Wavelet Analysis on the Variability, Teleconnectivity, and Predictability of the Seasonal Rainfall of Taiwan

Total Page:16

File Type:pdf, Size:1020Kb

Wavelet Analysis on the Variability, Teleconnectivity, and Predictability of the Seasonal Rainfall of Taiwan 162 MONTHLY WEATHER REVIEW VOLUME 138 Wavelet Analysis on the Variability, Teleconnectivity, and Predictability of the Seasonal Rainfall of Taiwan CHUN-CHAO KUO Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, Taiwan, and Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada THIAN YEW GAN Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada PAO-SHAN YU Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, Taiwan (Manuscript received 10 July 2008, in final form 5 July 2009) ABSTRACT Using wavelet analysis, the variability and oscillations of November–January (NDJ) and January–March (JFM) rainfall (1974–2006) of Taiwan and seasonal sea surface temperature (SST) of the Pacific Ocean were analyzed. From the scale-average wavelet power (SAWP) computed for the seasonal rainfall, it seems that the data exhibit interannual oscillations at a 2–4-yr period. On the basis of correlation fields between decadal component removed wavelet PC (DCR-WPC1) of seasonal rainfall and decadal component removed scale- averaged wavelet power (DCR-SAWP) of SST of Pacific Ocean at one-season lead time, SST of some do- mains of the western Pacific Ocean (July–September SST around 08–308N, 1208–1608E; October–December SST around 08–608N, 1258E–1608W) were selected as predictors to predict seasonal NDJ and JFM rainfall of Taiwan at one-season lead time, respectively, using an Artificial Neural Network calibrated by the Genetic Algorithm (ANN-GA). The ANN-GA was first calibrated using the 1975–99 data and independently vali- dated using 2000–06 data. In terms of summary statistics such as the correlation coefficient, root-mean-square error (RMSE), and Hanssen–Kuipers (HK) scores, the prediction of seasonal rainfall of northern and western Taiwan using ANN-GA are generally good for both calibration and validation stages, but not so for south- eastern Taiwan because the seasonal rainfall of the former are much more significantly correlated to the SST of selected sectors of the Pacific Ocean than the latter. 1. Introduction tends to spill downstream, causing water shortages if sub- sequent seasons happen to be dry. In Taiwan, dry seasons For Taiwan and East Asia, there have been various (usually November–April in Taiwan except in the north- studies focused on their summer rainfall prediction eastern Taiwan) on the average received about 32% of (Chan and Shi 1999; Chien et al. 2002; Chien and Jou annual rainfall (Water Resources Agency 2008). This 2004; Shiao and Juang 2006; Li and Zeng 2008) but sel- usually posts problems to water resources management dom studies on its winter and spring rainfall prediction. of Taiwan, especially its agriculture sector, which has Summer, as the wet season, tends to receive more rainfall about 70% of consumptive use. Therefore, dependable than other seasons of an average year in Taiwan. How- seasonal prediction of rainfall for the dry season will be ever, the capacity of many reservoirs in Taiwan is general useful to Taiwan’s water resources management. limited due to the steep terrain so that excessive water Past studies provide an overview of the teleconnec- tion patterns of East Asia with respect to large-scale climate phenomena such as El Nin˜ o–Southern Oscil- Corresponding author address: Thian Yew Gan, Department of Civil and Environmental Engineering, University of Alberta, lation (ENSO; e.g., Xu et al. 2004; Yang and Lau 2004), Edmonton, AB T6G 2W2, Canada. but different teleconnection patterns exist in East Asia E-mail: [email protected] (Li et al. 2005), so it should be useful to investigate the DOI: 10.1175/2009MWR2718.1 Ó 2010 American Meteorological Society Unauthenticated | Downloaded 10/02/21 02:46 AM UTC JANUARY 2010 K U O E T A L . 163 connectivity between local areas and large-scale cli- tivation of paddy field begins in January and so decisions mate phenomena, especially for a small area such as on water release schedule are usually done at the begin- Taiwan. Besides ENSO, some past studies also link ning of the farming season (January–February). Besides precipitation of Taiwan to large-scale natural variabil- the effect of SST, the spring rainfall of Taiwan starting in ity of sea surface temperature (SST) and Pacific decadal April is subjected to more atmospheric dynamics and cir- oscillation (PDO; Lu and May 2003; Chen et al. 2003; culation and so it will be more challenging to predict the Jiang et al. 2003; Hung et al. 2004). Three precipitation spring rainfall using the Artificial Neural Network cali- associations for Taiwan, Guam, and northwest Australia brated by the Genetic Algorithm (ANN-GA) approach. from January to March have been identified by Lu and First, the spatial, temporal, and frequency variability May (2003). The first type gives rise to wet conditions of the dominant oscillations of the rainfall fields of over Taiwan but dry conditions over the Philippine Sea Taiwan using wavelet analysis and Principal Compo- and northwest Australia, and vice versa by the second nent Analysis (PCA) are examined. Then, sectors of type, but under the third type both Taiwan and north- seasonal SST in the Pacific Ocean that are strongly west Australia will be dry but the Philippine Sea will be correlated to the seasonal rainfall (NDJ and JFM) are wet. Jiang et al. (2003) found that spring (February– identified. Third, the wavelet coherence between selected March) heavy rainfall events were positively correlated SST, ENSO indices, and seasonal rainfall are examined. with the cold season (November–March) Nin˜ o-3 SST Fourth, an ANN-GA was calibrated using the seasonal significantly since the late 1970s but not much correla- rainfall and SST data and the calibrated model is vali- tion between the early 1950s and the late 1970s. The dated by assessing the accuracy of the predicted seasonal spring (February–April) rainfall in northern Taiwan was rainfall based on data not used in the calibration experi- also found to fluctuate simultaneously with the PDO ence. Finally, a composite analysis was also applied to since the early twentieth century (Hung et al. 2004), understand how the warm and cold SST episodes affect and positive (negative) PDO tends to be associated with the precipitation patterns near Taiwan. more (less) spring rainfall in northern Taiwan. These studies show some connectivity between the 3. Climate data rainfall of Taiwan and climate anomalies or SST, which probably implies that predicting seasonal rainfall by such Rainfall data from 15 stations of Taiwan’s Central relationships should be feasible. To our best knowledge, Weather Bureau (Fig. 1) collected from 1974 to 2006 was the prediction of rainfall for winter or spring for Taiwan used to evaluate the predictability of 3-month rainfall by the proposed approach has yet been attempted, but (NDJ and JFM) in Taiwan. The Kaplan SST V2 data summer rainfall prediction in Taiwan has been done by (Kaplan et al. 1998; Parker et al. 1994; Reynolds and Huang and Hsu (2005). Through a permutation test, they Smith 1994) of the same period was provided by the identified sectors of the Pacific Ocean where SST is re- National Oceanic and Atmospheric Administration/Of- lated to the summer rainfall of Taiwan. These sectors of fice of Oceanic and Atmospheric Research/Earth System the Pacific Ocean are close to or located within the win- Research Laboratory Physical Sciences Division (NOAA/ dow of the tropical Pacific used to compute the Nin˜o-3 OAR/ESRL PSD), Boulder, Colorado, from their Web index. Selected principal components (PCs) on these site (http://www.cdc.noaa.gov/). The monthly SST anom- sectors of SST data are used as predictors to an Auto- aly at 58358 resolution were selected from the Pacific regressive Integrated Moving Average (ARIMA) and Ocean window (258S–608N, 1208E–708W) and averaged to regression model to predict the summer rainfall of 3-month values, namely, JFM, AMJ, JAS, and OND. The Taiwan. They found that the regression model performed geopotential height and wind fields (Kalnay et al. 1996) better than the ARIMA model. are prepared by the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) as a 40-yr reanalysis product and also 2. Research objectives made available online at NOAA/OAR/ESRL PSD’s Web The primary objectives of this study are to analyze site (http://www.cdc.noaa.gov/). These data have a hori- the characteristics of seasonal rainfall of Taiwan, and zontal resolution of 2.5832.58. to predict the seasonal, November–January (NDJ) and January–March (JFM; hereafter all three-month periods 4. Research methodology will be referred to by the first letter of each respective a. Wavelet analysis month) rainfall of Taiwan, which will be useful for de- cision makings in water resources management because The wavelet transform of a real signal X(t), used to November is the beginning of the dry season and the cul- extract time and frequency domain information from Unauthenticated | Downloaded 10/02/21 02:46 AM UTC 164 MONTHLY WEATHER REVIEW VOLUME 138 where Cd is 0.776 for the Morlet wavelet (used in this paper), dj is the scale interval, which is 0.0833. Using smaller values of dj gives finer resolutions in scales. dt is the sampling interval which is 1 in this paper, and j1 to j2 (e.g., j1 is 2 yr while j2 is 4 yr) represent scales over which SAWP is computed. For the choice of wavelet function, we should choose a wavelet function that can effectively reflect the oscillatory features of a time series, which in our case is the rainfall. A broad (in time) wavelet function will have poor time but good frequency reso- lutions, and vice versa.
Recommended publications
  • Lecture 19: Wavelet Compression of Time Series and Images
    Lecture 19: Wavelet compression of time series and images c Christopher S. Bretherton Winter 2014 Ref: Matlab Wavelet Toolbox help. 19.1 Wavelet compression of a time series The last section of wavelet leleccum notoolbox.m demonstrates the use of wavelet compression on a time series. The idea is to keep the wavelet coefficients of largest amplitude and zero out the small ones. 19.2 Wavelet analysis/compression of an image Wavelet analysis is easily extended to two-dimensional images or datasets (data matrices), by first doing a wavelet transform of each column of the matrix, then transforming each row of the result (see wavelet image). The wavelet coeffi- cient matrix has the highest level (largest-scale) averages in the first rows/columns, then successively smaller detail scales further down the rows/columns. The ex- ample also shows fine results with 50-fold data compression. 19.3 Continuous Wavelet Transform (CWT) Given a continuous signal u(t) and an analyzing wavelet (x), the CWT has the form Z 1 s − t W (λ, t) = λ−1=2 ( )u(s)ds (19.3.1) −∞ λ Here λ, the scale, is a continuous variable. We insist that have mean zero and that its square integrates to 1. The continuous Haar wavelet is defined: 8 < 1 0 < t < 1=2 (t) = −1 1=2 < t < 1 (19.3.2) : 0 otherwise W (λ, t) is proportional to the difference of running means of u over successive intervals of length λ/2. 1 Amath 482/582 Lecture 19 Bretherton - Winter 2014 2 In practice, for a discrete time series, the integral is evaluated as a Riemann sum using the Matlab wavelet toolbox function cwt.
    [Show full text]
  • Wavelet Entropy Energy Measure (WEEM): a Multiscale Measure to Grade a Geophysical System's Predictability
    EGU21-703, updated on 28 Sep 2021 https://doi.org/10.5194/egusphere-egu21-703 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Wavelet Entropy Energy Measure (WEEM): A multiscale measure to grade a geophysical system's predictability Ravi Kumar Guntu and Ankit Agarwal Indian Institute of Technology Roorkee, Hydrology, Roorkee, India ([email protected]) Model-free gradation of predictability of a geophysical system is essential to quantify how much inherent information is contained within the system and evaluate different forecasting methods' performance to get the best possible prediction. We conjecture that Multiscale Information enclosed in a given geophysical time series is the only input source for any forecast model. In the literature, established entropic measures dealing with grading the predictability of a time series at multiple time scales are limited. Therefore, we need an additional measure to quantify the information at multiple time scales, thereby grading the predictability level. This study introduces a novel measure, Wavelet Entropy Energy Measure (WEEM), based on Wavelet entropy to investigate a time series's energy distribution. From the WEEM analysis, predictability can be graded low to high. The difference between the entropy of a wavelet energy distribution of a time series and entropy of wavelet energy of white noise is the basis for gradation. The metric quantifies the proportion of the deterministic component of a time series in terms of energy concentration, and its range varies from zero to one. One corresponds to high predictable due to its high energy concentration and zero representing a process similar to the white noise process having scattered energy distribution.
    [Show full text]
  • Adaptive Wavelet Clustering for Highly Noisy Data
    Adaptive Wavelet Clustering for Highly Noisy Data Zengjian Chen Jiayi Liu Yihe Deng Department of Computer Science Department of Computer Science Department of Mathematics Huazhong University of University of Massachusetts Amherst University of California, Los Angeles Science and Technology Massachusetts, USA California, USA Wuhan, China [email protected] [email protected] [email protected] Kun He* John E. Hopcroft Department of Computer Science Department of Computer Science Huazhong University of Science and Technology Cornell University Wuhan, China Ithaca, NY, USA [email protected] [email protected] Abstract—In this paper we make progress on the unsupervised Based on the pioneering work of Sheikholeslami that applies task of mining arbitrarily shaped clusters in highly noisy datasets, wavelet transform, originally used for signal processing, on which is a task present in many real-world applications. Based spatial data clustering [12], we propose a new wavelet based on the fundamental work that first applies a wavelet transform to data clustering, we propose an adaptive clustering algorithm, algorithm called AdaWave that can adaptively and effectively denoted as AdaWave, which exhibits favorable characteristics for uncover clusters in highly noisy data. To tackle general appli- clustering. By a self-adaptive thresholding technique, AdaWave cations, we assume that the clusters in a dataset do not follow is parameter free and can handle data in various situations. any specific distribution and can be arbitrarily shaped. It is deterministic, fast in linear time, order-insensitive, shape- To show the hardness of the clustering task, we first design insensitive, robust to highly noisy data, and requires no pre- knowledge on data models.
    [Show full text]
  • A Fourier-Wavelet Monte Carlo Method for Fractal Random Fields
    JOURNAL OF COMPUTATIONAL PHYSICS 132, 384±408 (1997) ARTICLE NO. CP965647 A Fourier±Wavelet Monte Carlo Method for Fractal Random Fields Frank W. Elliott Jr., David J. Horntrop, and Andrew J. Majda Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012 Received August 2, 1996; revised December 23, 1996 2 2H k[v(x) 2 v(y)] l 5 CHux 2 yu , (1.1) A new hierarchical method for the Monte Carlo simulation of random ®elds called the Fourier±wavelet method is developed and where 0 , H , 1 is the Hurst exponent and k?l denotes applied to isotropic Gaussian random ®elds with power law spectral the expected value. density functions. This technique is based upon the orthogonal Here we develop a new Monte Carlo method based upon decomposition of the Fourier stochastic integral representation of the ®eld using wavelets. The Meyer wavelet is used here because a wavelet expansion of the Fourier space representation of its rapid decay properties allow for a very compact representation the fractal random ®elds in (1.1). This method is capable of the ®eld. The Fourier±wavelet method is shown to be straightfor- of generating a velocity ®eld with the Kolmogoroff spec- ward to implement, given the nature of the necessary precomputa- trum (H 5 Ad in (1.1)) over many (10 to 15) decades of tions and the run-time calculations, and yields comparable results scaling behavior comparable to the physical space multi- with scaling behavior over as many decades as the physical space multiwavelet methods developed recently by two of the authors.
    [Show full text]
  • Biostatistics for Oral Healthcare
    Biostatistics for Oral Healthcare Jay S. Kim, Ph.D. Loma Linda University School of Dentistry Loma Linda, California 92350 Ronald J. Dailey, Ph.D. Loma Linda University School of Dentistry Loma Linda, California 92350 Biostatistics for Oral Healthcare Biostatistics for Oral Healthcare Jay S. Kim, Ph.D. Loma Linda University School of Dentistry Loma Linda, California 92350 Ronald J. Dailey, Ph.D. Loma Linda University School of Dentistry Loma Linda, California 92350 JayS.Kim, PhD, is Professor of Biostatistics at Loma Linda University, CA. A specialist in this area, he has been teaching biostatistics since 1997 to students in public health, medical school, and dental school. Currently his primary responsibility is teaching biostatistics courses to hygiene students, predoctoral dental students, and dental residents. He also collaborates with the faculty members on a variety of research projects. Ronald J. Dailey is the Associate Dean for Academic Affairs at Loma Linda and an active member of American Dental Educational Association. C 2008 by Blackwell Munksgaard, a Blackwell Publishing Company Editorial Offices: Blackwell Publishing Professional, 2121 State Avenue, Ames, Iowa 50014-8300, USA Tel: +1 515 292 0140 9600 Garsington Road, Oxford OX4 2DQ Tel: 01865 776868 Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton South, Victoria 3053, Australia Tel: +61 (0)3 9347 0300 Blackwell Wissenschafts Verlag, Kurf¨urstendamm57, 10707 Berlin, Germany Tel: +49 (0)30 32 79 060 The right of the Author to be identified as the Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]
  • A Practical Guide to Wavelet Analysis
    A Practical Guide to Wavelet Analysis Christopher Torrence and Gilbert P. Compo Program in Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado ABSTRACT A practical step-by-step guide to wavelet analysis is given, with examples taken from time series of the El Niño– Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finite-length time series, and the relationship between wavelet scale and Fourier frequency. New statistical significance tests for wavelet power spectra are developed by deriving theo- retical wavelet spectra for white and red noise processes and using these to establish significance levels and confidence intervals. It is shown that smoothing in time or scale can be used to increase the confidence of the wavelet spectrum. Empirical formulas are given for the effect of smoothing on significance levels and confidence intervals. Extensions to wavelet analysis such as filtering, the power Hovmöller, cross-wavelet spectra, and coherence are described. The statistical significance tests are used to give a quantitative measure of changes in ENSO variance on interdecadal timescales. Using new datasets that extend back to 1871, the Niño3 sea surface temperature and the Southern Oscilla- tion index show significantly higher power during 1880–1920 and 1960–90, and lower power during 1920–60, as well as a possible 15-yr modulation of variance. The power Hovmöller of sea level pressure shows significant variations in 2–8-yr wavelet power in both longitude and time. 1. Introduction complete description of geophysical applications can be found in Foufoula-Georgiou and Kumar (1995), Wavelet analysis is becoming a common tool for while a theoretical treatment of wavelet analysis is analyzing localized variations of power within a time given in Daubechies (1992).
    [Show full text]
  • An Overview of Wavelet Transform Concepts and Applications
    An overview of wavelet transform concepts and applications Christopher Liner, University of Houston February 26, 2010 Abstract The continuous wavelet transform utilizing a complex Morlet analyzing wavelet has a close connection to the Fourier transform and is a powerful analysis tool for decomposing broadband wavefield data. A wide range of seismic wavelet applications have been reported over the last three decades, and the free Seismic Unix processing system now contains a code (succwt) based on the work reported here. Introduction The continuous wavelet transform (CWT) is one method of investigating the time-frequency details of data whose spectral content varies with time (non-stationary time series). Moti- vation for the CWT can be found in Goupillaud et al. [12], along with a discussion of its relationship to the Fourier and Gabor transforms. As a brief overview, we note that French geophysicist J. Morlet worked with non- stationary time series in the late 1970's to find an alternative to the short-time Fourier transform (STFT). The STFT was known to have poor localization in both time and fre- quency, although it was a first step beyond the standard Fourier transform in the analysis of such data. Morlet's original wavelet transform idea was developed in collaboration with the- oretical physicist A. Grossmann, whose contributions included an exact inversion formula. A series of fundamental papers flowed from this collaboration [16, 12, 13], and connections were soon recognized between Morlet's wavelet transform and earlier methods, including harmonic analysis, scale-space representations, and conjugated quadrature filters. For fur- ther details, the interested reader is referred to Daubechies' [7] account of the early history of the wavelet transform.
    [Show full text]
  • Big Data for Reliability Engineering: Threat and Opportunity
    Reliability, February 2016 Big Data for Reliability Engineering: Threat and Opportunity Vitali Volovoi Independent Consultant [email protected] more recently, analytics). It shares with the rest of the fields Abstract - The confluence of several technologies promises under this umbrella the need to abstract away most stormy waters ahead for reliability engineering. News reports domain-specific information, and to use tools that are mainly are full of buzzwords relevant to the future of the field—Big domain-independent1. As a result, it increasingly shares the Data, the Internet of Things, predictive and prescriptive lingua franca of modern systems engineering—probability and analytics—the sexier sisters of reliability engineering, both statistics that are required to balance the otherwise orderly and exciting and threatening. Can we reliability engineers join the deterministic engineering world. party and suddenly become popular (and better paid), or are And yet, reliability engineering does not wear the fancy we at risk of being superseded and driven into obsolescence? clothes of its sisters. There is nothing privileged about it. It is This article argues that“big-picture” thinking, which is at the rarely studied in engineering schools, and it is definitely not core of the concept of the System of Systems, is key for a studied in business schools! Instead, it is perceived as a bright future for reliability engineering. necessary evil (especially if the reliability issues in question are safety-related). The community of reliability engineers Keywords - System of Systems, complex systems, Big Data, consists of engineers from other fields who were mainly Internet of Things, industrial internet, predictive analytics, trained on the job (instead of receiving formal degrees in the prescriptive analytics field).
    [Show full text]
  • Volatility Estimation of Stock Prices Using Garch Method
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals European Journal of Business and Management www.iiste.org ISSN 2222-1905 (Paper) ISSN 2222-2839 (Online) Vol.7, No.19, 2015 Volatility Estimation of Stock Prices using Garch Method Koima, J.K, Mwita, P.N Nassiuma, D.K Kabarak University Abstract Economic decisions are modeled based on perceived distribution of the random variables in the future, assessment and measurement of the variance which has a significant impact on the future profit or losses of particular portfolio. The ability to accurately measure and predict the stock market volatility has a wide spread implications. Volatility plays a very significant role in many financial decisions. The main purpose of this study is to examine the nature and the characteristics of stock market volatility of Kenyan stock markets and its stylized facts using GARCH models. Symmetric volatility model namly GARCH model was used to estimate volatility of stock returns. GARCH (1, 1) explains volatility of Kenyan stock markets and its stylized facts including volatility clustering, fat tails and mean reverting more satisfactorily.The results indicates the evidence of time varying stock return volatility over the sampled period of time. In conclusion it follows that in a financial crisis; the negative returns shocks have higher volatility than positive returns shocks. Keywords: GARCH, Stylized facts, Volatility clustering INTRODUCTION Volatility forecasting in financial market is very significant particularly in Investment, financial risk management and monetory policy making Poon and Granger (2003).Because of the link between volatility and risk,volatility can form a basis for efficient price discovery.Volatility implying predictability is very important phenomenon for traders and medium term - investors.
    [Show full text]
  • Fourier, Wavelet and Monte Carlo Methods in Computational Finance
    Fourier, Wavelet and Monte Carlo Methods in Computational Finance Kees Oosterlee1;2 1CWI, Amsterdam 2Delft University of Technology, the Netherlands AANMPDE-9-16, 7/7/2016 Kees Oosterlee (CWI, TU Delft) Comp. Finance AANMPDE-9-16 1 / 51 Joint work with Fang Fang, Marjon Ruijter, Luis Ortiz, Shashi Jain, Alvaro Leitao, Fei Cong, Qian Feng Agenda Derivatives pricing, Feynman-Kac Theorem Fourier methods Basics of COS method; Basics of SWIFT method; Options with early-exercise features COS method for Bermudan options Monte Carlo method BSDEs, BCOS method (very briefly) Kees Oosterlee (CWI, TU Delft) Comp. Finance AANMPDE-9-16 1 / 51 Agenda Derivatives pricing, Feynman-Kac Theorem Fourier methods Basics of COS method; Basics of SWIFT method; Options with early-exercise features COS method for Bermudan options Monte Carlo method BSDEs, BCOS method (very briefly) Joint work with Fang Fang, Marjon Ruijter, Luis Ortiz, Shashi Jain, Alvaro Leitao, Fei Cong, Qian Feng Kees Oosterlee (CWI, TU Delft) Comp. Finance AANMPDE-9-16 1 / 51 Feynman-Kac theorem: Z T v(t; x) = E g(s; Xs )ds + h(XT ) ; t where Xs is the solution to the FSDE dXs = µ(Xs )ds + σ(Xs )d!s ; Xt = x: Feynman-Kac Theorem The linear partial differential equation: @v(t; x) + Lv(t; x) + g(t; x) = 0; v(T ; x) = h(x); @t with operator 1 Lv(t; x) = µ(x)Dv(t; x) + σ2(x)D2v(t; x): 2 Kees Oosterlee (CWI, TU Delft) Comp. Finance AANMPDE-9-16 2 / 51 Feynman-Kac Theorem The linear partial differential equation: @v(t; x) + Lv(t; x) + g(t; x) = 0; v(T ; x) = h(x); @t with operator 1 Lv(t; x) = µ(x)Dv(t; x) + σ2(x)D2v(t; x): 2 Feynman-Kac theorem: Z T v(t; x) = E g(s; Xs )ds + h(XT ) ; t where Xs is the solution to the FSDE dXs = µ(Xs )ds + σ(Xs )d!s ; Xt = x: Kees Oosterlee (CWI, TU Delft) Comp.
    [Show full text]
  • A Python Library for Neuroimaging Based Machine Learning
    Brain Predictability toolbox: a Python library for neuroimaging based machine learning 1 1 2 1 1 1 Hahn, S. ,​ Yuan, D.K. ,​ Thompson, W.K. ,​ Owens, M. ,​ Allgaier, N .​ and Garavan, H ​ ​ ​ ​ ​ ​ 1. Departments of Psychiatry and Complex Systems, University of Vermont, Burlington, VT 05401, USA 2. Division of Biostatistics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA Abstract Summary Brain Predictability toolbox (BPt) represents a unified framework of machine learning (ML) tools designed to work with both tabulated data (in particular brain, psychiatric, behavioral, and physiological variables) and neuroimaging specific derived data (e.g., brain volumes and surfaces). This package is suitable for investigating a wide range of different neuroimaging based ML questions, in particular, those queried from large human datasets. Availability and Implementation BPt has been developed as an open-source Python 3.6+ package hosted at https://github.com/sahahn/BPt under MIT License, with documentation provided at ​ https://bpt.readthedocs.io/en/latest/, and continues to be actively developed. The project can be ​ downloaded through the github link provided. A web GUI interface based on the same code is currently under development and can be set up through docker with instructions at https://github.com/sahahn/BPt_app. ​ Contact Please contact Sage Hahn at [email protected] ​ Main Text 1 Introduction Large datasets in all domains are becoming increasingly prevalent as data from smaller existing studies are pooled and larger studies are funded. This increase in available data offers an unprecedented opportunity for researchers interested in applying machine learning (ML) based methodologies, especially those working in domains such as neuroimaging where data collection is quite expensive.
    [Show full text]
  • BIOSTATS Documentation
    BIOSTATS Documentation BIOSTATS is a collection of R functions written to aid in the statistical analysis of ecological data sets using both univariate and multivariate procedures. All of these functions make use of existing R functions and many are simply convenience wrappers for functions contained in other popular libraries, such as VEGAN and LABDSV for multivariate statistics, however others are custom functions written using functions in the base or stats libraries. Author: Kevin McGarigal, Professor Department of Environmental Conservation University of Massachusetts, Amherst Date Last Updated: 9 November 2016 Functions: all.subsets.gam.. 3 all.subsets.glm. 6 box.plots. 12 by.names. 14 ci.lines. 16 class.monte. 17 clus.composite.. 19 clus.stats. 21 cohen.kappa. 23 col.summary. 25 commission.mc. 27 concordance. 29 contrast.matrix. 33 cov.test. 35 data.dist. 37 data.stand. 41 data.trans. 44 dist.plots. 48 distributions. 50 drop.var. 53 edf.plots.. 55 ecdf.plots. 57 foa.plots.. 59 hclus.cophenetic. 62 hclus.scree. 64 hclus.table. 66 hist.plots. 68 intrasetcor. 70 Biostats Library 2 kappa.mc. 72 lda.structure.. 74 mantel2. 76 mantel.part. 78 mrpp2. 82 mv.outliers.. 84 nhclus.scree. 87 nmds.monte. 89 nmds.scree.. 91 norm.test. 93 ordi.monte.. 95 ordi.overlay. 97 ordi.part.. 99 ordi.scree. 105 pca.communality. 107 pca.eigenval. 109 pca.eigenvec. 111 pca.structure. 113 plot.anosim. 115 plot.mantel. 117 plot.mrpp.. 119 plot.ordi.part. 121 qqnorm.plots.. 123 ran.split. ..
    [Show full text]