples
    WORKSHOP ON Analysis of Returned Comet Nucleus Samples JANUARY 16-18,1989 MILPITAS, CALIFORNIA SPONSORED BY LUNAR AND PLANETARY INSTITUTE NASA AMES RESEARCH CENTER WORKSHOP ON Analysis of Returned Comet Nucleus Samples JANUARY 16-18, 1989 MILPITAS, CALIFORNIA SPONSORED BY LUNAR AND PLANETARY INSTITUTE NASA AMES RESEARCH CENTER Cover photo courtesy of H. U. Keller. Copyright held by Max-Planck-Jnstitut fur Aeronomie, Lindau- Katlenburg, FRG. Available from the Lunar and Planetary Institute as part of the Comet Halley image sequence ( #C3443 ). PROGRAM COMMITI'EE MEMBERS Thomas Ahrens Eberhard Gri.in California Institute of Technology Max-Planck-Institut filr Kemphysik Lou Allamandola Martha Hanner NASA Ames Research Center let Propulsion Laboratory David Blake Alan Harris (Ex Officio) NASA Ames Research Center let Propulsion Laboratory Donald Brownlee John Kerridge University of Washington University of California, Los Angeles Theodore E. Bunch Yves Langevin NASA Ames Research Center Universite de Paris, Sud Humberto Campins Larry Nyquist, Convener Planetary Science Institute NASA Johnson Space Center Sherwood Chang, Convener Gerhard Schwehm NASA Ames Research Center European Space Agency, ESTEC JeffCuzzi Paul Weissman NASA Ames Research Center Jet Propulsion Laboratory Monday. .Januacy 16th 7:00 - 8:00 a.m. Registration 8:00a.m. Welcome & Introduction to Workshop Sherwood Chang, NASA, Ames Research Center 8:10a.m. Rosetta - Comet Nucleus Sample Return Mission: Status Report Geoffrey Briggs, NASA Headquarters Dr. Marcello Coradini, European Space Agency SESSION lA Chairman: Sherwood Chang 8:30a.m. - 12:00 Noon SOURCES AND NATURE OF COMETARY COMPONENTS Invited Speaker Presentations Nuclear Synthesis and Isotopic Composition of Insteller Grains Alexander Tielens Interstellar and Cometary Dust John Mathis Refractory Solids in Chondrites and Comets: How Similar? John Wood 10:30 a.m.
    [Show full text]
  • Maret Traber. Ph.D
    Maret G. Traber, Ph.D. Linus Pauling Institute, 451 Linus Pauling Science Center Oregon State University Corvallis, OR 97331-6512 Phone: 541-737-7977; Fax: 541-737-5077; email: [email protected] EDUCATION Location Degree Year Major University of California, Berkeley, CA B.S. 1972 Nutrition and Food Science University of California, Berkeley, CA Ph.D. 1976 Nutrition RESEARCH AND PROFESSIONAL EXPERIENCE Year Position Institution 1972-76 Research Assistant University of California, Berkeley, CA 1976-77 Instructor of Nutrition Rutgers University, New Brunswick, NJ 1977-80 Assistant Research Scientist Department of Medicine, New York University School of Medicine, New York, NY 1980-83 Associate Research Scientist 1983-86 Research Scientist 1986-89 Research Assistant Professor 1989-93 Research Associate Professor 1994-98 Associate Research Department of Molecular & Cell Biology, Biochemist University of California, Berkeley, CA 1997-2002 Associate Research Department of Internal Medicine, Division of Critical Biochemist Care Medicine, University of California, Davis, CA 1998-present Principal Investigator Linus Pauling Institute, Oregon State University, Corvallis, OR 1998-2002 Associate Professor Department of Nutrition and Food Management Oregon State University, Corvallis, OR 1999-present Member Molecular and Cell Biology Graduate Group, Oregon State University, Corvallis, OR 2002-present Professor Nutrition Program, School of Biological & Population Health Sciences, Oregon State University, Corvallis, OR 2011-present Helen P.
    [Show full text]
  • Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations Q ⇑ F
    Icarus 221 (2012) 1130–1161 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations q ⇑ F. Marchis a,g, , J.E. Enriquez a, J.P. Emery b, M. Mueller c, M. Baek a, J. Pollock d, M. Assafin e, R. Vieira Martins f, J. Berthier g, F. Vachier g, D.P. Cruikshank h, L.F. Lim i, D.E. Reichart j, K.M. Ivarsen j, J.B. Haislip j, A.P. LaCluyze j a Carl Sagan Center, SETI Institute, 189 Bernardo Ave., Mountain View, CA 94043, USA b Earth and Planetary Sciences, University of Tennessee, 306 Earth and Planetary Sciences Building, Knoxville, TN 37996-1410, USA c SRON, Netherlands Institute for Space Research, Low Energy Astrophysics, Postbus 800, 9700 AV Groningen, Netherlands d Appalachian State University, Department of Physics and Astronomy, 231 CAP Building, Boone, NC 28608, USA e Observatorio do Valongo, UFRJ, Ladeira Pedro Antonio 43, Rio de Janeiro, Brazil f Observatório Nacional, MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro, RJ, Brazil g Institut de mécanique céleste et de calcul des éphémérides, Observatoire de Paris, Avenue Denfert-Rochereau, 75014 Paris, France h NASA, Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035-1000, USA i NASA, Goddard Space Flight Center, Greenbelt, MD 20771, USA j Physics and Astronomy Department, University of North Carolina, Chapel Hill, NC 27514, USA article info abstract Article history: We collected mid-IR spectra from 5.2 to 38 lm using the Spitzer Space Telescope Infrared Spectrograph Available online 2 October 2012 of 28 asteroids representative of all established types of binary groups.
    [Show full text]
  • SURF: 30 Years of Student Achievement
    SURF: 30 Years of Student Achievement Proof 1 Caltech SURF 2008 1 1a >> 2 >> 2a 3 3a 4 4a >> 5 5a >> 6 6a >> 7 >> 7a 8 8a 9 9a >> 10 10a >> 11 11a >> 12 >> 12a 13 13a 14 14a >> 15 15a >> 16 16a >> 17 >> 17a 18 18a 19 19a >> 20 20a >> 21 21a >> 22 >> 22a 23 23a 24 24a >> 25 25a >> 26 26a >> 27 >> 27a 28 28a 29 29a >> 30 30a >> Annual Report 2008 Summer Undergraduate Research Fellowships California Institute of Technology Every summer for the past 30 years something spectacular has hap- pened at Caltech: hundreds of energetic, bright, and curious young scholars have given up their summer of sleeping late and beach par- ties in favor of scientific discovery. Through SURF, students join a community of scholars who come together to explore some of the most pressing questions in today’s world. Investigating everything from environmental sustainability to the engineering of HIV immunity, this year’s SURF students were no different. More than 385 students worked with nearly 204 mentors in all six academic divisions and the Jet Propulsion Laboratory, and a few adventurous SURFers worked at other schools across the nation and the world. U.S. News & World Report recently described Caltech as “a school with outstanding aca- demic undergraduate research programs”—an assessment that surely owes much to the long success of the SURF program. SURF is able to maintain its world-class status because of the sup- port and dedication of many individuals. Faculty mentors collaborate with students as senior partners, helping them move from develop- ing a research proposal to assuming full intellectual responsibility for What’s in a number? their work.
    [Show full text]
  • Equilibria and Orbits in the Dynamical Environment of Asteroid 22 Kalliope
    Open Astron. 2019; 28: 154–164 Research Article Yu Jiang* and Hengnian Li Equilibria and orbits in the dynamical environment of asteroid 22 Kalliope https://doi.org/10.1515/astro-2019-0014 Received Mar 19, 2019; accepted Jul 11, 2019 Abstract: This paper studies the orbital dynamics of the potential of asteroid 22 Kalliope using observational data of the irregular shape. The zero-velocity surface are calculated and showed with different Jacobian values. All five equilibrium points are found, four of them are outside and unstable, and the other one is inside and linearly stable. The movement and bifurcations of equilibrium points during the variety of rotation speed and density of the body are investigated. The Hopf bifurcations occurs during the variety of rotational speed from ω=1.0ω0 to 0.5ω0, and the Saddle-Node bifurcation occurs during the variety of rotational speed from ω=1.0ω0 to 2.0ω0. Both unstable and stable resonant periodic orbits around Kalliope are coexisting. The perturbation of an unstable periodic orbit shows that the gravitational field of Kalliope is strongly perturbed. Keywords: equilibria; periodic orbits; zero velocity surfaces; asteroids; 22 Kalliope 1 Introduction of equilibrium points can be calculated. Yang et al. (2018) expanded the linearized equations to artificial equilibrium points. The exploration of asteroids in our Solar System make the Considering a simplified model of the asteroid, one can study of the orbital environment around asteroids to be sig- study the dynamics of either a gyrostat orbiting in the re- nificant (Marchis et al. 2012). Several papers have already stricted three-body problem or the rotating mass dipole to been interested in these problems (Jain and Sinha 2014; help understand the complicated dynamical behaviors in Aljbaae et al.
    [Show full text]
  • Binary Asteroids in the Near-Earth Synchronous and Asynchronous to the Satellites Population As Well
    Asteroid Systems: Binaries, Triples, and Pairs Jean-Luc Margot University of California, Los Angeles Petr Pravec Astronomical Institute of the Czech Republic Academy of Sciences Patrick Taylor Arecibo Observatory Benoˆıt Carry Institut de Mecanique´ Celeste´ et de Calcul des Eph´ em´ erides´ Seth Jacobson Coteˆ d’Azur Observatory In the past decade, the number of known binary near-Earth asteroids has more than quadrupled and the number of known large main belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecognized populations of asteroid pairs and small main belt binaries have been identified. The current observational evidence confirms that small (.20 km) binaries form by rotational fission and establishes that the YORP effect powers the spin-up process. A unifying paradigm based on rotational fission and post-fission dynamics can explain the formation of small binaries, triples, and pairs. Large(&20 km) binaries with small satellites are most likely created during large collisions. 1. INTRODUCTION composition and internal structure of minor plan- ets. Binary systems offer opportunities to mea- 1.1. Motivation sure thermal and mechanical properties, which are generally poorly known. Multiple-asteroid systems are important be- The binary and triple systems within near- cause they represent a sizable fraction of the aster- Earth asteroids (NEAs), main belt asteroids oid population and because they enable investiga- (MBAs), and trans-Neptunian objects (TNOs) ex- tions of a number of properties and processes that hibit a variety of formation mechanisms (Merline are often difficult to probe by other means. The et al. 2002c; Noll et al.
    [Show full text]
  • The Binary Asteroid 22 Kalliope: Linus Orbit Determination on the Basis of Speckle Interferometric Observations
    The binary asteroid 22 Kalliope: Linus orbit determination on the basis of speckle interferometric observations I.A. Sokova1*, E.N. Sokov1, E.A. Roschina1, D.A. Rastegaev2, A.A. Kiselev1, Yu. Yu. Balega2, D.L. Gorshanov1, E.V. Malogolovets2, V.V. Dyachenko2, A.F. Maksimov2 1 The Pulkovo Astronomical Observatory (CAO RAS), Pulkovskoye chaussee, 65, Saint-Petersburg, Russia 196140 2 The Special Astrophysical Observatory (SAO RAS), Special Astrophysical Observatory, Nizhnij Arkhyz, Zelenchukskiy region, Karachai-Cherkessian Republic, Russia 369167 Abstract In this paper we present the orbital elements of Linus satellite of 22 Kalliope asteroid. Orbital element determination is based on the speckle interferometry data obtained with the 6- meter BTA telescope operated by SAO RAS. We processed 9 accurate positions of Linus orbiting around the main component of 22 Kalliope between 10 and 16 December, 2011. In order to determine the orbital elements of the Linus we have applied the direct geometric method. The formal errors are about 5 mas. This accuracy makes it possible to study the variations of the Linus orbital elements influenced by different perturbations over the course of time. Estimates of six classical orbital elements, such as the semi-major axis of the Linus orbit a = 1109 ± 6 km, eccentricity e = 0.016 ± 0.004, inclination i = 101° ± 1° to the ecliptic plane and others, are presented in this work. Key Words: asteroids; orbit determination; satellites of asteroids; celestial mechanics. Introduction The existence of binary asteroids in the Solar system was merely a hypothesis just at the end of the twentieth century. Today there is no doubt that binary asteroids exist thanks to the revolutionary discovery of the binary asteroid 243 Ida by the space mission Galileo at August 28, 1993 year.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 34, NUMBER 3, A.D. 2007 JULY-SEPTEMBER 53. CCD PHOTOMETRY OF ASTEROID 22 KALLIOPE Kwee, K.K. and von Woerden, H. (1956). Bull. Astron. Inst. Neth. 12, 327 Can Gungor Department of Astronomy, Ege University Trigo-Rodriguez, J.M. and Caso, A.S. (2003). “CCD Photometry 35100 Bornova Izmir TURKEY of asteroid 22 Kalliope and 125 Liberatrix” Minor Planet Bulletin [email protected] 30, 26-27. (Received: 13 March) CCD photometry of asteroid 22 Kalliope taken at Tubitak National Observatory during November 2006 is reported. A rotational period of 4.149 ± 0.0003 hours and amplitude of 0.386 mag at Johnson B filter, 0.342 mag at Johnson V are determined. The observation of 22 Kalliope was made at Tubitak National Observatory located at an elevation of 2500m. For this study, the 410mm f/10 Schmidt-Cassegrain telescope was used with a SBIG ST-8E CCD electronic imager. Data were collected on 2006 November 27. 305 images were obtained for each Johnson B and V filters. Exposure times were chosen as 30s for filter B and 15s for filter V. All images were calibrated using dark and bias frames Figure 1. Lightcurve of 22 Kalliope for Johnson B filter. X axis is and sky flats. JD-2454067.00. Ordinate is relative magnitude. During this observation, Kalliope was 99.26% illuminated and the phase angle was 9º.87 (Guide 8.0). Times of observation were light-time corrected.
    [Show full text]
  • The Origin of (90) Antiope from Component-Resolved Near-Infrared Spectroscopy◊
    The Origin of (90) Antiope From Component-Resolved Near-Infrared Spectroscopy◊ F. Marchis1,2,3, J. E. Enriquez1, J.P. Emery4, J. Berthier3, P. Descamps3, F. Vachier3 1 SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View CA 94043, USA 2 University of California at Berkeley, Department of Astronomy, 601 Campbell Hall, Berkeley CA 94720, USA 3 Institut de Mécanique Céleste et de Calcul des Éphémérides, Observatoire de Paris, UMR8028 CNRS, 77 av. Denfert-Rochereau 75014 Paris, France 4 University of Tennessee at Knoxville, 306 EPS Building, 1412 Circle Drive, Knoxville, TN 37996, USA Pages: 46 Tables: 1 Figures: 11 Corresponding author: Franck Marchis Carl Sagan Center at the SETI Institute 189 Bernardo Avenue Mountain View CA 94043, USA [email protected] Phone: +1 650 810 0236 Fax: +1 650 961 7099 ◊ Based on observations from 382.C-0045 collected at the European Southern Observatory, Chile 1 Abstract: The origin of the similary-sized binary asteroid (90) Antiope remains an unsolved puzzle. To constrain the origin of this unique double system, we recorded individual spectra of the components using SPIFFI, a near-infrared integral field spectrograph fed by SINFONI, an adaptive optics module available on VLT-UT4. Using our previously published orbital model, we requested telescope time when the separation of the components of (90) Antiope was larger than 0.087”, to minimize the contamination between components, during the February 2009 opposition. Several multi-spectral data- cubes in J band (SNR=40) and H+K band (SNR=100) were recorded in three epochs and revealed the two components of (90) Antiope.
    [Show full text]
  • Binary Asteroid Parameters
    BINARY ASTEROID PARAMETERS ′ Asteroid/satellite Dp Ds/Dp Ds Perp Pers Perorb a a/Dp ρp a 22 Kalliope/ Linus 170 0.213 36 4.1482 86.16 1065 6.3 2.5 2.910 45 Eugenia/ Petit–Prince 195 0.036 7.0 5.6991 114.38 1184 6.1 1.1 2.724 87 Sylvia/ Romulus 256 0.063 16 5.1836 87.59 1356 5.3 1.5 3.493 90 Antiope/ S/2000 1 86.7 0.955 82.8 16.5051 16.5051 16.5051 171 1.97 1.26 3.154 107 Camilla/ S/2001 1 206 0.050 10 4.8439 89.04 1235 6.0 1.9 3.495 121 Hermione/ S/2002 1 (205) 0.066 (14) 5.5513 61.97 768 (3.7) (1.1) 3.448 130 Elektra/ S/2003 1 179 0.026 4.7 5.225 (94.1) (1252) (7.0) (3.0) 3.124 243 Ida/ Dactyl 28.1 0.048 1.34 4.6336 2.7 2.860 283 Emma/ S/2003 1 145 0.079 11 6.888 80.74 596 4.1 0.8 3.046 379 Huenna/ S/2003 1 90 0.078 7.0 (7.022) 1939 3400 38 1.2 3.136 617 Patroclus/ Menoetius 101 0.92 93 (102.8) 102.8 680 6.7 1.3 5.218 624 Hektor/ Skamandrios 220 0.05 11 6.92051 (1700) (8) 5.242 762 Pulcova 133 0.16 21 5.839 96 810 6.1 1.9 3.157 809 Lundia 6.9 0.89 6.1 15.418 15.418 15.418 (15) (2.2) (2.0) 2.283 854 Frostia 5.7 0.98 6 (37.711) (37.711) 37.711 (24) (4.1) (2.0) 2.368 939 Isberga 10.56 0.29 3.1 2.9173 26.8 (28) (2.6) (2.0) 2.246 1052 Belgica 9.8 (0.36) (3.5) 2.7097 47.26 (38) (3.9) (2.0) 2.236 1089 Tama 9.1 0.9 8 (16.4461) (16.4461) 16.4461 (21) (2.3) (2.0) 2.214 1139 Atami 5 0.8 4.0 (27.45) (27.45) 27.45 (15) (3.1) (2.0) 1.947 1313 Berna 9.5 0.97 9.2 (25.464) (25.464) 25.464 (30) (3.1) (2.0) 2.656 1338 Duponta 7.7 0.24 1.8 3.85453 17.5680 (15) (2.0) (2.0) 2.264 1453 Fennia 6.33 0.28 1.8 4.4121 (23.1) 23.00351 (16) (2.6) (2.0) 1.897 1509
    [Show full text]