Asteroid Systems: Binaries, Triples, and Pairs

Total Page:16

File Type:pdf, Size:1020Kb

Asteroid Systems: Binaries, Triples, and Pairs Margot J.-L., Pravec P., Taylor P., Carry B., and Jacobson S. (2015) Asteroid systems: Binaries, triples, and pairs. In Asteroids IV (P. Michel et al., eds.), pp. 355–374. Univ. of Arizona, Tucson, DOI: 10.2458/azu_uapress_9780816532131-ch019. Asteroid Systems: Binaries, Triples, and Pairs Jean-Luc Margot University of California, Los Angeles Petr Pravec Astronomical Institute of the Czech Republic Academy of Sciences Patrick Taylor Arecibo Observatory Benoît Carry Institut de Mécanique Céleste et de Calcul des Éphémérides Seth Jacobson Côte d’Azur Observatory In the past decade, the number of known binary near-Earth asteroids has more than qua- drupled and the number of known large main-belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecognized populations of asteroid pairs and small main-belt binaries have been identified. The current observational evidence confirms that small (<20 km) binaries form by rotational fission and establishes that the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect powers the spin-up process. A unifying paradigm based on rotational fission and post-fission dynamics can explain the forma- tion of small binaries, triples, and pairs. Large (>20 km) binaries with small satellites are most likely created during large collisions. 1. INTRODUCTION (Merline et al., 2002c; Noll et al., 2008). As such, they pro- vide an invaluable window on accretional, collisional, tidal, 1.1. Motivation and radiative processes that are critical in planet formation. The distribution and configurations of the multiple-asteroid Multiple-asteroid systems are important because they systems also provide a rich array of constraints on their en- represent a sizable fraction of the asteroid population and vironment, their formation, and their evolutionary pathways. because they enable investigations of a number of properties Observations rely primarily on groundbased telescopes and processes that are often difficult to probe by other means. and the Hubble Space Telescope (HST). For an up-to-date The binaries, triples, and pairs inform us about a great variety list of binaries and triples in the solar system, see Johnston of asteroid attributes, including physical, mechanical, and (2014). We describe observational techniques only briefly thermal properties, composition, interior structure, formation because this material is available elsewhere (e.g., Merline et processes, and evolutionary processes. al., 2002c). A few emerging techniques will be described in Observations of binaries and triples provide the most more detail. Likewise, we refer the reader to other texts for powerful way of deriving reliable masses and densities for an extensive history of the field (e.g., Merline et al., 2002c) a large number of objects. The density measurements help and highlight only a few of the developments here. us understand the composition and internal structure of mi- nor planets. Binary systems offer opportunities to measure 1.2. History thermal and mechanical properties, which are generally poorly known. Early search programs for asteroid satellites were unsuc- The binary and triple systems within near-Earth asteroids cessful, returning negative or dubious results, such that the (NEAs), main-belt asteroids (MBAs), and transneptunian authors of the Asteroids II review chapter chose the prudent objects (TNOs) exhibit a variety of formation mechanisms title “Do asteroids have satellites?” (Weidenschilling et al., 355 356 Asteroids IV 1989). The chapter provides an excellent discussion of the objects are substantially affected by the Yarkovsky-O’Keefe- physics of several formation mechanisms that were postu- Radzievskii-Paddack (YORP) effect during their lifetime. lated at the time. The perspective changed with the flyby of For typical NEAs and MBAs, this dividing line corresponds (243) Ida by the Galileo spacecraft in 1993 and the discovery to a diameter of about 20 km (Jacobson et al., 2014a). of its small satellite Dactyl (Chapman et al., 1995; Belton We define very small asteroids as those with diameters of et al., 1995). Groundbased efforts intensified and resulted in <200 m. This is the approximate size below which many the discovery of a satellite around (45) Eugenia by Merline asteroids are observed to spin faster than the disruption rate et al. (1999). Several other discoveries followed in rapid of a body with no shear or tensile strength wd = 43πρG , succession. The relatively small sizes of the MBA satellites where r is the density and G is the gravitational constant. suggested formation in subcatastrophic or catastrophic colli- We use two additional acronyms. The YORP effect is a ra- sions (Durda, 1996; Doressoundiram et al., 1997). diation-powered rotational acceleration mechanism for small The discovery of MBA satellites, coupled with analysis asteroids (Rubincam, 2000). The binary YORP (BYORP) ef- of terrestrial doublet craters (Bottke and Melosh, 1996a,b) fect is a radiation-powered acceleration mechanism that may and anomalous lightcurve observations (Pravec and Hahn, expand or contract the orbits of some synchronous asteroids 1997), suggested the existence of binary asteroids in the near- (Ćuk and Burns, 2005). Earth population as well. The unambiguous detection of five NEA binaries by radar cemented this finding and indicated 2. OBSERVATIONS that NEA satellites form by a spin-up and rotational fission process (Margot et al., 2002). Lightcurve observers reached Several observational techniques are available for discover- the same conclusion independently (Pravec and Harris, ing, detecting, and studying binaries, triples, and pairs, each 2007). Both radar and lightcurve observations revealed that, with its strengths and weaknesses. This section describes far from being rare, binary asteroids are relatively common recent results and illustrates the complementarity of the ob- (Pravec et al., 1999, 2006; Margot et al., 2002). By the time servational techniques that characterize individual asteroid the Asteroids III review chapter was written, a more decisive systems and entire populations. title (“Asteroids do have satellites”) had become appropriate (Merline et al., 2002c). This review focuses on the develop- 2.1. Radar Observations of Near-Earth ments that followed the publication of Asteroids III. Asteroid Systems 1.3. Terminology Radar has proven to be a powerful method of detect- ing secondaries to NEAs, enabling the discovery (as of Two- and three-component asteroids that are gravitation- September 2014) of the satellites in 71% of the 49 known ally bound will be referred to as binary asteroids (or bina- multiple-component NEA systems, including 33 of 47 ries) and triple asteroids (or triples), respectively. (Triple is binaries and both undisputed triple systems. Of the 14 favored over the more directly analogous terms trinary and binary NEAs discovered via optical lightcurve techniques, ternary because of long-established usage in astronomy.) 6 have been confirmed with follow-up radar observations Asteroid pairs denote asteroid components that are geneti- during later apparitions. Overall, radar detections suggest cally related but not gravitationally bound. Paired binaries that about one in six NEAs larger than 200 m in diameter or paired triples are asteroid pairs where the larger asteroid are multiple-asteroid systems (Margot et al., 2002; Taylor is itself a binary or triple asteroid. The larger component et al., 2012a), although 200 m is not a sharp cutoff. Three in binaries, triples, and pairs is referred to as the primary binary NEA systems identified by radar have primary component or primary. The smaller component in binaries components with suggested diameters of 120 m to 180 m: is referred to as the secondary component or secondary. 2003 SS84 (Nolan et al., 2003), (363599) 2004 FG11 (Tay- There has been some confusion in the literature about lor et al., 2012c), and 1994 CJ1 (Taylor et al., 2014). For the meaning of the word “asynchronous.” Here, we adopt comparison, the largest primaries of binary NEAs imaged the terminology proposed by Margot (2010) and later with radar — (5143) Heracles (Taylor et al., 2012b), the implemented by Jacobson and Scheeres (2011b) and Fang possible triple (276049) 2002 CE26 (Shepard et al., 2006), and Margot (2012c). Binaries with an absence of spin-orbit and (285263) 1998 QE2 (Springmann et al., 2014) — are synchronism are called asynchronous binaries. Binaries with more than an order of magnitude larger at >3 km in diam- a secondary spin period synchronized to the mutual orbit eter. It is likely that ~8-km-diameter (1866) Sisyphus has a period are called synchronous binaries. Binaries with both secondary based on analysis of frequency-only observations primary and secondary spin periods synchronized to the obtained on four separate dates in 1985 (S. Ostro, personal mutual orbit period are called doubly synchronous binaries. communication, 2001). If generalization to systems with more than one satellite is Radar observations can be used to detect asteroid satel- needed, we affix the terms synchronous and asynchronous lites because of the ability to resolve the components of the to the satellites being considered. system both spatially (along the observer’s line of sight) It is useful to present results for small and large asteroids. and in terms of frequency (due to Doppler shifts from the We place an approximate dividing line at the size at which rotational and orbital line-of-sight velocities), resulting
Recommended publications
  • Occultation Evidence for a Satellite of the Trojan Asteroid (911) Agamemnon Bradley Timerson1, John Brooks2, Steven Conard3, David W
    Occultation Evidence for a Satellite of the Trojan Asteroid (911) Agamemnon Bradley Timerson1, John Brooks2, Steven Conard3, David W. Dunham4, David Herald5, Alin Tolea6, Franck Marchis7 1. International Occultation Timing Association (IOTA), 623 Bell Rd., Newark, NY, USA, [email protected] 2. IOTA, Stephens City, VA, USA, [email protected] 3. IOTA, Gamber, MD, USA, [email protected] 4. IOTA, KinetX, Inc., and Moscow Institute of Electronics and Mathematics of Higher School of Economics, per. Trekhsvyatitelskiy B., dom 3, 109028, Moscow, Russia, [email protected] 5. IOTA, Murrumbateman, NSW, Australia, [email protected] 6. IOTA, Forest Glen, MD, USA, [email protected] 7. Carl Sagan Center at the SETI Institute, 189 Bernardo Av, Mountain View CA 94043, USA, [email protected] Corresponding author Franck Marchis Carl Sagan Center at the SETI Institute 189 Bernardo Av Mountain View CA 94043 USA [email protected] 1 Keywords: Asteroids, Binary Asteroids, Trojan Asteroids, Occultation Abstract: On 2012 January 19, observers in the northeastern United States of America observed an occultation of 8.0-mag HIP 41337 star by the Jupiter-Trojan (911) Agamemnon, including one video recorded with a 36cm telescope that shows a deep brief secondary occultation that is likely due to a satellite, of about 5 km (most likely 3 to 10 km) across, at 278 km ±5 km (0.0931″) from the asteroid’s center as projected in the plane of the sky. A satellite this small and this close to the asteroid could not be resolved in the available VLT adaptive optics observations of Agamemnon recorded in 2003.
    [Show full text]
  • AAS SFMC Manuscript Format Template
    AAS 13-484 PASSIVE SORTING OF ASTEROID MATERIAL USING SOLAR RADIATION PRESSURE D. García Yárnoz,* J. P. Sánchez Cuartielles,† and C. R. McInnes ‡ Understanding dust dynamics in asteroid environments is key for future science missions to asteroids and, in the long-term, also for asteroid exploitation. This paper proposes a novel way of manipulating asteroid material by means of solar radiation pressure (SRP). We envisage a method for passively sorting material as a function of its grain size where SRP is used as a passive in-situ ‘mass spec- trometer’. The analysis shows that this novel method allows an effective sorting of regolith material. This has immediate applications for sample return, and in- situ resource utilisation to separate different regolith particle sizes INTRODUCTION Asteroids have lately become prime targets for space exploration missions. This interest is jus- tified as asteroids are among the least evolved bodies in the Solar System and they can provide a better understanding of its formation from the solar nebula. Under NASA’s flexible path plan,1 asteroids have also become one of the feasible “planetary” surfaces to be visited by crewed mis- sions, with the benefit of not requiring the capability to land and take-off from a deep gravity well. In addition, they may well be the most affordable source of in-situ resources to underpin future space exploration ventures. Considerable efforts have been made in the study of the perturbing forces and space environ- ment around cometary and asteroid bodies.2, 3 These forces and harsh environments need to be considered and will have direct implications for the operations of spacecraft around and on small bodies.
    [Show full text]
  • 174 Minor Planet Bulletin 47 (2020) DETERMINING the ROTATIONAL
    174 DETERMINING THE ROTATIONAL PERIODS AND LIGHTCURVES OF MAIN BELT ASTEROIDS Shandi Groezinger Kent Montgomery Texas A&M University-Commerce P.O. Box 3011 Commerce, TX 75429-3011 [email protected] (Received: 2020 Feb 21 Revised: 2020 March 20) Lightcurves and rotational periods are presented for six main-belt asteroids. The rotational periods determined are 970 Primula (2.777 ± 0.001 h), 1103 Sequoia (3.1125 ± 0.0004 h), 1160 Illyria (4.103 ± 0.002 h), 1188 Gothlandia (3.52 ± 0.05 h), 1831 Nicholson (3.215 ± 0.004 h) and (11230) 1999 JV57 (7.090 ± 0.003 h). The purpose of this research was to create lightcurves and determine the rotational periods of six asteroids: 970 Primula, 1103 Sequoia, 1160 Illyria, 1188 Gothlandia, 1831 Nicholson and (11230) 1999 JV57. Asteroids were selected for this study from a website that catalogues all known asteroids (CALL). For an asteroid to be chosen in this study, it has to meet the requirements of brightness, declination, and opposition date. For optimum signal to noise ratio (SNR), asteroids of apparent magnitude of 16 or lower were chosen. Asteroids with positive declinations were chosen due to using telescopes located in the northern hemisphere. The data for all the asteroids was typically taken within two weeks from their opposition dates. This would ensure a maximum number of images each night. Asteroid 970 Primula was discovered by Reinmuth, K. at Heidelberg in 1921. This asteroid has an orbital eccentricity of 0.2715 and a semi-major axis of 2.5599 AU (JPL). Asteroid 1103 Sequoia was discovered in 1928 by Baade, W.
    [Show full text]
  • 14790 (Stsci Edit Number: 0, Created: Friday, July 29, 2016 2:42:55 PM EST) - Overview
    Proposal 14790 (STScI Edit Number: 0, Created: Friday, July 29, 2016 2:42:55 PM EST) - Overview 14790 - Investigating the binary nature of active asteroid 288P/300163 Cycle: 24, Proposal Category: GO (Availability Mode: SUPPORTED) INVESTIGATORS Name Institution E-Mail Dr. Jessica Agarwal (PI) (ESA Member) (Conta Max Planck Institute for Solar System Research [email protected] ct) Dr. David Jewitt (CoI) (AdminUSPI) (Contact) University of California - Los Angeles [email protected] Dr. Harold A. Weaver (CoI) (Contact) The Johns Hopkins University Applied Physics Labor [email protected] atory Max Mutchler (CoI) (Contact) Space Telescope Science Institute [email protected] Dr. Stephen M. Larson (CoI) University of Arizona [email protected] VISITS Visit Targets used in Visit Configurations used in Visit Orbits Used Last Orbit Planner Run OP Current with Visit? 01 (1) 288P WFC3/UVIS 1 29-Jul-2016 15:42:51.0 yes 02 (1) 288P WFC3/UVIS 1 29-Jul-2016 15:42:52.0 yes 03 (1) 288P WFC3/UVIS 1 29-Jul-2016 15:42:53.0 yes 04 (1) 288P WFC3/UVIS 1 29-Jul-2016 15:42:54.0 yes 05 (1) 288P WFC3/UVIS 1 29-Jul-2016 15:42:54.0 yes 5 Total Orbits Used ABSTRACT We propose to study the suspected binary nature of active asteroid 288P/300163. We aim to confirm or disprove the existence of a binary nucleus, and - if confirmed - to measure the mutual orbital period and orbit orientation of the compoents, and their sizes. We request 5 orbits of WFC3 1 Proposal 14790 (STScI Edit Number: 0, Created: Friday, July 29, 2016 2:42:55 PM EST) - Overview imaging, spaced at intervals of 8-12 days.
    [Show full text]
  • Twenty Years of Toutatis
    EPSC Abstracts Vol. 6, EPSC-DPS2011-297, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 Twenty Years of Toutatis M.W. Busch (1), L.A.M. Benner (2), D.J. Scheeres (3), J.-L. Margot (1), C. Magri (4), M.C. Nolan (5), and J.D. Giorgini (2) (1) Department of Earth and Space Sciences, UCLA, Los Angeles, California, USA (2) Jet Propulsion Laboratory, Pasadena, California, USA (3) Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, USA (4) University of Maine at Farmington, Farmington, Maine, USA (5) Arecibo Observatory, Arecibo, Puerto Rico, USA Abstract Near-Earth asteroid 4179 Toutatis is near a particularly if the moments of inertia are 4:1 orbital resonance with the Earth. consistent with a uniform internal density. Following its discovery in 1989, Toutatis Toutatis’ last close-Earth-approach for was observed extensively with the Arecibo several decades will be in December 2012, and Goldstone radars during flybys in 1992, when it will be 0.046 AU away. We will 1996, 2000, 2004, and 2008. The 1992 and make predictions for what radar 1996 data show that Toutatis is a bifurcated observations at that time should see. object with overall dimensions of 4.6 x 2.3 x 1.9 km and a surface marked with prominent impact craters. Most significantly, Toutatis References is in a non-principal-axis tumbling rotation [1] Hudson, R.S. and Ostro, S.J.: Shape and non-principal state, spinning about its long axis with a axis spin state of asteroid 4179 Toutatis, Science 270 84-86, period of 5.41 days while that axis precesses 1995.
    [Show full text]
  • Temperature-Induced Effects and Phase Reddening on Near-Earth Asteroids
    Planetologie Temperature-induced effects and phase reddening on near-Earth asteroids Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Geowissenschaften der Mathematisch-Naturwissenschaftlichen Fakultät der Westfälischen Wilhelms-Universität Münster vorgelegt von Juan A. Sánchez aus Caracas, Venezuela -2013- Dekan: Prof. Dr. Hans Kerp Erster Gutachter: Prof. Dr. Harald Hiesinger Zweiter Gutachter: Dr. Vishnu Reddy Tag der mündlichen Prüfung: 4. Juli 2013 Tag der Promotion: 4. Juli 2013 Contents Summary 5 Preface 7 1 Introduction 11 1.1 Asteroids: origin and evolution . 11 1.2 The asteroid-meteorite connection . 13 1.3 Spectroscopy as a remote sensing technique . 16 1.4 Laboratory spectral calibration . 24 1.5 Taxonomic classification of asteroids . 31 1.6 The NEA population . 36 1.7 Asteroid space weathering . 37 1.8 Motivation and goals of the thesis . 41 2 VNIR spectra of NEAs 43 2.1 The data set . 43 2.2 Data reduction . 45 3 Temperature-induced effects on NEAs 55 3.1 Introduction . 55 3.2 Temperature-induced spectral effects on NEAs . 59 3.2.1 Spectral band analysis of NEAs . 59 3.2.2 NEAs surface temperature . 59 3.2.3 Temperature correction to band parameters . 62 3.3 Results and discussion . 70 4 Phase reddening on NEAs 73 4.1 Introduction . 73 4.2 Phase reddening from ground-based observations of NEAs . 76 4.2.1 Phase reddening effect on the band parameters . 76 4.3 Phase reddening from laboratory measurements of ordinary chondrites . 82 4.3.1 Data and spectral band analysis . 82 4.3.2 Phase reddening effect on the band parameters .
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • Observations from Orbiting Platforms 219
    Dotto et al.: Observations from Orbiting Platforms 219 Observations from Orbiting Platforms E. Dotto Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino M. A. Barucci Observatoire de Paris T. G. Müller Max-Planck-Institut für Extraterrestrische Physik and ISO Data Centre A. D. Storrs Towson University P. Tanga Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino and Observatoire de Nice Orbiting platforms provide the opportunity to observe asteroids without limitation by Earth’s atmosphere. Several Earth-orbiting observatories have been successfully operated in the last decade, obtaining unique results on asteroid physical properties. These include the high-resolu- tion mapping of the surface of 4 Vesta and the first spectra of asteroids in the far-infrared wave- length range. In the near future other space platforms and orbiting observatories are planned. Some of them are particularly promising for asteroid science and should considerably improve our knowledge of the dynamical and physical properties of asteroids. 1. INTRODUCTION 1800 asteroids. The results have been widely presented and discussed in the IRAS Minor Planet Survey (Tedesco et al., In the last few decades the use of space platforms has 1992) and the Supplemental IRAS Minor Planet Survey opened up new frontiers in the study of physical properties (Tedesco et al., 2002). This survey has been very important of asteroids by overcoming the limits imposed by Earth’s in the new assessment of the asteroid population: The aster- atmosphere and taking advantage of the use of new tech- oid taxonomy by Barucci et al. (1987), its recent extension nologies. (Fulchignoni et al., 2000), and an extended study of the size Earth-orbiting satellites have the advantage of observing distribution of main-belt asteroids (Cellino et al., 1991) are out of the terrestrial atmosphere; this allows them to be in just a few examples of the impact factor of this survey.
    [Show full text]
  • A Handbook of Double Stars, with a Catalogue of Twelve Hundred
    The original of this bool< is in the Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924064295326 3 1924 064 295 326 Production Note Cornell University Library pro- duced this volume to replace the irreparably deteriorated original. It was scanned using Xerox soft- ware and equipment at 600 dots per inch resolution and com- pressed prior to storage using CCITT Group 4 compression. The digital data were used to create Cornell's replacement volume on paper that meets the ANSI Stand- ard Z39. 48-1984. The production of this volume was supported in part by the Commission on Pres- ervation and Access and the Xerox Corporation. Digital file copy- right by Cornell University Library 1991. HANDBOOK DOUBLE STARS. <-v6f'. — A HANDBOOK OF DOUBLE STARS, WITH A CATALOGUE OF TWELVE HUNDRED DOUBLE STARS AND EXTENSIVE LISTS OF MEASURES. With additional Notes bringing the Measures up to 1879, FOR THE USE OF AMATEURS. EDWD. CROSSLEY, F.R.A.S.; JOSEPH GLEDHILL, F.R.A.S., AND^^iMES Mt^'^I^SON, M.A., F.R.A.S. "The subject has already proved so extensive, and still ptomises so rich a harvest to those who are inclined to be diligent in the pursuit, that I cannot help inviting every lover of astronomy to join with me in observations that must inevitably lead to new discoveries." Sir Wm. Herschel. *' Stellae fixac, quae in ccelo conspiciuntur, sunt aut soles simplices, qualis sol noster, aut systemata ex binis vel interdum pluribus solibus peculiari nexu physico inter se junccis composita.
    [Show full text]
  • CURRICULUM VITAE, ALAN W. HARRIS Personal: Born
    CURRICULUM VITAE, ALAN W. HARRIS Personal: Born: August 3, 1944, Portland, OR Married: August 22, 1970, Rose Marie Children: W. Donald (b. 1974), David (b. 1976), Catherine (b 1981) Education: B.S. (1966) Caltech, Geophysics M.S. (1967) UCLA, Earth and Space Science PhD. (1975) UCLA, Earth and Space Science Dissertation: Dynamical Studies of Satellite Origin. Advisor: W.M. Kaula Employment: 1966-1967 Graduate Research Assistant, UCLA 1968-1970 Member of Tech. Staff, Space Division Rockwell International 1970-1971 Physics instructor, Santa Monica College 1970-1973 Physics Teacher, Immaculate Heart High School, Hollywood, CA 1973-1975 Graduate Research Assistant, UCLA 1974-1991 Member of Technical Staff, Jet Propulsion Laboratory 1991-1998 Senior Member of Technical Staff, Jet Propulsion Laboratory 1998-2002 Senior Research Scientist, Jet Propulsion Laboratory 2002-present Senior Research Scientist, Space Science Institute Appointments: 1976 Member of Faculty of NATO Advanced Study Institute on Origin of the Solar System, Newcastle upon Tyne 1977-1978 Guest Investigator, Hale Observatories 1978 Visiting Assoc. Prof. of Physics, University of Calif. at Santa Barbara 1978-1980 Executive Committee, Division on Dynamical Astronomy of AAS 1979 Visiting Assoc. Prof. of Earth and Space Science, UCLA 1980 Guest Investigator, Hale Observatories 1983-1984 Guest Investigator, Lowell Observatory 1983-1985 Lunar and Planetary Review Panel (NASA) 1983-1992 Supervisor, Earth and Planetary Physics Group, JPL 1984 Science W.G. for Voyager II Uranus/Neptune Encounters (JPL/NASA) 1984-present Advisor of students in Caltech Summer Undergraduate Research Fellowship Program 1984-1985 ESA/NASA Science Advisory Group for Primitive Bodies Missions 1985-1993 ESA/NASA Comet Nucleus Sample Return Science Definition Team (Deputy Chairman, U.S.
    [Show full text]
  • PDF Program Book
    46th Meeting of the Division for Planetary Sciences with Historical Astronomy Division (HAD) 9-14 November 2014 | Tucson, AZ OFFICERS AND MEMBERS ........ 2 SPONSORS ............................... 2 EXHIBITORS .............................. 3 FLOOR PLANS ........................... 5 ATTENDEE SERVICES ................. 8 Session Numbering Key SCHEDULE AT-A-GLANCE ........ 10 100s Monday 200s Tuesday SUNDAY ................................. 20 300s Wednesday 400s Thursday MONDAY ................................ 23 500s Friday TUESDAY ................................ 44 Sessions are numbered in the program book by day and time. WEDNESDAY .......................... 75 All posters will be on display Monday - Friday THURSDAY.............................. 85 FRIDAY ................................. 119 Changes after 1 October are included only in the online program materials. AUTHORS INDEX .................. 137 1 DPS OFFICERS AND MEMBERS Current DPS Officers Heidi Hammel Chair Bonnie Buratti Vice-Chair Athena Coustenis Secretary Andrew Rivkin Treasurer Nick Schneider Education and Public Outreach Officer Vishnu Reddy Press Officer Current DPS Committee Members Rosaly Lopes Term Expires November 2014 Robert Pappalardo Term Expires November 2014 Ralph McNutt Term Expires November 2014 Ross Beyer Term Expires November 2015 Paul Withers Term Expires November 2015 Julie Castillo-Rogez Term Expires October 2016 Jani Radebaugh Term Expires October 2016 SPONSORS 2 EXHIBITORS Platinum Exhibitor Silver Exhibitors 3 EXHIBIT BOOTH ASSIGNMENTS 206 Applied
    [Show full text]
  • The Minor Planet Bulletin 44 (2017) 142
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 44, NUMBER 2, A.D. 2017 APRIL-JUNE 87. 319 LEONA AND 341 CALIFORNIA – Lightcurves from all sessions are then composited with no TWO VERY SLOWLY ROTATING ASTEROIDS adjustment of instrumental magnitudes. A search should be made for possible tumbling behavior. This is revealed whenever Frederick Pilcher successive rotational cycles show significant variation, and Organ Mesa Observatory (G50) quantified with simultaneous 2 period software. In addition, it is 4438 Organ Mesa Loop useful to obtain a small number of all-night sessions for each Las Cruces, NM 88011 USA object near opposition to look for possible small amplitude short [email protected] period variations. Lorenzo Franco Observations to obtain the data used in this paper were made at the Balzaretto Observatory (A81) Organ Mesa Observatory with a 0.35-meter Meade LX200 GPS Rome, ITALY Schmidt-Cassegrain (SCT) and SBIG STL-1001E CCD. Exposures were 60 seconds, unguided, with a clear filter. All Petr Pravec measurements were calibrated from CMC15 r’ values to Cousins Astronomical Institute R magnitudes for solar colored field stars. Photometric Academy of Sciences of the Czech Republic measurement is with MPO Canopus software. To reduce the Fricova 1, CZ-25165 number of points on the lightcurves and make them easier to read, Ondrejov, CZECH REPUBLIC data points on all lightcurves constructed with MPO Canopus software have been binned in sets of 3 with a maximum time (Received: 2016 Dec 20) difference of 5 minutes between points in each bin.
    [Show full text]