Part 7 the Crustaceans

Total Page:16

File Type:pdf, Size:1020Kb

Part 7 the Crustaceans Friend or Foe Friend or FoeTRISTAN LOUGHER B.Sc. graduated from Manchester University in 1992 with a Part 7 – The Crustaceans degree in Zoology. He has worked at Cheshire Waterlife for five years. DIGITAL IMAGES BY THE AUTHOR any moons ago I was sitting in a study was to identify all the species of Phylum Arthropoda drab lecture theatre in the invertebrate life found there. These Crustaceans are part of a larger assemblage University of Manchester’s included several planktonic crustaceans M of animals called Arthropods. Arthropod School of Biological Sciences waiting for called copepods whose classification to means "joint footed" and alludes to the fact the next lecture in the "Invertebrate species level can centre on many features of that all arthropods have jointed appendages Diversity" series as part of my degree their anatomy but to cut a long story short I used primarily for locomotion. Like the course in Zoology. The lecturer then found myself counting the hairs on the legs Annelid polychaetes we looked at in the appeared at the door, uttered the words of these copepods in order to correctly last article, arthropods are segmented but "Crustaceans – too many legs" and then identify them! When you consider that they have one further major adaptation and left! After the initial confusion at the these animals are sometimes only a couple that is the exoskeleton or cuticle. This is a actions of the distinguished Doctor John of millimetres long you can appreciate the usually hard exterior to the animal’s body Dalingwater we eventually established that difficulty of this task (and they’ve got loads which affords muscle attachment and the reason for this peculiar behaviour was of legs!) protection. Because this external layer is due to the incredible array of forms within Consequently, in this instalment of the essentially dead it must be shed in order for the crustacean assemblage which renders Friend or Foe series I am not going to the animal to grow. In crustaceans and all their classification an absolute nightmare! mention species names unless I am arthropod groups this is done through a This was brought home to me some absolutely certain they are correct. Indeed, process called moulting or ecdysis. In many years later when I was working as part of a in some cases my knowledge is sufficiently groups of arthropod the body form changes research team studying Britain’s deepest sparse for me to attempt to classify them with each successive moulting which makes lake, Loch Morar in the Northwest beyond even their Order assignation. their correct identification that bit more Highlands of Scotland. Part of the project’s difficult. Each individual stage between moultings is termed an Instar. 2 1 3 Life cycle of a typical shrimp 1. Early nauplius 2. Later nauplius 6 3. First protozoea 4. First mysis 5. First post-larva 6. Adult shrimp 5 4 18 • MARINE WORLD – OCTOBER/NOVEMBER 2002 Friend or Foe Sub-phylum Chelicerata on their body segments plus gills for respiration under water. The Chelicerates are a group which Chelicera contains only one sub-class that the marine aquarist is likely to come across by Class Cirripedia Body accident in a reef aquarium, and a single No sooner have I declared that I will species that they may purchase. This Sub- concentrate on large crustaceans in phylum’s name comes from the specialised this article I immediately start with a feeding structures termed chelicerae which Leg group of animals that are usually can be alikened to the pincers of crabs. smaller than the 10mm maxiumum The main characteristic that separates this size! This is for good reason as the group from other arthropods is their lack Cirripedia represent a group of of antennae. crustaceans that are significantly (one million described species) than the Chelicerates include the extinct Trilobites, different from the rest of the crustacea. Crustacea. Taxonomists believe that spiders, mites, scorpions and little known Many temperate species do not reach more crustaceans are amongst the most primitive groups such as sun spiders and whip than 5mm in diameter but it is common to extant arthropods due to the vast majority scorpions. have accidental imports reaching our of species retaining the ancestral marine It is important to recognise that these minimum size. We know them as barnacles existence. Perhaps one of the reasons the are distinct groups from the crustaceans and they represent a group of crustaceans crustaceans have had continued success for with which they share a common ancestor that have given up the ability to move many millions of years is the fact that but, for example, the extinct trilobites did freely. Instead, they remain in a fixed insects have not conquered this not evolve into anything else, they simply position with the body surrounded by a environment. Most of the insects died out. number of calcium carbonate plates. This encountered on rocky shores in the U.K. are means that a barnacle must rely on food to primitive species that are not truly aquatic reach it. Thus we find them associated with Subclass Xiphosaura and will die if submerged for long periods. areas with a strong flow and/or much Common Name : Horseshoe crabs An aquatic existence opens many niches for suspended food particles such as phyto or Latin Name : Limulus polyphemus crustaceans. For example, they can achieve zooplankton. By using barnacles as a guide The Horseshoe crabs are often referred to larger sizes due to the buoyancy provided we can deduce the type of area a specimen as "living fossils" due to their ancient by water. came from. ancestry and primitive looks. There are four Because of the space limitations I must Barnacles have specialised feet – the known species belonging to 3 genera. adhere to this article I will include some of name cirripede means "hair foot" and they Limulus polyphemus is the American the larger crustacean species that can be use the fan-like feet to collect food. Sessile species, the other three are Asian. encountered by aquarists. Subsequent barnacle are called Balanomorphs and it is Horseshoe crabs are generally kept by articles will continue this theme and then these that are most prevalent in our aquaria aquarists requiring them for their novelty will focus on some of the smaller and more and can be recognised by their distinctive value or indeed in a sand-shifting role. unusual species of crustacean that one may shape. Some species are found in Their spade-shaped carapace acts like a experience. association with hard corals such as Porites plough as it shuffles through the sand. This The defining feature of crustaceans is sp. and Euphyllia spp. It is likely that the is a fascinating creature but as marine that they all possess two pairs of antennae corals have overgrown specimens in these aquarists will only acquire this species by on the head. Insects have a single pair, cases but due to the repeated feeding purchasing it there is no need for further spiders and their allies have none. Most actions of the barnacle they are not capable description here. species also have a number of appendages Sub-class Pycnogonida Common Name : Sea Spiders This group of chelicerates is given its common name due to the fact that most species have 8 walking legs much like spiders. However, they are a strange group that most aquarists may overlook or never experience in their aquarium as they are liable to be short lived and usually very small (<10mm). I have found several dead specimens in association with Live Rock but am yet to see a living one in an aquarium situation. They can be found feeding on bryozoans, colonial anemones and other encrusting organisms but are easily removed if so desired. Sub-phylum : Crustacea Crustaceans are the second largest sub- division of the Arthropod Phylum with Two 15mm diameter barnacles slightly obscured by Disc anemones. This picture was taken around 38,000 described species. Only the just after the lights came on for the first time. Only a few minutes later the barnacles were insects have a greater number of species smothered thus any attempts at feeding had to occur when the lights were off. MARINE WORLD – OCTOBER/NOVEMBER 2002 • 19 Friend or Foe of smothering the barnacle completely. that severe as the The head and thoracic region of a mantis shrimp. This works to the barnacle’s advantage as it chances of the parasite This is a "smasher". Note the very large compound is obscured from attack by many of its becoming fertilised are eyes and club-like second appendage which are a enemies plus the stinging cells of the corals small but they can be pale purple colour in this species. provide an excellent deterrent for creeping avoided completely by predators such as whelks which enjoy careful scrutiny of any nothing better than drilling a hole in the crab purchases barnacle and sucking out the contents. particularly porcelain Have a look at Plume rock (Porites sp.) as crabs (Petrolisthes along with the abundant tubeworms it is spp.). not uncommon to have barnacles present. Due to their feeding habits barnacles Class are unlikely to survive for long in marine aquaria unless they are supplied with Malacostraca sufficient particulate food such as Plancto Malacostracans make or Marine Snow. Most species of barnacle up the majority of are entirely harmless but it is worth species within the mentioning a group which, although Crustacea with over unlikely to bother the aquarist greatly, may 22,500 species one thing straight. If you hear a sound like present a significant problem to the other currently described by science.
Recommended publications
  • Learning in Stomatopod Crustaceans
    International Journal of Comparative Psychology, 2006, 19 , 297-317. Copyright 2006 by the International Society for Comparative Psychology Learning in Stomatopod Crustaceans Thomas W. Cronin University of Maryland Baltimore County, U.S.A. Roy L. Caldwell University of California, Berkeley, U.S.A. Justin Marshall University of Queensland, Australia The stomatopod crustaceans, or mantis shrimps, are marine predators that stalk or ambush prey and that have complex intraspecific communication behavior. Their active lifestyles, means of predation, and intricate displays all require unusual flexibility in interacting with the world around them, imply- ing a well-developed ability to learn. Stomatopods have highly evolved sensory systems, including some of the most specialized visual systems known for any animal group. Some species have been demonstrated to learn how to recognize and use novel, artificial burrows, while others are known to learn how to identify novel prey species and handle them for effective predation. Stomatopods learn the identities of individual competitors and mates, using both chemical and visual cues. Furthermore, stomatopods can be trained for psychophysical examination of their sensory abilities, including dem- onstration of color and polarization vision. These flexible and intelligent invertebrates continue to be attractive subjects for basic research on learning in animals with relatively simple nervous systems. Among the most captivating of all arthropods are the stomatopod crusta- ceans, or mantis shrimps. These marine creatures, unfamiliar to most biologists, are abundant members of shallow marine ecosystems, where they are often the dominant invertebrate predators. Their common name refers to their method of capturing prey using a folded, anterior raptorial appendage that looks superficially like the foreleg of a praying mantis.
    [Show full text]
  • Two Freshwater Shrimp Species of the Genus Caridina (Decapoda, Caridea, Atyidae) from Dawanshan Island, Guangdong, China, with the Description of a New Species
    A peer-reviewed open-access journal ZooKeys 923: 15–32 (2020) Caridina tetrazona 15 doi: 10.3897/zookeys.923.48593 RESEarcH articLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Two freshwater shrimp species of the genus Caridina (Decapoda, Caridea, Atyidae) from Dawanshan Island, Guangdong, China, with the description of a new species Qing-Hua Chen1, Wen-Jian Chen2, Xiao-Zhuang Zheng2, Zhao-Liang Guo2 1 South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510520, Guangdong Province, China 2 Department of Animal Science, School of Life Science and Enginee- ring, Foshan University, Foshan 528231, Guangdong Province, China Corresponding author: Zhao-Liang Guo ([email protected]) Academic editor: I.S. Wehrtmann | Received 19 November 2019 | Accepted 7 February 2020 | Published 1 April 2020 http://zoobank.org/138A88CC-DF41-437A-BA1A-CB93E3E36D62 Citation: Chen Q-H, Chen W-J, Zheng X-Z, Guo Z-L (2020) Two freshwater shrimp species of the genus Caridina (Decapoda, Caridea, Atyidae) from Dawanshan Island, Guangdong, China, with the description of a new species. ZooKeys 923: 15–32. https://doi.org/10.3897/zookeys.923.48593 Abstract A faunistic and ecological survey was conducted to document the diversity of freshwater atyid shrimps of Dawanshan Island. Two species of Caridina that occur on this island were documented and discussed. One of these, Caridina tetrazona sp. nov. is described and illustrated as new to science. It can be easily distinguished from its congeners based on a combination of characters, which includes a short rostrum, the shape of the endopod of the male first pleopod, the segmental ratios of antennular peduncle and third maxilliped, the slender scaphocerite, and the absence of a median projection on the posterior margin.
    [Show full text]
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • Stimulation of Filter Feeding by Amino Acids in Three Porcelain Crab Species: Petrolisthes Cinctipes, Petrolisthes Eriomerus, and Pachycheles Rudis
    Stimulation of filter feeding by amino acids in three porcelain crab species: Petrolisthes cinctipes, Petrolisthes eriomerus, and Pachycheles rudis Sarah Green Exploratory 2, Adaptations ofMarine Mammals, Prof. Charlie Hunter Oregon Institute ofMarine Biology, University of Oregon, Charleston, Oregon 97420 Introduction Petrolisthes cinctipes, a species ofporcelain crab, is commonly found in the higher to mid-intertidal zones ofthe rocky shores ofOregon (Wicksten, 1973). Petrolisthes eriomerus and Pachycheles rudis, the other two species ofporcelain crab found on the Oregon coast can be found in the low intertidal zone. All three species can be found under rocks and among mussels in mussel beds (Sept, 1999). The three species ofporcelain crab filter feed, fanning plankton and detritus (Petrolisthes cinctipes and Pachycheles rudis) from the water, or pelagic diatoms, benthic diatoms, and green algal filaments from the water (Petrolisthes eriomerus) (MagGinite, 1937; Wicksten, 1973). The mechanics offilter feeding in porcelain crabs has been thoroughly documented by Wicksten (1973). Food particles can be trapped by alternately flexing the endopodites ofthe third maxillapeds. The food particles are then removed from the setae on the third maxillapeds by the setose ends ofthe second maxillapeds. Food particles are then selected and sorted by the inner mouth parts. Little research has been reported on compounds promoting feeding behavior in porcelain crabs. L-tyrosine has been shown to elicit a feeding response in Petrolisthes cinctipes, as have other amino acids. As there are no particles in the water when testing an amino acid, chemoreception ofsmall compounds must stimulate the feeding response (Hartman et aI., 1977). I hypothesize that the stimulation ofthe feeding response in Petrolisthes cinctipes, Petrolisthes eriomerus, and Pachycheles rudis will differ in response to various amino acids because ofthe their location in the intertidal.
    [Show full text]
  • Guide to Crustacea
    38 Guide to Crustacea. This is a very large and varied group, comprising numerous families which are grouped under six Sub-orders. In the Sub-order ASELLOTA the uropods are slender ; the basal segments of the legs are not coalesced with the body as in most other Isopoda ; the first pair of abdominal limbs are generally fused, in the female, to form an operculum, or cover for the remaining pairs. This group includes Asellus aquaticus, which is FIG. 23. Bathynomus giganteus, about one-half natural size. (From Lankester's "Treatise on Zoology," after Milne-Edwards and Bouvier.) [Table-case No. 6.] common everywhere in ponds and ditches in this country, and a very large number of marine species, mostly of small size. The Sub-order PHKEATOICIDEA includes a small number of very peculiar species found in fresh water in Australia and New Zealand. In these the body is flattened from side to side, and Peraca rida—Isopoda. 39 the animals in other respects have a superficial resemblance to Amphipoda. In the Sub-order FLABELLIFERA the terminal limbs of the abdomen (uropods) are spread out in a fan-like manner on each side of the telson. Many species of this group, belonging to the family Cymothoidae, are blood-sucking parasites of fish, and some of them are remarkable for being hermaphrodite (like the Cirri- pedia), each animal being at first a male and afterwards a female. Mo' of these parasites are found adhering to the surface of the body, behind the fins or under the gill-covers of the fish. A few, however, become internal parasites like the Artystone trysibia exhibited in this case, which has burrowed into the body of a Brazilian freshwater fish.
    [Show full text]
  • How to Become a Crab: Phenotypic Constraints on a Recurring Body Plan
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2020 doi:10.20944/preprints202012.0664.v1 How to become a crab: Phenotypic constraints on a recurring body plan Joanna M. Wolfe1*, Javier Luque1,2,3, Heather D. Bracken-Grissom4 1 Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2 Smithsonian Tropical Research Institute, Balboa–Ancon, 0843–03092, Panama, Panama 3 Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA 4 Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, 3000 NE 151 Street, North Miami, FL 33181, USA * E-mail: [email protected] Summary: A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. For over 140 years, convergent evolution of the crab-like body plan (with a wide and flattened shape, and a bent abdomen) at least five times in decapod crustaceans has been known as ‘carcinization’. The repeated loss of this body plan has been identified as ‘decarcinization’. We offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the pattern of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab-like body form. Keywords: Crustacea, Anomura, Brachyura, Carcinization, Phylogeny, Convergent evolution, Morphological integration 1 © 2020 by the author(s).
    [Show full text]
  • A Comparative Analysis of Morphological, Physiological, And
    AN ABSTRACT OF THE THESIS OF Jonathon Harris Stillman for the degree of Doctor of Philosophy in Zoology presented on December 4, 1998. Title: A Comparative Analysis of Morphological, Physiological, and Biochemical Adaptation to Abiotic Stress in Intertidal Porcelain Crabs, Genus Petrolisthes. Redacted for Privacy Abstract approved: George N. Somero Organismal tolerance to abiotic environmental stresses contributes significantly to setting the distribution limits of organisms, as demonstrated by vertical zonation patterns in the marine intertidal zone. In this thesis, the ultimate (evolutionary) and proximate (mechanistic) causes of tolerance to temperature and emersion stresses associated with the intertidal zone were examined using porcelain crabs, genus Petrolisthes. Species of Petrolisthes from intertidal and subtidal microhabitats of four biogeographic regions of the Eastern Pacific were used in phylogenetically-based comparative analyses of morphological, physiological, and biochemical adaptation to environmental stress. A phylogenetic tree based on the sequence of the 16sRNA gene was developed to facilitate these analyses. Organismal thermal tolerance limits are adapted to match maximal microhabitat temperatures. Acclimation of thermal tolerance limits suggests that temperate intertidal zone species are living close to their thermal maximum in nature. Respiratory responses to emersion vary among species from different vertical zones. Experimental examination of oxygen consumption rates and lactate accumulation during emersion suggests that intertidal species are able to respire in air using thin membranous regions on the ventral meral segments of their legs (leg membranes). Leg membrane size is positively correlated with body size across species, but not within a single species. Evolutionary analyses indicate that leg membranes may not have evolved for purposes of aerial respiration, but their presence may have allowed intertidal and subtidal species to achieve larger body sizes and higher metabolic rates.
    [Show full text]
  • Cannibalism and Habitat Selection of Cultured Chinese Mitten Crab: Effects of Submerged Aquatic Vegetation with Different Nutritional and Refuge Values
    water Article Cannibalism and Habitat Selection of Cultured Chinese Mitten Crab: Effects of Submerged Aquatic Vegetation with Different Nutritional and Refuge Values Qingfei Zeng 1,*, Erik Jeppesen 2,3, Xiaohong Gu 1,*, Zhigang Mao 1 and Huihui Chen 1 1 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; [email protected] (Z.M.); [email protected] (H.C.) 2 Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; [email protected] 3 Sino-Danish Centre for Education and Research, University of CAS, Beijing 100190, China * Correspondence: [email protected] (Q.Z.); [email protected] (X.G.) Received: 26 September 2018; Accepted: 26 October 2018; Published: 29 October 2018 Abstract: We examined the food preference of Chinese mitten crabs, Eriocheir sinensis (H. Milne Edwards, 1853), under food shortage, habitat choice in the presence of predators, and cannibalistic behavior by comparing their response to the popular culture plant Elodea nuttallii and the structurally more complex Myriophyllum verticillatum L. in a series of mesocosm experiments. Mitten crabs were found to consume and thus reduce the biomass of Elodea, whereas no negative impact on Myriophyllum biomass was recorded. In the absence of adult crabs, juveniles preferred to settle in Elodea habitats (appearance frequency among the plants: 64.2 ± 5.9%) but selected for Myriophyllum instead when adult crabs were present (appearance frequency among the plants: 59.5 ± 4.9%). The mortality rate of mitten crabs in the absence of plant shelter was higher under food shortage, primarily due to cannibalism.
    [Show full text]
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • Antifouling Adaptations of Marine Shrimp (Decapoda: Caridea): Gill Cleaning Mechanisms and Grooming of Brooded Embryos
    Zoological Journal oj the Linnean Society, 6i: 281-305. With 12 figures April 1979 Antifouling adaptations of marine shrimp (Decapoda: Caridea): gill cleaning mechanisms and grooming of brooded embryos RAYMOND T. BAUER Biological Sciences, California Polytechnic State University, San Luis Obispo, California, U.S.A. Accepted for publication September 1977 Gills in the branchial chambers of caridean shrimps, as well as the brooded embryos in females, are subject to fouling by particulate debris and epizoites. Important mechanisms for cleaning the gills are brushing of the gills by the grooming or cleaning chelipeds in some species, while in others, setae from the bases of the thoracic legs brush up among the gills during movement of the limbs (epipod- setobranch complexes). Setae of cleaning chelipeds and of epipod-setobranch complexes show- similar ultrastructural adaptions for scraping gill surfaces. Ablation of the cleaning chelipeds ol the shrimp Heptacarpm pictus results in severe fouling of the gills in experimenials, while those of controls remain clean, Embrvos brooded by female carideans are often brushed and jostled by the grooming chelipeds. In H. pictui. removal of the cleaning chelae results in heavier microbial and sediment fouling than in controls. KEY WO RDS: - shrimp - gills - grooming - cleaning - cpipods - sctobranchs - fouling - Decapoda - Caridea. CONTENTS Introduction 281 Methods 282 Results 284 Gill cleaning by the chelipeds 284 Gill cleaning by the epipod-setobranch complex 289 Experiments on the adaptive value of cheliped brushing in Heptacarpus pictus 292 Cleaning of brooded embryos 296 Experiments on the adaptive value of cheliped brushing of eggs in Heptacarpus pictus 297 Discussion 299 Adaptive value of gill cleaning mechanisms in caridean shrimp 299 Adaptive value of embryo brushing by females 301 Acknowledgements 302 References 302 INTRODUCTION Grooming behaviour is a frequent activity of caridean shrimp which appears to prevent epizoic and sediment fouling of the body (Bauer, 1975; Bauer, 1977, Bauer, 1978).
    [Show full text]
  • Stomatopoda (Crustacea: Hoplocarida) from the Shallow, Inshore Waters of the Northern Gulf of Mexico (Apalachicola River, Florida to Port Aransas, Texas)
    Gulf and Caribbean Research Volume 16 Issue 1 January 2004 Stomatopoda (Crustacea: Hoplocarida) from the Shallow, Inshore Waters of the Northern Gulf of Mexico (Apalachicola River, Florida to Port Aransas, Texas) John M. Foster University of Southern Mississippi, [email protected] Brent P. Thoma University of Southern Mississippi Richard W. Heard University of Southern Mississippi, [email protected] Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Foster, J. M., B. P. Thoma and R. W. Heard. 2004. Stomatopoda (Crustacea: Hoplocarida) from the Shallow, Inshore Waters of the Northern Gulf of Mexico (Apalachicola River, Florida to Port Aransas, Texas). Gulf and Caribbean Research 16 (1): 49-58. Retrieved from https://aquila.usm.edu/gcr/vol16/iss1/7 DOI: https://doi.org/10.18785/gcr.1601.07 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf and Caribbean Research Vol 16, 49–58, 2004 Manuscript received December 15, 2003; accepted January 28, 2004 STOMATOPODA (CRUSTACEA: HOPLOCARIDA) FROM THE SHALLOW, INSHORE WATERS OF THE NORTHERN GULF OF MEXICO (APALACHICOLA RIVER, FLORIDA TO PORT ARANSAS, TEXAS) John M. Foster, Brent P. Thoma, and Richard W. Heard Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, Mississippi 39564, E-mail [email protected] (JMF), [email protected] (BPT), [email protected] (RWH) ABSTRACT Six species representing the order Stomatopoda are reported from the shallow, inshore waters (passes, bays, and estuaries) of the northern Gulf of Mexico limited to a depth of 10 m or less, and by the Apalachicola River (Florida) in the east and Port Aransas (Texas) in the west.
    [Show full text]
  • Behavioral Ecology of Territorial Aggression in Uca Pugilator and Uca Pugnax
    Coastal Carolina University CCU Digital Commons Honors College and Center for Interdisciplinary Honors Theses Studies Spring 5-8-2020 Behavioral Ecology of Territorial Aggression in Uca pugilator and Uca pugnax Abbey N. Thomas Coastal Carolina University, [email protected] Follow this and additional works at: https://digitalcommons.coastal.edu/honors-theses Part of the Behavior and Ethology Commons Recommended Citation Thomas, Abbey N., "Behavioral Ecology of Territorial Aggression in Uca pugilator and Uca pugnax" (2020). Honors Theses. 377. https://digitalcommons.coastal.edu/honors-theses/377 This Thesis is brought to you for free and open access by the Honors College and Center for Interdisciplinary Studies at CCU Digital Commons. It has been accepted for inclusion in Honors Theses by an authorized administrator of CCU Digital Commons. For more information, please contact [email protected]. Behavioral Ecology of Territorial Aggression in Uca pugilator and Uca pugnax By Abbey Thomas Marine Science Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science In the HTC Honors College at Coastal Carolina University Spring 2020 Louis E. Keiner Eric D. Rosch Director of Honors Lecturer HTC Honors College Marine Science Gupta College of Science Behavioral Ecology of Territorial Aggression in Uca pugilator and Uca pugnax Abbey Thomas MSCI 499H Dr. Rosch Coastal Carolina University Abstract The nature of animal aggression has long been a research interest in many different scientific fields. Resources, including food, shelter, and mates are all common assets for which animals compete. Two species of fiddler crabs, the Atlantic Sand Fiddler Crab (Uca pugilator) and the Atlantic Marsh Fiddler Crab (U.
    [Show full text]